Lightweight RFID authentication with forward and
backward security

MIKE BURMESTER

Florida State University, Tallahassee
and

JORGE MUNILLA

Universidad de Mdlaga, Spain

We propose a lightweight RFID authentication protocol that supports forward and backward se-
curity. The only cryptographic mechanism that this protocol uses is a pseudorandom number
generator (PRNG) that is shared with the backend Server. Authentication is achieved by ex-
changing a few numbers (3 or 5) drawn from the PRNG. The lookup time is constant, and the
protocol can be easily adapted to prevent online man-in-the-middle relay attacks. Security is
proven in the UC security framework.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information
Systems]|: Security and Protection—Authentication; K.6.5 [Management of Computing and
Information Systems]: Miscellaneous—Security; C.3 [Special-Purpose and Application-
Based Systems]: Real-time and embedded systems

General Terms: Design, Security, Theory
Additional Key Words and Phrases: RFID, EPCGen2, authentication, forward security, backward
security, universal composability

1. INTRODUCTION

Radio Frequency Identification (RFID) is a promising new technology that is widely
deployed for supply-chain and inventory management, retail operations and more
generally, automatic identification. The advantage of RFID over barcode tech-
nology is that it does not require direct line-of-sight reading. Furthermore RFID
readers can interrogate tags at greater distances, faster and concurrently. One of
the most important advantages of RFID technology is that tags have read/write
capability, allowing stored information to be altered dynamically.

To promote the adoption of RFID technology and support interoperability, EPC-
Global [EPC Global] has ratified the EPC Class 1 Gen 2 (EPCGen2) standard for
RFID deployments. This defines a platform for RFID protocol interoperability, and
supports basic reliability guarantees, provided by an on-chip 16-bit pseudorandom
number generator (PRNG) and a 16-bit Cyclic Redundancy Code (CRC16). The
EPCGen2 standard is designed to strike a balance between cost and functionality,
with less attention paid to security.

Several RFID authentication protocols that address security issues have been
proposed in the literature (we refer the reader to a comprehensive repository avail-
able online at [Avoine 2010]). Cryptography especially designed for constrained
devices is called lightweight, or low-cost, cryptography. Most lightweight protocols
use hash functions [Sharma et al. 2003; Ohkubo et al. 2003; Henrici and Miiller
2004; Avoine and Oechslin 2005; Dimitriou 2006; Molnar et al. 2006], which are

2 . Draft

beyond the capability of low cost tags and not supported by EPCGen2. Some
protocols use pseudorandom functions [Burmester et al. 2006a; van Le et al. 2007;
Burmester and de Medeiros 2008], or PRNGs (as in [Burmester and de Medeiros
2008; Choi et al. 2009]), mechanisms that are supported by EPCGen2, but are
not optimized for EPCGen2 compliance. Thus, new lower complexity (flyweight)
protocols that are suitable for EPCGen2 platforms are needed.

Some researchers have adopted a systematic approach designed to capture spe-
cific security requirements by using privacy models (e.g., [Paise and Vaudenay 2008;
Juels and Weis 2009; Michahelles et al. 2007; Avoine et al. 2007], computational
models (e.g., [Vaudenay 2007]), or symbolic models (e.g., [Arapinis et al. 2008]).
In this article we propose to use a formal specifications based framework that cap-
tures these models and addresses composability issues. This extends earlier work
in [Burmester et al. 2009b] to more general functionalities, such as refreshment and
backward security, appropriate for lightweight RFID deployments. There is com-
paratively little work on RFID protocols in this framework, see e.g., [Burmester
et al. 2006a; 2006b; van Le et al. 2007; Burmester et al. 2008a; 2008b; Burmester
and de Medeiros 2009; Burmester et al. 2009a; 2009b].

Our main contribution in this article is to present a novel low cost lightweight
RFID protocol that supports mutual authentication with forward and backward
security [Barak and Halevi 2005]. The protocol has minimal overhead with constant
lookup time and can be implemented on an EPCGen2 platform. Authentication is
achieved by exchanging a few numbers (3 or 5) drawn from a PRNG that is shared
with the back-end Server. The protocol supports forward and backward security.
Forward security protects past tag interrogations from being linked to a captured
tag. Tags are not tamper-resistant, and therefore the adversary can access the
private data of a captured tag. Backward security protects future tag interrogations
from traffic analysis (correlation) attacks in which the adversary uses information
leaked by tags to determine their internal state. Such attacks exploit the fact that
the state of lightweight tags has low entropy. An important feature of our protocol is
that RFID tags can pre-compute their response to Server challenges, and therefore
the Server can detect online man-in-the-middle relay attacks by controlling the
round-trip time of a challenge-response.

We then extend the Universally Composable (UC) security framework for RFID
systems presented recently in this journal [Burmester et al. 2009b], to capture
lightweight-to-flyweight RFID applications, and in particular forward and backward
security with refreshment. We conclude by showing that our protocol UC-realizes
mutual authentication and session unlinkability with forward and backward secu-
rity. We note that UC-security supports modular deployments, a feature essential
for most ubiquitous applications.

Our contributions

—A Flyweight RFID protocol that provides mutual authentication with session
unlinkability, extending work in [Burmester et al. 2009a; Burmester and Munilla
2009] (Section 4).

—A tag refreshment mechanism, that extends the functionality of the Flyweight
protocol to capture forward and backward security (Section 5).

ACM Journal Name, Vol. V, No. N, Sept 2010.

Draft . 3

—An implementation that addresses online relay attacks (Section 6).
—An implementation that secures the EPCGen2 Inventory protocol (Section 7).

—A UC framework that adapts the model in [Burmester et al. 2009b] to capture
availability,! mutual authentication and session unlinkability with forward and
backward security (Section 8).

—A security proof and security reductions (Section 9).

1.1 A motivating paradigm

Alice wants to purchase an RFID ski-lift pass. Two versions are available: A
$50 card for 10 applications (tag interrogations) and a $200 pass for unlimited
applications (for the season). She purchases the former. For her money she gets:

Awvailability. The RFID pass uses five numbers drawn from an on-chip PRNG that
is shared with authorized RFID readers to authenticate Alice. Readers will only
accept Alice’s pass if its numbers match those generated locally. Up to 50 numbers
can be drawn before correlation attacks become an issue: she is allowed only 10
sessions (a design constraint).

Session unlinkability. The adversary cannot link authorized interrogation sessions.

The adversary’s goal is to undermine the security features of the RFID pass. In
particular, to impersonate Alice, track Alice and/or deny service. The adversary
can eavesdrop on all interrogations of Alice’s RFID pass and activate her RFID
pass with rogue readers.

Security analysis. The RFID pass prevents Steve (an eavesdropping stalker) from
impersonating Alice by replaying her pseudorandom numbers (different numbers are
used each time). However Mark (a man-in-the-middle active adversary) has found
a way to deplete the card (he “steals” her numbers via a rogue RFID reader).
Alice gets only two authentications. She does not want to break-up with Mark so
she buys the $200 pass. This time after two authentications—Mark is at it again,
Voila! the card morphs into a brand new RFID pass (with a fresh PRNG). This
happens over and over again, whenever the card is depleted, even when Mark causes
it and Alice is not in the range of an authorized reader (“quantum refreshing”).
Steve and Mark give up. Mischief doesn’t work. However Alice is now concerned
about accessing her BlackBerry while using her ski-lift pass (she is obsessed with
multitasking). Ran, the analyst, assures her that the card uses a protocol that
remains secure when composed with other protocols.

2. RFID DEPLOYMENTS

An RFID deployment involves tags, readers and a backend Server. Tags are wireless
transponders that typically have no power of their own and respond only when they
are in an electromagnetic field, while readers are transceivers that generate such
fields. Tags are physically constrained devices that cannot erecute concurrently—
this will make our analysis and proofs in Sections 8 and 9 much simpler. Readers
implement a radio interface to tags and a high level interface to a backend Server.

1Protocols that employ shared security mechanisms may be subject to de-synchronization attacks.

ACM Journal Name, Vol. V, No. N, Sept 2010.

4 . Draft

The Server is a trusted entity that processes private tag data. Readers do not store
locally any private data and the channels that link them to the Server are assumed
to be secure—hardware constraints are not so tight here, and common security
protocols can be used (SSL/TLS).

2.1 Threats and Attacks

The goal of the adversary is to undermine the functionality of the RFID deploy-
ment. Below we list the most important adversarial attacks.

Awvailability. Tag disabling: the adversary tries to cause tags to assume a state from
which they can no longer function.

Privacy. Tag tracking: the adversary tries to trace tags from their protocol flows.

Integrity.

—Replay: The adversary tries to use a tag’s response to a reader’s challenge to
impersonate the tag.

—Cloning: The adversary tries to capture identifying information of a tag.

—Offline man-in-the-middle offline attacks: The adversary tries to impersonate a
tag by interposing between the tag and a reader and exchanges their (possibly
modified) messages.

There are also attacks on RFID systems that are usually excluded from the security
model, such as:

Online man-in-the-middle relay attacks [Bengio et al. 1991; Kim et al. 2008]: these
are similar to the offline attacks above, with the exception that the adversary relays
messages online.

Side Channel and Power Analysis [Mangard et al. 2007] attacks: the adversary
exploits information gained by the physical implementation of protocols.

These attacks are usually prevented by using “out of system” protection mecha-
nisms.

2.2 Priorities, Constraints and Optimizations

In the context of RFID applications, nearly every factor having impact on tag
resources and capabilities is important. In particular, with EPCGen2 compliant
systems one must take into account the execution time of the protocol: for many
applications the number of tags identified per second is crucial (e.g., in supply
chains). Thus, we aim to minimize requirements for: (i) non-volatile RAM on the
tag, (i1) tag code (gate count) complexity, (i4¢) tag computation requirements, (iv)
tag turn-around-time, (v) the number of rounds in reader-tag interactions, (vi) the
message size in reader-tag interactions, (vii) the server real-time computation load,
and (viii) the server storage requirements. Furthermore, we restrict concurrency
by prohibiting RFID tags from executing more than one session at a time (as
in [Burmester et al. 2009b]). Note that this is a restriction only on individual honest
tags: RFID readers (whether honest or corrupt), the Server, and dishonest tags can
execute multiple sessions simultaneously. This is a mild requirement that facilitates
the design of concurrently secure protocols and in accordance with the capabilities

ACM Journal Name, Vol. V, No. N, Sept 2010.

