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Abstract. The increased functionality of EPC Class1 Gen2 (EPCGen2)
is making this standard a de facto specification for inexpensive tags in
the RFID industry. Recently three EPCGen2 compliant protocols that
address security issues were proposed in the literature. In this paper we
analyze these protocols and show that they are not secure and subject to
replay/impersonation and statistical analysis attacks. We then propose
an EPCGen2 compliant RFID protocol that uses the numbers drawn
from synchronized pseudorandom number generators (RNG) to provide
secure tag identification and session unlinkability. This protocol is opti-
mistic and its security reduces to the (cryptographic) pseudorandomness
of the RNGs supported by EPCGen2.
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1 Introduction

Radio Frequency Identification (RFID) is a promising new technology that is
widely deployed for supply-chain and inventory management, retail operations
and more generally for automatic identification. The advantage of RFID over
barcode technology is that it is wireless and does not require direct line-of-sight
reading. Furthermore, RFID readers can interrogate tags at greater distances,
faster and concurrently.

One of the most important advantages of RFID technology is that tags have
read/write capability, allowing stored tag information to be altered dynamically.
Typically an RFID system consists of tags, one or more readers, and a back-end
server. The communication channel between the reader and the back-end server
is assumed to be secure while the wireless channel between the reader and the
tag is assumed to be insecure.
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To promote the adoption of RFID technology and to support interoperability,
EPCGlobal [10] and the International Organization for Standards (ISO) [12] have
been actively engaged in defining standards for tags, readers, and the communi-
cation protocols. A recently ratified standard is EPC Class 1 Gen 2 (EPCGen2).
This defines a platform for the interoperability of RFID protocols, by support-
ing efficient tag reading, flexible bandwidth use, multiple read/write capabilities
and basic reliability guarantees, provided by an on-chip 16-bit Pseudo-random
Number Generator (RNG) and a 16-bit Cyclic Redundancy Code (CRC16).
EPCGen2 is designed to strike a balance between cost and functionality, with
little attention paid to security.

In this paper we are concerned with the security of EPCGen2 compliant
protocols. Clearly one has to take into account the additional cost for intro-
ducing security into systems with restricted capability. It is important therefore
to employ lightweight cryptographic protocols that are compatible with the ex-
isting standardized specifications. Several RFID authentication protocols that
address security issues using cryptographic mechanisms have been proposed in
the literature. Most of these use hash functions [16, 21, 2, 8, 19, 9, 15], which are
beyond the capability of low-cost tags and are not supported by EPCGen2.
Some protocols use pseudorandom number generators (RNG) [21, 13, 5, 4, 20, 3],
a mechanism that is supported by EPCGen2, but these are not optimized for
EPCGen2 compliance. One can also use the RNG supported by EPCGen2 as
a pseudorandom function (PRF) (as in [3, 11]) to link challenge-response flows,
however it is not clear if such protocols are vulnerable to related key attacks [3].

The research literature for RFID security is extensive. We refrain from a
detailed review, and refer the reader to a comprehensive repository available
online at [1]. Recently three RFID authentication protocols specifically designed
for compliance with EPCGen2 have been proposed [7, 17, 18]. These combine the
CRC-16 of the EPCGen2 standard with its 16-bit RNG to hash, randomize and
link protocol flows, and to prevent cloning, impersonation and denial of service
attacks. In this paper we analyze these protocols and show that they do not
achieve their security goals. One may argue that, because the EPCGen2 standard
supports only a very basic RNG, any RFID protocol that complies with this
standard is potentially vulnerable, for example to ciphertext-only attacks that
exhaust the range of the components of protocol flows. While this is certainly
the case, such attacks may be checked by using additional keying material and
by constraining the application (e.g., the life-time of tags). We contend that
there is scope for securing low cost devices. Obviously, the level of security may
not be sufficient for sensitive applications. However there are many low cost
applications where there is no alternative.

The rest of this paper is organized as follows. Section 2 introduces the EPC-
Gen2 standard focusing on security issues. Section 3 analyzes three recently pro-
posed EPCGen2 protocols. In Section 4 we propose a novel EPCGen2 compliant
protocol that provides tag identification and session unlinkability. In Section 5
we define a security framework for Radio Frequency Identification, and show
that our protocol is secure in this framework.
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2 The EPCGen2 standard

EPC Global UHF Class 1 Gen 2, commonly known as the EPCGen2, was ap-
proved in 2004, and ratified by ISO as an amendment to the 18000-6 stan-
dard in 2006. This standard defines the physical and logical requirements for
a passive-backscatter, Interrogator-talks-first (ITF), radio-frequency identifica-
tion (RFID) system operating in the 860 MHz - 960 MHz frequency range. The
EPCGen2 standard defines a protocol with two layers, the physical and the
Tag-identification layer, which together specify the physical interactions, the op-
erating procedures and commands, and the collision arbitration scheme used to
identify a Tag in a multiple-tag environment.