Draft . 5

of RFID technology (this restriction can be relaxed when tags use multiple separate
keys for concurrent executions [van Le et al. 2007]).

Finally, we observe that mechanisms such as public key cryptosystems, tamper-
resistant shielding, and on-board clocks are not considered realistic for low-cost
applications. Furthermore symmetric-key cryptographic systems such as hash func-
tions or encryption schemes are beyond the capability of most lightweight applica-
tions. Even, pseudorandom functions (PRF) based on PRNG (as in [van Le et al.
2007; Burmester et al. 2009b] are too slow for EPCGen2 applications (to generate
an n-bit output of a PRF by running a PRNG as in [Goldreich et al. 1986] requires
2n numbers to be drawn).

2.3 Design Requirements

In designing our lightweight RFID protocols, we set, to achieve the following security
goals:

Availability. RFID systems are vulnerable to attacks that aim to incapacitate tags,
i.e., force them into a state from which they cannot recover. De-synchronization
attacks target availability. Such vulnerabilities are often exacerbated by the
wireless and human-imperceptible nature of RFID tags, allowing them to be
manipulated at a distance by covert readers.

Authentication. Client authentication is a process in which one party, the Server S,
is assured of the identity of another party, the client (a tag 7'), by acquiring cor-
roborative evidence. We have anonymous client authentication when the identity
of 7 remains private to third parties that may eavesdrop on the communication
or invoke the protocol and interact with the parties directly. We have mutual
authentication if both S and 7 are authenticated. In our protocol the Server is
implicitly authenticated: that is, the assurance for tags is only implicit.

Privacy. Most proposed RFID applications inherently require anonymity and un-
traceability of individual tags. The need for privacy is critical when tags are
used for medical purposes and for authorization/identification purposes. In our
Flyweight protocols privacy is captured by session unlinkability with forward and
backward security:

Session unlinkability. The adversary cannot link any two interrogations of a tag
if, the tag either updated its state in the first, or updated it in an intermediate
interrogation.

Forward Security. Past tag outputs, prior to refreshment, cannot be disambiguated
by the adversary even if the adversary can access the full internal state of the
tag (the state of the tag’s PRNG and its private key) after it is refreshed.

Backward Security. Future tag outputs, after refreshment, cannot be disambiguated
by the adversary even if the adversary knew the state of the tag’s PRNG (e.g.
by analyzing its outputs) before it was refreshed.

Other goals address implementation and practical aspects of RFID systems.

Efficiency. Protocols must be lightweight: many RFID platforms can only imple-
ment highly optimized symmetric-key cryptographic techniques. Furthermore,
the overhead should be minimal, in particular when the system is not under

ACM Journal Name, Vol. V, No. N, Sept 2010.

6 . Draft

attack—we call this optimistic performance. Finally the lookup time for the
Server should be constant, or at most logarithmic (in the number of tags).

Concurrent Security. RFID systems are nearly always highly concurrent (a large
number of tags are interrogated concurrently [EPC Global]). It is important
therefore to address security in concurrent environments where the adversary
can adaptively manipulate communications.

Modularity and Re-usability. Protocols are often analyzed under the implicit as-
sumption of operating in isolation, and therefore may fail in unexpected ways
when used in combination with other protocols (for example, in [Burmester and
de Medeiros 2009] a proven secure route discovery protocol becomes insecure
when executed concurrently with itself). Since RFID tags are components of
larger systems, it is important to require that security is preserved when the pro-
tocols are executed in arbitrary composition with other (secure) protocols. This
type of security is provided by the Universal Composability (UC) framework.

3. THE EPCGEN2 STANDARD

EPCGen2 defines the physical and logical requirements for a passive-backscatter,
Interrogator-talks-first, radio-frequency identification system operating in the 860
- 960 MHz range. The system comprises Interrogators (RFID readers) and tags.
Interrogators manage tag populations using three basic operations: select —choose
a tag population, inventory —identify tags, and access —read from and/or write
to a tag.

The Inventory Protocol has (at least) 4 passes that involve: a Query, a 16-bit num-
ber RN16, an acknowledgment ACK(RN16), and FPCdata (a tag’s identifying

Interrogator Tag

Query
RN16
ACK(RN16)

EPCdata

Fig. 1. The 4-pass EPCGen2 Inventory Protocol.

data)—see Figure 1. The Interrogator starts by sending a Query that includes a
parameter @ € [0 : 15]. A random-slotted collision algorithm (the “Q-protocol”)
is used to singulate tags. Tags that receive Query load a random @-bit number
into a slot counter, and decrease this counter whenever they receive the command
QueryRep. When their counter is zeroed, tags send a random number RN16 to
the Interrogator. When the Interrogator detects a reply from a tag, it sends an
acknowledgment ACK(RN16), which requests from the tag its PC (protocol con-
trol), EPC (electronic product code), and a CRC16 (cyclic redundancy code). If
the Tag does not receive a valid ACK(RN16) (possibly because of a collision), it
transitions to its initial state and the process is repeated. Tags may also store a

ACM Journal Name, Vol. V, No. N, Sept 2010.

Draft . 7

32-bit Kill Password, and a 32-bit Access Password.

Tags implement a 16-bit cyclic redundancy code (CRC16) and a 16-bit random or
pseudorandom number generator (PRNG). CRCs are error-detecting codes that
check faults during transmission. A CRC maps arbitrary length inputs A =
(Ao, A1,..., A1) onto n-bit outputs as follows: first the input is represented
by a polynomial A(x) = Ag + A1z + -+ + A, _12™ ! over the finite field GF(2),
and then its remainder is computed modulo an appropriate generator polynomial
g(x) of degree n (if m < n, zeroes are added to make up the difference). EPCGen2
uses the CRC-CCITT generator g(x) = 26 +2'2 +2°+1, and an implementation
that XORs and appends fixed bit patterns. In particular, we have:

CRC16(A) = [(A(z)+ mz_: 2')-2'%] mod g(z) = A(z)2z'®mod g(z) + CRC16(0),

1=m—16

where CRC16(0) = """ zimodg(x) is a fixed polynomial. Since the modulo
g(x) operator is a homomorphism, CRC16 is semi-linear. That is, for numbers
A, B, we have:

CRC16(A + B) = CRC16(A) + CRC16(B) + CRC16(0).

Therefore the CRC16 of a sum of numbers can be computed from the CRC16s of
the numbers. Consequently CRC16 by itself will not protect data against inten-
tional alteration. Its functionality is to support error detection, in particular with
respect to burst errors, not security.

A PRNG is a pseudorandom bit generator (PRG) whose output is partitioned
into blocks of given length n. Each block defines an n-bit number, said to be
drawn from the PRNG. A PRG is a deterministic algorithm that, on input a truly
random binary string of length k, called the seed, generates a binary string s of
length m >> k which “appears” to be random. A PRG is cryptographically secure
if there is no probabilistic polynomial-time algorithm that given the first ¢ < m
bits of s can predict the (¢ +1)!" bit of s with probability significantly greater than
1/2. Cryptographically secure PRGs define secure PRNGs. For these, there is no
probabilistic polynomial-time algorithm that given the first ¢ n-bit numbers drawn,
t < |m/n], can predict the next n-bit number of s with probability significantly
greater than 1/2" (a formal definition is given in Section 5, where we also address
the robustness of pseudorandom generators).

While it is impossible to give a mathematical proof that a PRNG is indeed secure,
we gain confidence that it is secure by subjecting it to a variety of statistical tests
designed to detect the specific characteristics expected of random sequences. A
comprehensive collection of randomness tests suitable for the evaluation of PRNGs
used in cryptographic applications is proposed by the National Institute of Stan-
dards and Technology (NIST) [Rukhin et al. 2001]. There are many other such ran-
domness tests (cf. [Menezes et al. 1996], [Walker 1998]), and most of these include
correlation tests which indicate the dependency of an output upon the previous
output.

EPCGen2 specifies 16-bit PRNGs, whose numbers are denoted by RN 16, which
should meet the following randomness criteria, independently of the strength of the

ACM Journal Name, Vol. V, No. N, Sept 2010.

8 . Draft

energizing field, the reader-to-tag link rate, and the data stored in the tag:

Probability of a single RN16: The probability that a RN16 drawn from the PRNG
has value RN16 = j for any 16-bit number j, is bounded by

0.8/2'% < Prob|RN16 = j] < 1.25/2'.

Probability of simultaneously identical sequences: For a tag population of up to
10,000 tags, the probability that any of two or more tags simultaneously generate
the same sequence of RN16s shall be less than 0.1%, regardless of when the tags
are energized.

Probability of predicting an RN16: An RN16 drawn from a tag’s PRNG shall not
be predictable with a probability greater than 0.025% if the outcomes of prior draws
from the PRNG, performed under identical conditions, are known.

These guarantee a reasonable level of pseudorandomness, except for the last
prediction bound which is rather crude for cryptographic PRNGs: too high when
only one number is drawn and too low when many numbers are drawn (e.g., more
than a cycle of the PRNG). In general we have to make certain that the entropy
of a PRNG is sufficient and/or regularly refreshed to prevent correlation attacks.
We refer the reader to [Burmester and de Medeiros 2008] for further discussion
regarding these security criteria.

Recently several RFID authentication protocols specifically designed for com-
pliance with the EPCGen2 standard have been proposed: [Chen and Deng 2009,
[Qingling et al. 2008], [Sun and Ting 2009], [Seo et al. 2005], and [Choi et al. 2009).
These combine the CRC16 of EPCGen2 with its 16-bit PRNG to hash, randomize
and link protocol flows. However, these protocols fail to achieve their security goals
and indeed are subjects to one or more of the attacks discussed in Section 2.1, as
shown in [Burmester and Munilla 2009]. One may argue that because EPCGen?2
supports only a very basic PRNG, any protocol that complies with this standard
is potentially vulnerable, for example to ciphertext-only attacks that exhaust the
range of the values of protocol flows. While this is certainly the case, such attacks
may be checked by refreshing key material and/or constraining the application (e.g.,
the life-time of tags).

4. FLYWEIGHT RFID AUTHENTICATION

We first present our basic RFID authentication protocol which we call Flyweight. In
this protocol, each tag 7 shares with the backend Server S a (loosely) synchronized
PRNG (same algorithm, key, seed), say giag = giag(state). 7T is authenticated by
exchanging either three consecutive numbers RNy, RNy, RN3 (when the adversary
is passive), or five numbers RNy, RNa, RNy, RN3, RN5 drawn from the shared g;q4.

The RFID reader R starts the protocol by sending a Query. Then 7 responds
by sending the number RN; drawn from g;,4 to the reader R. R forwards this to
S, who identifies the tag’s PRNG gyq4, and responds by drawing the next number
RN, from g4y and sends this to 7 (via R) as an authenticator. Finally 7 responds
by drawing the third number RN3 from g4, (after checking the correctness of
the second number) and sends this to S (via 7) for mutual authentication. Five
numbers are required only when the interrogation was previously interrupted, .e.,

ACM Journal Name, Vol. V, No. N, Sept 2010.

Draft . 9

when the first number RN; was already used (in which case an alarm is ON). In
this case RNy is sent in the third pass, and the numbers RN3 and RN5 are used
as authenticators.

The security of the protocol is based on the fact that: () it is hard for the ad-
versary to predict the next number drawn from a PRNG, and (i7) parties 7, S are
synchronized at all times. Synchronization is guaranteed by making certain that
T and S always share at least one number. The protocol supports mutual authen-
tication, a certain degree of privacy (session unlinkability), forward and backward
security (the robust version), and is provably secure, as we shall see in Sections 8, 9.
The protocol is presented in Figure 2. Each tag 7 stores in non-volatile memory
two numbers, giq4(state) (the current state), a refresh key K, and a 1-bit flag cnt:
(RN1, RN3, giag(state), K, cnt). The Server S stores in a database DB for each 7
an ordered list containing;:

—six numbers (RN, RN7“®t RNy, RN3, RNy, RN3),
—a tag identifier I Dyqq, grag(state), the refresh key K, and
—a 1-bit flag cnt*.

The lists in DB are doubly indexed by RN{“" and RNJ*“*! respectively. To initialize
the values of its variables, 7 draws two successive values RNy, RNy from g, (state)
and sets cnt < 0. S draws six successive numbers from the PRNG of each tag 7
and assigns their values to the variables in the list of 7:

RN{,‘UT',RN27 RN3, RNy, RNE”RN{wwt (Hl this order)7

and sets cnt* «— 0. To update a list, S uses the function update for which:
RNE™ — RNPt the five values RNy, RN, RNy, RNs, RNT°t are updated by
drawing new numbers from g..4(state), and cnt* < 0.

4.1 Features of the Flyweight protocol

The basic features of the Flyweight protocol are listed below and in Section 4.2. In
Section 8 we discuss its security in a formal specifications framework (in terms of
its functionality Fy,_qu¢) and in Section 9 we prove that it realizes its specifications.

SYNCHRONIZATION. At all times the Server S shares with each tag 7 at least one
number: either RN; = RN or RNy = RNT®®'. TFor each session, S and 7
each use a block of five successive numbers drawn from their shared PRNG. We
distinguish two cases identified by Configuration A and Configuration B in Fig-
ure 3. Configuration A describes the normal state, when the previous flow was not
interrupted: in this case S, 7 use the same block. When 7 receives RN», it sends
RN; or RN, and moves to the next block. If the message of 7 (RN3 or RNy)
is interrupted, then Configuration B will be the initial state for the next session.
Otherwise, S receives 7’s message and also moves ahead to the next block, re-
turning to Configuration A. When the initial state is described by Configuration B
then S receives RN“** (RN7 in Figure 3) and will advance to the next block. It
must be noted that the synchronization process is independent of the authentication
process: i.e., the parties can advance along the stream and get synchronized even
when the authentication was not completed successfully. The adversary may try
to de-synchronize 7 by challenging it with a Query, or the number RN2 obtained

ACM Journal Name, Vol. V, No. N, Sept 2010.

10 . Draft

1) R—>T: Query
T : Set alarm<«— cnt, cnt — 1. Broadcast RN;.

2) T—-R=S8: RN
S : Check if RNy is in DB.
If RN1 = RN{*" for an item in DB then set alarm® « cnt*, cnt* < 1, and
broadcast RN>.
Elseif RN, = RN{LE“ for an item in DB then set alarm* < 0, update the
list of values in DB, and broadcast (the updated) RNa.

Else abort.
(3) S=R—-T: RN
7T : Check RNs.

If RN> is correct then draw five successive numbers from g¢qg, assign them
to the variables RN3, RN4, RN5 (volatile), RN1, RN2, and set cnt < 0.
If alarm = 0 then broadcast RN = RN3.

Else broadcast RN = RNy.

Else abort.

(4) T—-R=S8: RN
S : Check the received value RN.
If RN = RN3 and alarm® = 0 then update and ACCEPT the tag as the
authorized 7.
Elseif RN = RNy4 then broadcast RN3, store RN5 and update.
Else abort.

(5) S=R—-T7: RN3
T: Check RN3.
If RN3 is correct and alarm = 1 then broadcast RN5.
Else abort.

(6) T— R =S :quad RN;s
S : Check RN5.

If RN5 is correct then update and ACCEPT the tag as the authorized 7.
Else abort.

Fig. 2. The basic Flyweight RFID protocol.

by using a man-in-the-middle attack on S, 7. In the first case 7 will not update
its stored values, so it will share RN} = RN{*" with S. In the second, 7 updates
its values and will share RN; = RN{*** with § (RN] in Figure 3). The protocol
prevents any further updating by 7 before S does: 7 can only update its values
when it is prompted by RNy (RN} in Figure 3).

ErriciENCY. The overhead is minimal when the adversary is passive: in this case
only three numbers have to be exchanged to authenticate a tag 7. If an active ad-
versary tries to replay flows, this will cause 7 to activate alarm, and two additional
numbers will be needed (Pass 5 and Pass 6). Observe that the numbers RN3, RN,
and RNj5 are always fresh (never sent more than once), because at this point S and
T have already updated their pseudorandom values for the next interrogation.

CONSTANT LOOKUP TIME. The Server needs to perform at most two lookups in
the database DB (for RN{“" and RNJ"**!) to identify 7. The cost of a simple key

ACM Journal Name, Vol. V, No. N, Sept 2010.

Draft . 11

Configuration A:
S cur next

\

1
RN] RN) RNj RN, RN}

r

PRNG stream | RN; RN RNs RNs; RN

I

T

Configuration B:
S cur next

P i ' \

PRNG stream ' RN; RN» RN3 RNy RNs ! RN, RN, RN; RN, RN/
, P S |
I 1

4

T

Fig. 3. Synchronizing the pseudorandom streams of S and 7.
lookup in DB using Linear Hashing is O(1) [Zhang et al. 2009].

TIMERS. We have not included timers to simplify the presentation. However in
any implementation timers are needed to close sessions. Parties should abort if no
response is received after sending a challenge within a certain time T,p0,¢.2 Crude
timers can be based on discharging capacitors [Juels 2004]. If precise timers are
used, then it may be possible to thwart online man-in-the-middle relay attacks. In
particular, the more accurate Typort 18, the harder such attacks become [Munilla
et al. 2006]. Naturally, an active attack that involves relaying flows between proto-
col parties faster than T,p,,+ will succeed. In Section 6 we will explain how to deal
with such attacks in our protocols.

IMPLEMENTATION COMPLEXITY. There are several efficient implementations of
PRNGs appropriate for lightweight RFID applications. The shrinking generator of
Coppersmith, Krawczyk and Mansour [Coppersmith et al. 1994], which is based on
linear feedback shift registers, has been estimated to require only 1435 logic gates,
517 clock cycles and 64B memory (clock frequency 100 kH z), and achieves 128 bit
security [Lee and Hong 2006]. More recently, a hardware implementation LAMED-
EPC [Peris-Lopez et al. 2009] specifically tailored for EPCGen2 applications has
been proposed. This is estimated to require 1566 logic gates, 194 clock cycles (at
100kHz) and 64B memory. In Table I we compare these implementations with
some block ciphers (in counter mode [Menezes et al. 1996]): DESL [Poschmann
et al. 2007] and PRESENT-80 [Bogdanov et al. 2007], which were the first candi-
dates for RFID devices, AES-128 [Feldhofer et al. 2005], the family KATAN and
KTANTAN [Canniére et al. 2009], with blocks of 32, 48 or 64 bits (KTANTAN is
a compact version of KATAN with hardcoded key), the stream ciphers Grain [Hell
et al. 2005], and a low-cost implementation of Trivium [Mentens et al. 2008].

Note that RFIDs derive their energy from the air interface, and therefore power
consumption is an important metric for implementations. However most of the
proposed generators do not provide estimates for it: the only available estimates

2If timers are not used, then after sending a challenge, the reader will wait indefinitely until it
gets a reply. This can lead to a man-in-the-middle offline attack (Section 2.1).

ACM Journal Name, Vol. V, No. N, Sept 2010.

12 . Draft

Generator Gate Count Throughput (at 100 kHz2) ‘

Shrinking Generator 1435 GEs 24.7 kbps
LAMED-EPC 1566 GEs 8.2 kbps
PRESENT-80 1570 GEs 200 kbps
AES-128 3596 GEs 11.5 kbps

KATAN-32-48-64 802-927-1054 GEs 12.5-18.8-25.1 kbps

KTANTAN-32-48-64 462-588-688 GEs 12.5-18.8-25.1 kbps
Grain 1294 GEs 100 kbps
Trivium 749 GEs 100 kbps

Table I. Gate count and throughput of lightweight PRNG proposals
are for PRESENT-80 (5 W) and AES-128 (4.5 mW).

4.2 Session unlinkability

The notion of session unlinkability was discussed earlier in the Introduction and
in Section 2.3. We now define it more formally in terms of an experiment Exp%,,
b € {0, 1}, involving an observer O, a probabilistic polynomial-time Turing machine
(PPT), and the RFID system. O has access to a history of earlier tag interrogations
and is given two tag interrogations int; and ints (not necessarily complete, or by
authorized readers), such that:

—1int; took place beforel ints, and

—either int; completed normally (successfully), or an interrogation of the tag
involved in int; completed normally after int; and before ints,

and must decide whether the same tag was involved in both int; and int,. Exp%
corresponds to the event that the same tag was involved in both interrogations
intq, intg, while Exp}, corresponds to the event that different tags were involved
in these interrogations.