The system comprises Interrogators, also known as Readers, and Tags. Below
we briefly summarize the EPCGen2 requirements.

1. Physical Layer
– Communications are half-duplex, meaning that Interrogators and Tags

cannot talk simultaneously.
– An Interrogator transmits information to a Tag by modulating an RF

signal. Tags are passive, meaning that they receive all of their operating
energy from the Interrogator’s RF waveform, as well as information.

– An Interrogator receives information from a Tag by transmitting a conti-
nuous wave (CW) RF signal to the Tag; the Tag responds only after
being directed to do so by an Interrogator, by modulating the reflection
coefficient of its antenna, thereby backscattering a weak signal.

2. Tag memory is logically separated into four distinct banks
– Reserved memory that contains a 32-bit kill password (KP ) to perma-

nently disable the Tag, and a 32-bit access password (AP ) used when
the Interrogator wants to write/read the memory.

– EPC memory that contains the parameters of a CRC16 (16 bits), pro-
tocol control (PC) bits (16 bits), and an electronic product code EPC
that identifies the Tag (32-96 bits).

– TID memory that contains sufficient information to identify to a Reader
the (custom/optional) features of the Tag and tag/vendor specific data.

– User memory that allows user-specific data storage
3. Tag-identification layer

– An Interrogator manages Tag populations using three basic operations:
Select (the operation of choosing a Tag population), Inventory (the op-
eration of identifying Tags) and Access (the operation of reading from
and/or writing to a Tag).

– The Interrogator begins an inventory round by transmitting a Query
command in one of four sessions. An inventory operates in only one ses-
sion at a time, and the Interrogator inventories Tags within that session.

– A random-slotted collision algorithm is used. The Interrogator sends
a parameter Q, that is an integer in the range (0, 15); the Tags load
a random Q-bit number into a slot counter. Tags decrement this slot
counter when they receive a command (QueryRep), and reply to the
Interrogator when their counter reaches zero. When the Interrogator
detects the reply of a Tag, it requests its PC, EPC, and CRC16.



4 Burmester, M., de Medeiros, B., Munilla, J., and Peinado, A.

– Link cover-coding can be used to obscure information during Reader to
Tag transmissions. To cover-code data (or a password), an Interrogator
first requests a random number from the Tag. Then, the Interrogator
performs a bit-wise XOR of the data with this random number, and
transmits the result (cover coded or ciphertext) to the Tag.

4. Hardware requirements
– A 16-bit Pseudo-Random number generator (RNG).
– A 16-bit Cyclic Redundancy Code.

2.1 The Pseudo-Random Number Generator

A pseudorandom number generator (RNG) is a deterministic function that out-
puts a sequence of numbers that are indistinguishable from random numbers by
using as input a random binary string, called seed. The length of the random
seed must be selected carefully to guarantee that the numbers generated are
pseudorandom. The state of the RNG changes each time that a new random
number is drawn. Although EPCGen2 does not specify any structure for the
RNG, it defines the following randomness criteria.

1. Probability of RN16: The probability that a pseudorandom number RN16
drawn from the RNG has value RN is bounded by:

0.8/216 < Prob(RN16 = RN) < 1.25/216.

2. Drawing identical sequences: For a tag population of up to 10,000 tags,
the probability that any two or more tags simultaneously draw the same
sequence of RN16s is < 0.1%, regardless of when the tags are energized.

3. Next-number prediction: A RN16 drawn from a tag’s RNG is not pre-
dictable with probability better than 0.025%, given the outcomes of all prior
draws.

We refer the reader to the discussion in [3] regarding the strength of EPCGen2
compliant RNGs.

2.2 The 16-bit Cyclic Redundancy Code

Cyclic Redundancy Codes (CRC) are error-detecting codes that check accidental
(non-malicious) errors caused by faults during transmission. To compute the
CRC of a bit string B = (B0, B1, . . . , Bm−1) we first represent it by a polynomial
B(x) = B0+B1x+· · ·+Bm−1x

m−1 over the finite field GF (2), and then compute
its remainder: CRC(B(x)) = (B(x) ·xn) mod g(x), for an appropriate generator
polynomial g(x) of degree n.