Definition 4.1. A RFID authentication protocol provides session unlinkability if
for any PPT observer O the advantage

Adve = |Prob[Exp}, = 1] — Prob[Expy, = 1]
is negligible.
The Flyweight protocol provides session unlinkability. Indeed:

SESSION UNLINKABILITY. The only instances in which an adversarial observer can
link sessions are those in which the tag is prevented from accessing an authorized
reader. In such cases the tag outputs the same number RN; each time, so these
sessions can be linked. On receiving a response RN> from the reader the tag will
update its stored values, and its flows become unlinkable.

In Section 8 we shall present a more general security framework in which the
specifications for session unlinkability are captured by their functionality in the
real-world /ideal-world paradigm [Goldreich et al. 1987], and in Section 9 we give a
formal proof.

3A temporal relationship, as observed by the observer. Note that if two interrogations that overlap
in time are observed, then it can certainly be asserted that they do not belong to the same tag,
since tags are currently technologically limited to single-threaded execution.

ACM Journal Name, Vol. V, No. N, Sept 2010.

Draft . 13

5. A ROBUST FLYWEIGHT RFID PROTOCOL

Our next protocol uses (loosely) synchronized PRNGs that can be refreshed. PRNGs
are refreshed to ensure resilience against traffic analysis attacks that exploit the cor-
relation between successive numbers drawn from a PRNG (state entropy leakage).
That is, to ensure that the adversary cannot predict with probability better than
a certain threshold:

(1) the next number drawn (e.g., by using an exhaustive analysis of all possible
states that produce the tag’s output), and/or

(2) the internal state of the PRNG,

until the tag is next refreshed. For a detailed discussion on security issues of
PRNGs see [Barak and Halevi 2005; Kelsey et al. 1998]. Furthermore, as we shall
see, refreshing a PRNG will restrict the impact of a compromised internal state.*

pseudorandom number
key K |

randomness R —» —>-
Y

I
[

Fig. 4. Refreshing the internal state of a PRNG.

Refreshing a PRNG involves updating its internal state with fresh (high entropy)
randomness—see Figure 4. In our protocol this randomness is provided by the
Server when needed: e.g., when the probability that the state of the PRNG of
the tag is compromised is higher than a certain threshold (this will depend on
the specific features of the implemented PRNG). To refresh the internal state of a
PRNG, we combine it with randomness and input this to a keyed refresh function
to get:

state™f = refresh(K; R, state),

where K is the refresh key and R is the randomness.
The following definition formally captures our requirements for robustness of
pseudorandom number generators [Barak and Halevi 2005].

Definition 5.1. The pair of functions (g(), refresh(;,)) with

(riyoi41) < g(0y), i =1,2,...: on input the current state o;, g returns an n-bit
string r; and replaces o; by the new state o;41; the length k of the internal state
of g is the security parameter, and k& > n;

o' «— refresh(K; R,0): on input a private key K, a random string R with uniform
distribution of length at least k and the current internal state o of g, refresh
updates the state of g;

4The term “compromised state” is used here in a broad sense: it specifies information captured
by the adversary in a correlation attack used to predict the next number drawn from a PRNG.
The prediction is probabilistic, not necessarily deterministic.

ACM Journal Name, Vol. V, No. N, Sept 2010.

14 . Draft

is a robust pseudorandom number generator if there is a threshold N such that, for
any PPT observer O:

—Resilience. Given any t < N successive n-bit numbers r1,79,...,r; drawn from
g: O cannot predict the next number drawn 7,41 with probability better than
1/2™ + ¢, € negligible in k, if O does not know the internal state of g; this holds
even if O has access to the randomness R and the state used to refresh g (but
not the private key K).

—Forward security. Given any past numbers r;, ¢ < N, drawn from g: O can-
not distinguish these from random n-bit numbers with probability better than
1/2™ + ¢, € negligible, even if O learns the internal state of g after it is refreshed.

—Backward security. Given any future numbers r;, ¢ < N, drawn from ¢g: O can-
not distinguish these from random n-bit numbers with probability better than
1/2™ + ¢, € negligible, even if O knows the current internal state of g, provided
that g is refreshed.

For our particular application we shall take k = O(n).

REMARK. Our definition of robustness differs in several respects from the one
in [Barak and Halevi 2005] to address our particular applications. In particular:
(i) the security parameter is the length of the input to the generator g (its internal
state) and (i¢) the distribution of the refresh randomness R is uniform. Further-
more, our definition does not model the capability of an attacker, or capture the
security requirements in terms of a probabilistic game between the system an at-
tacker in the real-world/ideal-world paradigm. We rectify this in Sections 8 and 9
where the specifications of robustness are captured in the UC framework by the
functionality Fropust. In the real-world the adversary (a malicious observer O) can
prompt generators for their output, observe the data used to refresh generators,
and access their internal state. In the ideal-world the adversary can access the gen-
erators via Fropyust by invoking commands UPDATE, REFRESH and COMPROMISE.
Robustness requires that, for any PPT adversary the environment (a PPT) can-
not distinguish protocol flows in the real-world from flows in the ideal-world—see
Section 8.

5.1 Adding robustness to the Flyweight protocol

We now describe the modifications to the Flyweight protocol needed to refresh the
PRNGs of tags. For each tag the Server uses a 1-bit trigger refresh and stores
additionally five numbers:

—A high entropy random number R
—Numbers NA (start refresh), NB (end refresh)
—Numbers RN5 (a message authentication code for R) and NO (initial point)

In Figure 5 we illustrate the process of refreshing a stream generated by a shared
PRNG. A and B mark the beginning and end of refreshing.

The modifications are presented in Figure 6. Only Flow 3 is affected, with the
reader sending two numbers R, RN/ instead of Ra. Normal execution indicates that
the pass is executed as in the basic protocol— see Figure 2.

ACM Journal Name, Vol. V, No. N, Sept 2010.

Draft . 15

/RNlnea;t
L ReNS RN RNs Refresh Stream
state™f B
RN: T refresh
RNz RN3 RNy BNs . Current Stream

A state’

Fig. 5. Transition from the Current to the Refresh Stream.

S : set refresh ON, generate a random number R, assign NO «— RN{"", NA «— RNp***,
NB « 1 and RN{ «+ L

(1) R—=T7T: Query
T : Normal execution.
2) T—-R=S8: RN
S when refresh is ON: Check if RN is in DB
If RN1 = NO then Normal execution
Elseif RN1 = NB then set refresh OFF and Normal execution
Elseif RN7 = NA then,
If RNy = RN}*** then update
If RN5 = 1 then set state™ «— refresh (K; R, state’). Draw two numbers
and assign to RN5’ and RNJ¢*t,
Set alarm® «— cnt*, cnt* — 1. Broadcast R, RN{ .
Else abort
(3) S=R—T: R, RN, (Refresh Pass)
T : Check the format of the received message.
If it corresponds to “refresh” (two numbers) then,
Store the current state of giag. Draw 3 numbers from giag (state) and assign
their values to RN3, RNy, RN5 (volatile). Draw an extra number to get state’,
and set state™® refresh(K; R, state’).
Draw one number from giag (stateref).
If it is RNg then draw two more numbers and assign their values to RNj, RNa.
If alarm = 0 then broadcast RN = RN3.
Else broadcast RN = RNy4.
Else reset the state of giag and abort.
Else Normal execution.
(4) T—-R=S8: RN (RNs3or RNy)
S : Normal execution.

(5) S=R—T: RNs3
T: Normal execution.

(6) T—=R=S: RNs
T : Normal execution.

Fig. 6. The robust Flyweight RFID protocol.

To refresh a tag the Server generates a random (uniformly distributed) number
R, and sets: refresh ON, the initial point NO <+ RN7“", the start refresh number
NA — RNpe** and the end refresh number NB and RN{ to null. When the start
number is received (RN; = NA), the Server computes RN{ and NB = RNJ'**! on

ACM Journal Name, Vol. V, No. N, Sept 2010.

16 . Draft

the Refresh Stream—Figure 5, and broadcasts R, RN{. If NA is received again, the
Server broadcasts the same R, RN! (never RN3). The number RN authenticates
both the refresh session and the random number R. If the tag gets R, RN! (a
message format with two numbers) then it draws numbers from g.q,(state) to get
state’, which it refreshes to get its own evaluation of RN{. If there is a match the
protocol continues normally. In the following session all numbers drawn will be on
the Refresh Stream (RN; = NB). When NB is received, both tag and Server have
refreshed and the process has finished. The tag’s computations for checking the
value of RN! are done in volatile memory: the tag must keep the original state of
its PRNG in non-volatile memory in case there is a mismatch, so that it can reset
to its initial state.

SYNCHRONIZATION. In the robust Flyweight protocol at all times the Server &
shares with each tag 7 at least one number: either NA or NB. The adversary may
try to de-synchronize 7 by trying to force it to advance on the current stream while
the Server S updates and advances on the refreshed stream—Figure 5. However,
this is not possible since 7 would need RNs to advance on the current stream and
this number is never sent by S, which will repeatedly send R, RN5' (Flow 3) until
it gets the correct RN (Flow 4) or NB (Flow 2). If the tag updates—and sends RN
or NB, this is because it has checked R, RN5’' and refreshed its PRNG properly.

CoMPROMISING PRNGsS. PRNGs are refreshed to prevent the adversary from
compromising their internal state and predict the next number drawn with proba-
bility significantly better than 1/2". If the adversary succeeds in compromising the
state of the PRNG of a tag before it gets refreshed then it can impersonate that
tag, and/or de-synchronize it (by getting the Server to update through interroga-
tion). Typically such attacks exploit the inadequate frequency of refreshing, or the
low entropy of the seed of the PRNG. They cannot be considered attacks on the
Flyweight protocol itself, which is proven secure in Section 9, but on the security
parameters used. However, the implementation of refresh (if this is done properly)
restricts the impact of such impersonation attacks until the next refreshing. The
adversary cannot compute the refreshed internal state without knowing the refresh
key K. This can be used by the Server S to revive de-synchronized (zombie) tags.
S accepts previously used (since the last refreshing) values (RNp), but will force
the tag 7T to refresh again at this point. Only if a tag knows the private key K will
it be able to refresh its internal state correctly.

Another possible way to refresh the PRNG of a tag with entropy from the Server
involves flipping the order of the numbers drawn, e.g., RNy and RN3, so that one
bit of the state of the tag (determined by a counter) is refreshed. This would
support resilience against correlation attacks if the information leaked when five
numbers are drawn from a PRNG is no more than one bit. We shall discuss the
security of our protocol in Section 8.

6. ONLINE RELAY ATTACKS

Distance bounding protocols based on round-trip delay measurements are the main
defense against attacks related to proximity verification. These estimate the prop-
agation time as accurately as possible so as to determine the distance between the
reader and tag. Determining the processing time is essential in order to isolate

ACM Journal Name, Vol. V, No. N, Sept 2010.

Draft . 17

the propagation component from the overall measured time, and therefore variable
processing times constitute a major problem for distance bounding. The processing
time must be as short as possible since the adversary could overclock the tag to
absorb the delay introduced by its own devices. Thus, the Flyweight protocol with
its fixed nearly-zero processing delay is particularly suitable to protect against on-
line man-in-the-middle relay attacks (Section 2.1). This is because in the Flyweight
protocol every tag pre-computes its response (RN /RNy drawn from its PRNG) to
the challenge of the reader (RN2/RN3).

To estimate the round-trip time of a challenge-response we use temporal
leashes [Hu et al. 2006]. The RFID reader must have an accurate clock, but there
is no need for the tags to have such clocks (tags need timers to close sessions—
see Section 4.1; also depending on the implementation we may require the Server
to have a clock that is synchronized with the clock(s) of the reader(s)). Let d
be a temporal bound calculated using a distance bound (the allowable reader-tag
broadcast range), the propagation speed of the wireless medium (i.e., the speed
of light) and the tag processing time (which includes the time taken to detect the
challenge and transmit the response). If the challenge (RN2/RN3) of the reader is
sent at time ¢ and the response of the tag (RN /RN3) is received at time 5, then
the reader will only accept it when t5 — t; < dg. If the delay introduced by the
adversary’s devices is greater than Jy then online relay attacks will be prevented:
i.e., the adversary will not be able to relay the messages without being detected.

This simple way to address online relay attacks and the constant lookup time,
highlight the extended functionality that is provided by sharing a synchronized
RFID stream as opposed to sharing a private number (key)—captured by “quantum
refreshing” in the introductory motivating paradigm.

7. AN EPCGEN2 IMPLEMENTATION

The EPCGen2 Inventory protocol has 4 passes for identification (acknowledged
state): Query, RN16, Ack(RN16) and EPCdata (Section 3, Figure 1). To en-
able mutual authentication we replace RN16 by RNy, Ack(RN16) by RNs and
EPCdata by RNs. We illustrate the modifications in Figure 7: on the left is the
4-pass EPCGen2 Inventory protocol, while on the right is the proposed Flyweight
protocol. Note that the latter requires two additional passes for secure mutual au-
thentication when the adversary is active (RN has been used previously—alarm
is ON).

To ensure that it is hard to find the state of an EPCGen2 PRNG by using an
exhaustive search over all possible state values that produce a given sequence of
numbers, the entropy of the state of PRNG must be sufficiently large. If a 64-bit
state® with refreshment provides adequate security then we may use the following

5For § to be accurate the tag must send its response immediately after receiving the challenge.
Note that we are assuming that (honest) RFID tags execute one session at a time—see Section 2.
If several tags are interrogated simultaneously by an RFID reader, then the reader must keep track
of the round-trip time of each tag separately. For EPCGen2 readers (Section 3), tag interrogation
is sequential.

6This does not affect the length of the outputs, which can still be of 16 bits.

ACM Journal Name, Vol. V, No. N, Sept 2010.

18 . Draft

Reader Tag Reader Tag
Query Query
RN16 RN1
Ack(RN16) RN?2
EPCdata RN3

Fig. 7. The 4-pass EPCGen2 Inventory (left) and the proposed Flyweight Inventory.

simple implementation:
refresh(K; R, state) = giag (K © R © state),

where R is a 64-bit random number and K a 64-bit password. At this point one
may think that if the PRNG is used as a pseudorandom function (PRF), then
many other solutions (apart from the Flyweight protocol) are feasible. However,
one has to be careful: PRNGs when used as PRFs may be subject to related-key
attacks [Burmester and de Medeiros 2008]. That is, if g is a PRNG and K a
key then there are no guarantees that g(K @ X) (or g(K, X)) is a secure message
authentication code (MAC) for X (at least, not until proven). In a related-key
attack, the adversary uses values drawn from g¢(K,-) (or ¢(-)), whose keys are
related (in this case, the same), to infer information about the next numbers drawn.
If the adversary can choose the values of X then the problem is far worse, because
the adversary can perform adaptive attacks. Most protocols that use a PRNG to
generate message authentication codes (e.g., [Choi et al. 2009; Huang and Ku 2009])
are subject to such attacks. This problem is prevented in the Flyweight protocol by
using synchronized PRNGs, since the value of state is not known by the adversary,
and changes dynamically. To conclude we note that one may use a provable secure
(but slower) alternative,

PRF,4(K & R & state),
where PRF},4 is the PRF defined by g4 [Goldreich et al. 1986].

7.1 Collisions

We have collisions during Inventory and in DB. With Inventory collisions, several
tags in the operating range of the reader respond to the same Query. This is solved
in EPCGen2 by using the @Q-protocol in which a random @-bit number is loaded
into a slot counter and decreased with each interrogation (Section 3): the tags
respond when it is zeroed. In our case we use the bits of RN; instead of @ (alarm
is activated if these bits are used more than once).

With collisions in DB several tags share the same RNp. In this case the Server
receives RN7 but does not know which of the RN5’s in DB must be sent because
several numbers are possible. The easiest way to deal with this, is to modify the
protocol and have a backup number RNP“*“P_ In this case the parties use blocks
of six pseudorandom numbers. Then, when the Server detects a collision, it sends

ACM Journal Name, Vol. V, No. N, Sept 2010.

Draft . 19
a new command QueryB, requesting the tag to send RN'“**? By using extra
numbers, the probability of collision can be reduced as much as needed.

However, the protocol can be modified to deal with collisions without requiring
an extra number RN ***?_ We propose the following solution. Suppose there is a
collision in DB for RN;. The Server tries to identify 7 by sending RN’s which
were previously used (for which alarm = 1). If the tag responds with RNy, then 7
is identified, and the six-pass protocol is executed. If RNy was not previously used
by 7, then the Server sends RNy to inform the tag 7 of the collision. When 7
gets RN5 in the second pass, it exchanges RN, with RN5, and proceeds normally.
Tags for which RN5 was sent prior to identification get marked by the Server and
their identification must be performed without using such RN5’s: that is, with four
passes or in a new updated session.

Finally, we could have the unlikely event when several tags that share the same
RN are interrogated simultaneously (simultaneous collision in Inventory and in
DB). In this case the Server would not detect the collision during Inventory (con-
structive interference), and the Server would deal with it as a collision in DB. The
Server sends a previously used RNs or RN5. The tag (among the ones present)
whose value coincides with this (RN or RNjs) will answer and will be identi-
fied. The remaining tags get identified one-at-a-time in the same way (with new
Queries).

8. SECURITY

Our formal security specifications capture: mutual authentication, and session un-
linkability with forward and backward security. Since RFIDs are often used as com-
ponents of more complex systems, we focus on security frameworks that support
Universal Composability (UC). The choice of cryptographic primitives to imple-
ment the protocols must take into consideration: (i) the need for computationally
lightweight solutions that adhere to the hardware-imposed constraints of the plat-
form, and (ii) scalability, when the number of devices is large. We will use the
security framework proposed in [Burmester et al. 2009b], which we extend to ac-
commodate our particular specifications.

We adopt the Byzantine threat model. All parties including the adversary A are
modeled as probabilistic polynomial-time Turing machines (PPTs). A controls the
delivery schedule of all communication channels, and may eavesdrop into, or mod-
ify, their contents and may also initiate new communication channels and directly
interact with honest parties. For convenience, in our proofs below, we identify the
readers with the Server.

8.1 The security framework

The UC framework specifies a particular approach to security proofs for protocols
m, and guarantees that proofs that follow this approach remain valid if 7 is, say,
composed with other protocols (modularity) and/or under arbitrary concurrent
protocol executions (including with itself). The UC framework defines a real-world
simulation, an ideal-world simulation, a simulator Sim that translates runs of 7
from the real-world to runs in the ideal-world, and an interactive environment Z,
a PPT, that captures whatever is external to the current protocol execution. The
components of a UC formalization are:

ACM Journal Name, Vol. V, No. N, Sept 2010.

20 . Draft

(1) A mathematical model of real executions of protocol 7 in which the honest
parties execute as specified, whereas adversarial parties can deviate from m
arbitrarily. These are controlled by the adversary A that has full knowledge of
the state of adversarial parties, and can arbitrarily schedule the communication
channels and activation periods of all parties, and interact with Z in arbitrary
ways.

(2) An idealized model of executions, where the security properties of protocol =
depend on the behavior of a trusted functionality Fr. Fr controls the ideal-
world adversary A so that it reproduces as faithfully as possible the behavior

of A.

(3) A proof that, for every adversary A there is a simulator Sim that translates
real-world protocol runs of 7 in the presence of A into ideal-world runs of 7 in
the presence of A such that, no environment Z can distinguish whether A is
communicating with a instance of 7 in the real-world or A is communicating
with F in the ideal-world.

In the UC framework the context of a protocol is captured by a session identifier
sid. This is controlled by the environment Z and reflects external aspects of the
execution (such as temporal and/or locational aspects, shared attributes etc). All
parties involved in the protocol execution share the same sid. The environment
Z is the first party to be activated. Z instantiates the protocol parties and the
adversary.

8.2 Mutual authentication with session unlinkability

Mutual authentication with session unlinkability in the UC framework is captured
by the parties (the Server and tags) having access to an ideal functionality which
we denote by Fsy_qut- Fsu_aut formally defines the security specifications for, avail-
ability, mutual authentication and session unlinkability, in protocols for which the
Server and tag share a (loosely) synchronized PRNG. It is presented in Figure 8.
Feu_aut specifies protocols for which the tags determine the interrogation subses-
sion. Below we describe the basic components and attributes of the ideal-world
simulation.

PARTIES. There are two types of parties: tag and server. In each session a single
instance of server and arbitrary many instances of tag are involved. Upon suc-
cessful completion of a subsession involving a tag, the server ACCEPTS the tag as
authenticated.

SESSIONS. A single session spans the entire lifetime of our system (session instance).
It consists of several concurrent subsessions which are initiated by protocol parties,
which in turn get INITATEd by the environment Z. While the Server and tags ini-
tiate subsessions, the adversary controls the concurrency and interaction between
subsessions. All parties involved in a subsession of the authentication scheme are
given the unique session identifier sid by Z.

CONCURRENCY. Tags are constrained devices that cannot execute concurrently. In
the ideal-world this is captured by restricting tags to one subsession identifier s at
a time. The adversary cannot INITIATE the same tag concurrently.

ACM Journal Name, Vol. V, No. N, Sept 2010.

Draft . 21

Functionality Fy_gut

Fsu_aut only accepts commands with the session identifier sid

Upon input INITIATE at server. Record init(server) if there is no such record and output
init(server) to the adversary.

Upon input INITIATE at tag. If tag is corrupted then ignore. Else, generate a unique
subsession identifier s. If there is no record init(s’,tag) or update(s’,tag) then record
init(s,tag) and session_id(tag) = (s) (a list). Else discard the record, record init(s, tag),
append s to session_id(tag) and output session_id(tag) to the adversary. Record init(tag)
at tag if there is no such record.

Upon request UPDATE(s) from the adversary. if there is a record update(tag) then ignore.
Else if there is a record init(s,tag) then remove it, generate a record update(s,tag),
discard all entries from session_id(tag) and record update(tag) at tag.

Upon request ACCEPT(s) from the adversary. If there is a record update(s, tag) then remove
it and record accept(tag) at server.

Upon request IMPERSONATE(s) from the adversary. If there is a record init(server) and tag
is corrupted then record accept(tag) at server.

Upon request CORRUPT(s) from the adversary. If there is a record init(s,tag) or
update(s, tag), then mark tag as corrupted and remove state(tag).

Fig. 8. Ideal mutual authentication with session unlinkability.

AVATLABILITY. In the real-world this requires that a tag is always available for
interrogation. In the ideal-world this is captured by assigning to each initiated
tag a subsession identifier s and making it available for interrogation by invoking
commands UPDATE(s), ACCEPT(s), IMPERSONATE(s) or CORRUPT(S).

MUTUAL AUTHENTICATION. Successful authentication in the real-world is the re-
sult of sharing common secrets: the Server can corroborate values produced by the
tag as a function of a (loosely) synchronized shared PRNG, and conversely. The
choice of the tag to be authenticated is determined by the adversary. To guaran-
tee that the PRNG remains synchronized, mutual authentication in the real-world
requires the tag to update its state. In the ideal-world this is captured by invoking
command ACCEPT (Item 4, Figure 8). To get a tag with subsession identifier s
authenticated, command UPDATE(s) must have been invoked (Item 3, Figure 8).
The true identity of a tag is given to the server, but not the adversary. This limits
the adversary to invoking and scheduling the protocol at each party.

SESSION UNLINKABILITY. In the real-world session unlinkability requires that given
any two tag interrogations, if the tag has updated its state in the first, or in an inter-
mediate interrogation, then the adversary cannot link these with probability better
than negligible. The adversary can link interrogations that have not been updated
(they have the same value) until the next successful updating. In the ideal-world
this is emulated by acquiring access to a list of identifiers session_id(tag) of all pre-
ceding incomplete subsessions returned by the functionality by invoking INITIATE

ACM Journal Name, Vol. V, No. N, Sept 2010.

22 . Draft

at the tag (Item 2, Figure 8). The only information revealed to the adversary
by the functionality is the subsession identifiers of tags: no information regarding
the tag itself is revealed. Once a tag with subsession identifier s is successfully
UpPDATEd in the ideal-world, all earlier subsessions identifiers (in session_id(tag))
of the same tag are discarded by the functionality (Item 3).

TAG CORRUPTION. In the real-world tags may get corrupted by the adversary, who
can then access their full state. This is emulated in the ideal-world by invoking
command CORRUPT (Item 6, Figure 8). The functionality maintains for each tag a
list state(tag) of all subsession records concerning tag. This list is discarded by the
ideal functionality upon corruption of the tag when invoking command CORRUPT
(Item 7). Consequently in the ideal-world, control of a corrupted tag is passed on
to the adversary.

ACTIVATION SEQUENCE. The receiving party of any message is activated next. If
no output is produced while processing an incoming message then by convention
the environment Z is activated next.

8.3 Capturing robustness

To capture robustness we need two more commands: COMPROMISE and REFRESH.
Invoking COMPROMISE(s), where s is a subsession identifier of tag, results in tag
getting marked as compromised by the functionality. COMPROMISEd tags can be
successfully IMPERSONATEd by the adversary until they get REFRESHed, when they
are de-synchronized—zombie tags. Such tags cannot be IMPERSONATEd by the ad-
versary unless command COMPROMISE is invoked again. However invoking the
command REFRESH(s) will unmark tag. So a COMPROMISEd tag can be imperson-
ated until it is next refreshed. The functionality F,,pus¢ is presented in Figure 9.
The additional attributes are:

FORWARD SECURITY. In the real-world this requires that past protocol flows, prior
to refreshment, look random even if the tag gets corrupted after refreshment. In
the ideal-world this is emulated by requiring that after REFRESH(s) the function-
ality discards all entries in session_id(tag), so past sessions look random (Item 4,
Figure 9).

BACKWARD SECURITY. In the real-world this requires that future tag outputs, after
refreshment, look random to an adversary even if the adversary can access the state
of the PRNG of the tag (e.g., by analyzing its outputs) before it is refreshed. In
the ideal-world tag compromise is emulated by invoking command COMPROMISE.
Tags that get COMPROMISEd are marked by Fropuse as such, and therefore can be
successfully IMPERSONATEd by the adversary (Item 7, Figure 9). However after
REFRESHmMent a COMPROMISEd tag is marked zombie and cannot be IMPERSON-
ATEd.

9. MAIN RESULTS AND PROOFS

We first consider the security of the basic protocol.
THEOREM 9.1. The Flyweight RFID protocol UC-realizes Fgyy_aut -

PrOOF. We must show that Condition 3 in Section 8.1 holds, that is, there is a

ACM Journal Name, Vol. V, No. N, Sept 2010.

Draft . 23

Functionality F,pyst

Frobust has session identity sid and only accepts commands with the same sid.

Upon input INITIATE at server. Record init(server) at server if there is no such record and
output init(server) to the adversary.

Upon input INITIATE at tag. If tag is corrupted then ignore. Else, generate a unique subses-
sion identifier s. If there is no record init(s’, tag) or update(s’, tag) then: record init(s, tag)
and session_id(tag) = (s) (a list). Else discard the record, record init(s,tag), append s
to session_id(tag) and output session_id(tag) to the adversary. Record init(tag) at tag if
there is no such record.

Upon request UPDATE(s) from the adversary. If there is a record update(tag) then ignore.
Else if there is a record init(s,tag) then remove it, generate a record update(s, tag), discard
all entries in session_id(tag), set fresh < fresh+ 1 and record update(tag) at tag.

Upon request input REFRESH(s) at server. If there is a record update(s,tag) then ignore.
Else if there is a record init(s,tag) then: remove it; generate a record update(s,tag); set
fresh «— 1; discard all entries in session_id(tag); if tag is compromised then mark it zombie
unless it already has this designation; record update(tag) at tag.

Upon request ACCEPT(s) from the adversary. If there is a record update(s, tag) then remove it
and record accept(tag) at server.

Upon request IMPERSONATE(s) from the adversary. If there is a record init(server) and
tag is corrupted then record accept(tag) at server. If there is a record init(s,tag’)
or update(s,tag’) and tag is compromised, but not zombie, then remove it and record
accept(tag) at server.

Upon request COMPROMISE(s) from the adversary. If there is a record init(s,tag) or
update(s, tag) and tag is not compromised then mark it compromised.

Upon request CORRUPT(s) from the adversary. If there is a record init(s,tag) or
update(s, tag), then mark tag as corrupted and remove state(tag).

Fig. 9. Ideal robust authentication.

Upon session_id(tag) at Fay_aut. 1f session_id(tag) = (s) then create a new tag named 1;a\g5,
and generate flozi)is) =(r1,r2,73,74, r5)./§ive (s, flow(s)) to 1:/a\g§\and store it in DB together
with session_id(tag) using the identity tag,. Else, if session_id(tag) = (s, s’,...) then: assign
s to 1:/a\gs/ = 1:/zi\gS and set flow(s) = flow(s'). Send session_id(tag) to A

Fig. 10. Simulated interactions between Fgy_qut and ,zl\, se/r-\Er, 1;a\g

simulator that translates real-world protocol runs into ideal-world runs such that
these cannot be distinguished by the environment Z. Our simulator Sim:

—Simulates a copy A of the adversary and copies server of the Server and tag of
each tag initialized by Z, and activated by the adversary.

—Adds/removes values to/from a database DB of server that contains persis-
tent values of adversarially controlled tags as well as the transient values of
honest tags. The simulated interactions between the functionality F, . and

ACM Journal Name, Vol. V, No. N, Sept 2010.

24 . Draft

A\, sérver, ﬁa\g are defined by F;y,_qut—see Figure 9, and detailed in Figure 10.

—Faithfully translates real-world messages between {.A, Server, tag} into their ideal-
world counterparts between {./Z, server, t/a\gs} as specified in the Flyweight
protocol (Figure 2) This is detailed in Figure 11. In this simulation the ideal-
world adversary A invokes SEND(S r,tag) to send to tag, the number r, and
SEND(s, ', server) to send to server the number r’.

Upon request init(ser/v\er) from A. server sends query to A.

Upon request SEND(s, tag) from A. If no numbers in flow(s) of tags in DB have been marked
then tags marks r1 and sends r1 to A.

Upon request SEND(s r1,server) from A, If ry is the first unmarked number in flow(s) of

tag in DB then server marks r1,72 in flow(s) and sends ro to .A

Upon request SEND(s, 72, tag) from A. If 75 is the first unmarked number in flow(s) of 1:/el\gS

in DB then: ~
If \sesswn id(tagy)| = 1 then tags marks 72,73, outputs update(s) and sends r = r3 to A.;

else tag marks 79,74 and sends r = r4 to A

Upon request SEND(s, 7, server) from A. .

If r = r3 is the first unmarked number in flow(s) of tag in DB and |session_ zd(tag) =1
then server marks all remaining values in flow(s), outputs update(s) and accept(tag);

elseif r = r4 is the first unmarked number in flow(s) of tag in DB then server marks

r3,r4 and sends r = r3 to A

Upon request SEND(s, 7‘3,tag) from A. If r3 is the first unmarked number in flow(s) of tag5

in DB and |session_id(tagy)| > 1 then ‘cagg marks the remaining numbers and sends 75 to A.

Upon request SEND(S 5 server) from A. If r5 is the only unmarked number in flow(s) of
1:agg in DB then server marks it and outputs update(s) and accept(t/a\gs).

Fig. 11. Simulated interactions between A, se/r;zr, and t/a\g.

—Simulates the interactions with Z, i.e., the externally visible part of the proto-
col. More specifically, it invokes Fiy_gyut with command ACCEPT(s) when the
real-world adversary A forwards unmodified inputs between honest tags and the
Server, and IMPERSONATE(s) when A succeeds in authenticating adversarially
controlled tags.

—Prevents the server from outputting accept(tag) in the ideal-world when A
tampers with messages created by honest tags in the real-world.

Observe that if the tags generate true random numbers then the flows of the Fly-
weight protocol are uniformly distributed and independent. Under this assumption
the real- and ideal-world simulations might differ only when the simulator Sim
intervenes to prevent ACCEPT(s) in the ideal-world. For this to happen the mes-
sages created by honest tags in the real-world must have been tampered by A, so
that there is a collision between the (tampered) real-world outputs of tag and the
idealized outputs of 1;a\gs in a subsession s. Since we assume that truly random
numbers are generated, the adversary cannot count on this happening with more
than negligible probability.

ACM Journal Name, Vol. V, No. N, Sept 2010.

Draft . 25

Upon request SEND(s, 71, server) from A. If there are numbers r1,72 i in flow(s) of tagg in

DB and no number has been marked then If refresh is OFF then server marks s 71,72 and
sends 7y to A. If refresh is ON then server marks 1,749, rL and sends (r,rf) to A

Upon request SEND(s, 7, 7"5,tag) from A. If ro is the first unmarked number in flow(s) then
ﬂa\gs marks 72,7}, 73, outputs UPDATE, and sends 73 to A.

Fig. 12. Additional simulated interactions between ,zl\, 1;a\g.

More concretely, this will happen with probability at most 2'~"mL, where n is
the length of the random numbers generated, m is the number of tags managed by
the Server, and L is the total number of tag interrogations. This is negligible in the
security parameter k if we assume that m and L are polynomially bounded in &, and
k = O(n). It follows that if Z can distinguish real simulations with pseudorandom
numbers from ideal simulations, then it can also distinguish pseudorandom numbers
from true random numbers. This leads to a contradiction, if the numbers generated
by a pseudorandom number generator are indistinguishable from random by a PPT
adversary. [

9.1 A concrete security reduction, |

A security reduction must relate distinguishing real-vs-ideal-worlds to distinguish-
ing pseudovs-true randomness. To accomplish this, faithfully simulate the real-
world and use Z as a distinguisher. For a true random number generator, we
get the ideal simulation subject to collisions, for which the probability is at most
21="m[. If we also take into account the advantage Advpryg(q,t) of distin-
guishing a pseudorandom number generator from a true random number gener-
ator, when ¢ numbers are drawn and ¢ is the computational time (steps) taken to
draw a number, then the advantage of distinguishing real from ideal is bounded by:
21" L + Advprng(mL, T +mL), where T is the combined time complexity of Z
and A.

9.2 Robustness

The refresh functionality endows the Flyweight RFID protocol with forward and
backward security.

THEOREM 9.2. The robust Flyweight protocol UC-realizes Fropust -

PROOF. We extend the proof of Theorem 9.1 to capture the specifications of
Frobust- Sim simulates copies of parties A server, tag7 objects DB triggers
etc, and faithfully translates real-world runs between {A, Server, tag} into their
ideal-world counterparts between {./Zl\, se/r\ver,;a\gs}, adhering to the specifications
of Fropust- The refresh functionality requires the additional REFRESH (Item 4, Fig-
ure 9) and COMPROMISE (Item 7, Figure 9) items to be simulated. Also, flow(s) in
Figure 10 has one more number: flow(s) = (r1,72,r5,73,74,75). To deal with the
case when refresh is ON in the simulations in Figure 11, the SEND(s,r;, seérver)
command (Ttem 3) needs to be modified and a new SEND(s,7, 7%, tag) command
added—see Figure 12. Resilience against forward security attacks in the real-world

ACM Journal Name, Vol. V, No. N, Sept 2010.

26 . Draft

follows from our assumption that the protocol is robust (Definition 5.1). In the
ideal-world linking past flows separated by refreshment is prevented by the function-
ality Fropust even if the tag gets COMPROMISEA (the entries in record session_id(tag)
are discarded—Item 4, Figure 9). Resilience against backward security attacks is
similar. In the real-world it follows from our assumption that the protocol is robust.
In the ideal-world linking future flows separated by refreshment is prevented by the
functionality Fropust (again Item 4). Thus, as in Theorem 1, the environment Z
cannot distinguish real from the ideal simulations. O

9.3 A concrete security reduction, Il

Let Advpgrna(n, N,t,s) be a lower bound on the probability of predicting the next
n-bit number drawn from a PRNG of a tag, if fewer than N numbers are drawn
from it, with ¢, s bounds on the time and space complexity. If we assume that the
Server refreshes all tags prior to N numbers being drawn from their PRNGs, then
the probability of distinguishing real from ideal-world executions is bounded by:

2L + Advpgpng(n,N,t,s).

9.4 A robust refresh function

We give an informal proof that the function
refresh(K; R, state) = giaq (K @ R & state)

proposed in Section 7 supports resiliency. Let RNG, np, be a family of PRNGs
for which the probability that a drawn n-bit number can be distinguished from
random is no better than pg, provided no more than N numbers are drawn, given
all previous numbers drawn. Let X,Y € RNG, v p,, with Y the refreshed PRNG.
The state of Y is randomized, so it is uniform in RN'G, n,p,. We claim that one
cannot distinguish pairs of numbers (z,v), (z/,y'), (z”,3"), ..., drawn from (X,Y)
from random pairs with probability better than pg, if no more than N numbers
are drawn. Suppose, by contradiction, that one can distinguish (z,vy), («/,v),...,
from random pairs with probability better than py. Then a Distinguisher can use Y’
(a random generator in RN'G,, n ,,) as an oracle to distinguish z,z’,2”, ..., from
random numbers with probability better than pg. This is a contradiction. This
also implies unlinkability: if " drawn from X can be linked to a number z drawn
earlier with probability better than pg, then it is not random.

10. CONCLUSION

Secret sharing (sharing a key) and threshold cryptography (sharing a cryptographic
function) are powerful cryptographic mechanisms that support fault-tolerant multi-
party communication and computation. Similarly sharing clocks, even if these are
only loosely synchronized, will thwart replay attacks.

In this paper we have shown that by sharing a loosely synchronized stream of
pseudorandom numbers we can implement a lightweight authentication mechanism
that: (7) guarantees session unlinkability with forward and backward security and
(74) thwarts man-in-the-middle relay attacks, in a formal security framework. In
particular, for appropriate implementations, we can guarantee that the failure rate
is kept below a given threshold through regular refreshing.

ACM Journal Name, Vol. V, No. N, Sept 2010.

Draft . 27

REFERENCES

ARAPINIS, M., DELAUNE, S., AND KREMER, S. 2008. From One Session to Many: Dynamic Tags for
Security Protocols. In Proceedings, 15th Int. Conf. Logic for Prog. Art. Intell. and Reasoning
(LPAR’08). Lecture Notes in Artificial Intelligence, vol. 5330. Springer, 128-142.

AVOINE, G. 2010. http://www.avoine.net/rfid/.

AVOINE, G., BUTTYAN, L., HOLCZER, T., AND VAJDA, 1. 2007. Group-Based Private Authentica-
tion. In WOWMOM, IEEE, 1-6.

AVOINE, G. AND OECHSLIN, P. 2005. A scalable and provably secure hash-based RFID protocol.
In PERCOMW °05: Proceedings of the Third IEEE International Conference on Pervasive
Computing and Communications Workshops. IEEE Computer Society, Washington, DC, USA,
110-114.

BARAK, B. AND HALEVI, S. 2005. A model and architecture for pseudo-random generation with
applications to /dev/random. In CCS ’05: Proceedings of the 12th ACM conference on Com-
puter and communications security. ACM, New York, NY, USA, 203-212.

BENGIO, S., BRASSARD, G., DESMEDT, Y., GOUTIER, C., AND QUISQUATER, J.-J. 1991. Secure
implementations of identification systems. J. Cryptology 4, 3, 175-183.

BocGpanov, A., KNUDSEN, L. R., LEANDER, G., PAAR, C., POSCHMANN, A., RoBsHAwW, M. J. B.,
SEURIN, Y., AND VIKKELSOE, C. 2007. Present: An ultra-lightweight block cipher. In CHES,
P. Paillier and I. Verbauwhede, Eds. Lecture Notes in Computer Science, vol. 4727. Springer,
450-466.

BURMESTER, M. AND DE MEDEIROS, B. 2008. The Security of EPC Gen2 Compliant RFID Pro-
tocols. In ACNS, S. M. Bellovin, R. Gennaro, A. D. Keromytis, and M. Yung, Eds. Lecture
Notes in Computer Science, vol. 5037. Springer, 490-506.

BURMESTER, M. AND DE MEDEIROS, B. 2009. On the Security of Route Discovery in MANETS.
IEEE Transactions on Mobile Computing 8(9), 1180-1188.

BURMESTER, M., DE MEDEIROS, B., AND MOTTA, R. 2008a. Provably Secure Grouping-Proofs for
RFID Tags. In CARDIS, G. Grimaud and F.-X. Standaert, Eds. Lecture Notes in Computer
Science, vol. 5189. Springer, 176-190.

BURMESTER, M., DE MEDEIROS, B., AND MOTTA, R. 2008b. Robust, Anonymous RFID Authen-
tication with Constant Key-Lookup. In ASIACCS 2008, M. Abe and V. D. Gligor, Eds. ACM,
283-291.

BURMESTER, M., DE MEDEIROS, B., MUNILLA, J., AND PEINADO, A. 2009a. Secure EPC Gen2
Compliant Radio Frequency Identification. In ADHOC-NOW, P. M. Ruiz and J. J. Garcia-
Luna-Aceves, Eds. Lecture Notes in Computer Science, vol. 5793. Springer, 227-240.

BURMESTER, M., LE, T. V., AND DE MEDEIROS, B. 2006a. Provably secure ubiquitous sys-
tems: Universally composable RFID authentication protocols. In Proceedings of the 2nd
IEEE/CreateNet International Conference on Security and Privacy in Commaunication Net-
works (SECURECOMM 2006). IEEE Press.

BURMESTER, M., LE, T. V., AND DE MEDEIROS, B. 2006b. Towards provable security for ubiquitous
applications. In ACISP, L. M. Batten and R. Safavi-Naini, Eds. Lecture Notes in Computer
Science, vol. 4058. Springer, 295-312.

BURMESTER, M., LE, T. V., AND DE MEDEIROS, B. 2009b. Universally Composable RFID Iden-
tification and Authentication Protocols. ACM Trans. Inf. Syst. Secur. 12, 4, 1-33.

BURMESTER, M. AND MUNILLA, J. 2009. A Flyweight RFID Authentication Protocol. Tech. Rep.
(No proceedings), Workshop on RFID Security 2009, RFIDSec2009, June 30 - July 2, 2009,
Leuven, Belgium.

CANNIERE, C., DUNKELMAN, O., AND KNEZEVIC, M. 2009. KATAN and KTANTAN - a family
of small and efficient hardware-oriented block ciphers. In CHES ’09, Proceedings of the 11th
International Workshop on Cryptographic Hardware and Embedded Systems. Springer-Verlag,
Berlin, Heidelberg, 272—-288.

CHEN, C.-L. AND DENG, Y.-Y. 2009. Conformation of EPC Class 1 Generation 2 standards
RFID system with mutual authentication and privacy protection. Engineering Applications of
Artificial Intelligence. Elsevier 22(8), 1284-1291.

ACM Journal Name, Vol. V, No. N, Sept 2010.

28 . Draft

Cuot, E. Y., LEg, D. H., AND LM, J. I. 2009. Anti-cloning protocol suitable to Epcglobal Class-1
Generation-2 RFID systems. Computer Standards € Interfaces 31, 6, 1124-1130.

COPPERSMITH, D., KRAWCZYK, H., AND MANSOUR, Y. 1994. The shrinking generator. In Proceed-
ings, Advances in Cryptology (CRYPTO 1993). LNCS. Springer, 22-39.

DimiTriOU, T. 2006. A secure and efficient RFID protocol that can make big brother obso-
lete. In Proceedings, International Conference on Pervasive Computing and Communications,
(PerCom 2006). IEEE Press.

EPC GrLoBAL EPC tag data standards, vs. 1.3. http://www.epcglobalinc.org/standards/EP Cglobal .
Tag_Data_Standard_TDS_Version_1.3.pdf.

FELDHOFER, M., WOLKERSTORFER, J., AND RIJMEN, V. 2005. AES implementation on a grain of
sand. In IEE Proceedings on Information Security. Vol. 152(1). 13-20.

GOLDREICH, O., GOLDWASSER, S., AND MICALI, S. 1986. How to construct pseudorandom func-
tions. Journal of the ACM 33, 4.

GOLDREICH, O., MICALI, S., AND WIDGERSON, A. 1987. How to play any mental game. In 19th
Symposium on Theory of Computing (STOC 1987). ACM Press, 218-229.

HEeLL, M., JOHANSSON, T.; AND MEIER, W. 2005. Grain - a stream cipher for constrained environ-
ments. eSTREAM, Ecrypt stream cipher. Tech. rep., 2005/010, ECRYPT (European Network
of Excellence for Cryptology.

HENRICI, D. AND MULLER, P. M. 2004. Hash-based enhancement of location privacy for radio-
frequency identification devices using varying identifiers. In Proceedings, IEEE International
Conference on Pervasive Computing and Communications. 149—153.

Hu, Y., PERRIG, A., AND JOHNSON, D. B. 2006. Wormhole attacks in wireless networks. IEEE
Journal on Selected Areas in Communications 24, 370-380.

Huang, H.-H. anDp Ku, C.-Y. 2009. A RFID Grouping Proof Protocol for Medication Safety of
Inpatient. J. Medical Systems 33, 6, 467—-474.

JUELS, A. 2004. “Yoking-proofs” for RFID tags. In PERCOMW ’04, Proceedings of the Second
IEEE Annual Conference on Pervasive Computing and Communications Workshops. IEEE
Computer Society, Washington, DC, USA, 138-142.

JUELS, A. AND WEIS, S. A. 2009. Defining Strong Privacy for RFID. ACM Transactions on
Information and System Security 13, 1.

KELSEY, J., SCHNEIER, B., WAGNER, D., AND HALL, C. 1998. Cryptanalytic attacks on pseudo-
random number generators. In FSE ’98, Proceedings of the 5th International Workshop on
Fast Software Encryption. Springer-Verlag, London, UK, 168-188.

Kim, C. H., AVOINE, G., KOEUNE, F., STANDAERT, F.-X., AND PEREIRA, O. 2008. The Swiss-Knife
RFID Distance Bounding Protocol. In ICISC, P. J. Lee and J. H. Cheon, Eds. Lecture Notes
in Computer Science, vol. 5461. Springer, 98—115.

LEE, H. AND HoONG, D. 2006. The tag authentication scheme using self-shrinking generator on
RFID system. In Transactions on Engineering, Computing, and Technology. Vol. 18, 52-57.
MANGARD, S., Popp, T., AND OswALD, M. E. 2007. Power Analysis Attacks - Revealing the

Secrets of Smart Cards. Springer (ISBN: 0-387-30857-9).

MENEZES, A., VAN OORSCHOT, P., AND VANSTONE, S. 1996. Handbook of Applied Cryptography.
CRC Press.

MENTENS, N., GENOE, J., PRENEEL, B., AND VERBAUWHEDE, I. 2008. A low-cost implementation
of Trivium. In Pre-proceedings SASC 2008, 197-204.

MICHAHELLES, F., THIESSE, F., SCHMIDT, A., AND WILLIAMS, J. R. 2007. Pervasive RFID and
Near Field Communication Technology. IEEE Pervasive Computing 6, 3, 94—96.

MOLNAR, D., SOPPERA, A., AND WAGNER, D. 2006. A scalable, delegatable pseudonym protocol
enabling ownership transfer of RFID tags. In Proceedings, Workshop on Selected Areas in
Cryptography (SAC 2005). LNCS, vol. 3897. Springer.

MUNILLA, J., A.ORTIZ, AND PEINADO, A. 2006. Distance bounding protocols with void-challenges
for rfid. In RFIDSec’06, International Conference on RFID Security.

OukUBO, M., SUzUKI, K., AND KINOSHITA, S. 2003. Cryptographic approach to “privacy-friendly”
tags. In Proceedings, RFID Privacy Workshop.

ACM Journal Name, Vol. V, No. N, Sept 2010.

Draft . 29

PAIsSgE, R.-I. AND VAUDENAY, S. 2008. Mutual authentication in RFID: security and privacy. In
ASIACCS 2008, M. Abe and V. D. Gligor, Eds. ACM, 292-299.

PERIS-LOPEZ, P., HERNANDEZ-CASTRO, J. C., ESTEVEZ-TAPIADOR, J. M., AND RIBAGORDA, A.
2009. LAMED - A PRNG for EPC Class-1 Generation-2 RFID specification. Comput. Stand.
Interfaces 31, 1, 88-97.

POSCHMANN, A., LEANDER, G., SCHRAMM, K., AND PAaAR, C. 2007. New Lightweight Crypto
Algorithms for RFID. In Proceedings of The IEEE International Symposium on Circuits and
Systems 2007 — ISCAS 2007, 1843-1846.

QINGLING, C., YU, Z., AND YONGHUA, W. 2008. A Minimalist Mutual Authentication Protocol
for RFID System and BAN Logic Analysis. In ISECS, International Colloquium on Computing,
Communication, Control and Management 2, 449-453.

RUKHIN, A., SOTO, J., NECHVATAL, J., SMID, M., BARKER, E., LEIGH, S., LEVENSON, M., VANGEL,
M., BaNks, D., HECKERT, A., DrRAY, J., AND VO, S. 2001. A statistical test suite for random and
pseudorandom number generators for cryptographic applications. http://csrc.nist.gov/rng/,
Technical Report.

SEO, D., BAEK, J., AND CHO, D. 2005. Secure RFID Authentication Scheme for EPC Class
Gen2. In Proceedings, 3rd International Conference on Ubiquitous Information Management
and Communication (ICUIMC-2009), 221-227.

SHARMA, S. E., WEIss, S. A., AND ENGELS, D. W. 2003. RFID systems and security and privacy
implications. In CHES 20002, Proceedings of the Workshop on Cryptographic Hardware and
Embedded Systems. LNCS, vol. 2523. Springer, 454-469.

SuN, H.-M. AND TING, W.-C. 2009. A Gen2-based RFID Authentication Protocol for Security
and Privacy. IEEE Transactions on Mobile Computing 99(1)1.

VAN LE, T., BURMESTER, M., AND DE MEDEIROS, B. 2007. Universally Composable and Forward-
Secure RFID Authentication and Authenticated Key Exchange. In ASIACCS 2007, Proceed-
ings of the ACM Symposium on Information, Computer, and Communications Security. ACM
Press, 242-252.

VAUDENAY, S. 2007. On Privacy Models for RFID. In ASTACRYPT 2007, M. Abe and V. D.
Gligor, Eds. ACM, 68-87.

WALKER, J. 1998. Randomness Battery. http://csrc.nist.gov/rng/, Technical Report.

ZHANG, D., MANOLOPOULOS, Y., THEODORIDIS, Y., AND TSOTRAS, V. 2009. Power Analysis
Attacks - Revealing the Secrets of Smart Cards. Encyclopedia of Database Systems, L. Liu and
M. Tamer Ozsu (editors). Springer.

ACM Journal Name, Vol. V, No. N, Sept 2010.