EPCGen2 uses the CRC-CCITT generator: x16 + x12 + x5 + 1, and XORs a
fixed bit pattern to the bitstream to be checked. EPCGen2 specifies the Cyclic
Redundancy Code CRC16 which, for a 16-bit number B is defined by:

CRC(B) = [ B(x) · x16 +
31∑

i=16

xi ] mod g(x) = B(x)x16 mod g(x) + CRC(0),
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where CRC(0) =
∑31

16 xi mod g(x) is a fixed polynomial. Since the modulo g(x)
operator is a homomorphism, CRC16 inherits strong linearity aspects. More
specifically, if P , Q are 16-bit numbers, then

CRC(P (x) + Q(x)) = CRC(P (x)) + CRC(Q(x)) + CRC(0). (1)

It follows that the CRC16 of a sequence of numbers can be computed from the
CRC16s of the numbers. Consequently CRC16 by itself will not protect data
against intentional (malicious) alteration. Its functionality is to support strong
error detection particularly with respect to burst errors, not security.

3 Weaknesses in recently proposed EPCGen2 compliant
RFID protocols

In this section we consider three recently proposed EPCGen2 compliant pro-
tocols: the Chen-Deng mutual authentication protocol [7], the Quingling-Yiju-
Yonghua minimalist mutual authentication protocol [17], and the Sun-Ting au-
thentication protocol [18]. We show that these protocols fall short of their claimed
security.

In the protocols below we use the following notation: S is the back-end server,
R a Reader, T a tag. We assume that S and R are linked with a secure channel,
and for simplicity, only consider the case when the authentication is online.

3.1 Analysis of the Chen-Deng protocol

In the Chen-Deng mutual authentication protocol [7] each tag T shares three
private values with the back-end server S: a key K, a value (incorrectly called
nonce) N and an EPC identifier. The tag stores these in non-volatile memory
and the server stores them in a database DB. The protocol has three passes:

1. S ⇒ R → T : query, Rr, a random number, and P = CRC(N ⊕Rr).
T : Check that P is correct. If it is correct,

2. T → R ⇒ S : Rt, a random number, X = (K ⊕ EPC ⊕Rt) and
Y = CRC(N ⊕X ⊕Rt).
S : Check that X, Y are correct. If they are correct,

3. S ⇒ R → T : Mresp, a response message.

This protocol is clearly subject to a replay attack since the flows from the Reader
R and tag T use independent randomness (and hence are independent). In fact
the adversary needs only one interrogation of T : Rt, X = (K ⊕ EPC ⊕ Rt)
and Y = CRC(N ⊕ X ⊕ Rt), to impersonate the tag by computing a valid
(Ra, X∗, Y ∗), for any random number Ra, as: X∗ = X ⊕ (Rt ⊕ Ra), Y ∗ = Y
(Note that new P ∗ = P ⊕ CRC(Rr ⊕Ra)⊕ CRC(0) can be also computed).
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3.2 Analysis of the Quingling-Yiju-Yonghua protocol

The Quingling-Yiju-Yonghua protocol is a challenge-response mutual authenti-
cation protocol [17]. Each tag T shares two private 32-bit values with the back-
end server S: an access password aPW and a tag identifier TID = TIDh||TIDl,
where TIDh (TIDl) are the high 16-bits (low 16-bits) of TID. T stores these
in non-volatile memory and S stores them in a database DB. The protocol has
three passes.

1. S ⇒ R → T : query, and Rr, a 16-bit random number.
2. T → R ⇒ S : Rt, a 16-bit random number, and M = (Ml||Mh) ⊕ aPW ,

where Ml = CRC(TIDl ⊕Rr ⊕Rt) and Mh = CRC(TIDh ⊕Rr ⊕Rt).
S : Check that M is correct. If so, the tag is accepted as the authorized T ,

3. S ⇒ R → T : N = (Nl||Nh) ⊕ aPW , where Nl = CRC(TIDl ⊕ Rt) and
Nh = CRC(TIDh ⊕Rt).
T : Check that N is correct. If it is, it accepts that R is an authorized reader.

In this protocol the flows from the tag T and ReaderR use combined randomness
and are dependent. Therefore one cannot use an identical flow for a replay attack.
However, because of the strong linearity aspects of CRC16, it is easy for the
adversary to modify the protocol flows from an interrogation of T to get the flow
for a replay attack. Suppose that the adversary is given: Rr, Rt and M from a
previous successful interrogation; and let R∗r be the 16-bit random challenge of
the Reader for a new interrogation. Then the adversary A can choose any 16-bit
random number, Ra, and compute: A = CRC(Rr ⊕ R∗r ⊕ Ra) ⊕ CRC(0), and
send a valid response to S:

R∗t = Rt ⊕Ra , M∗ = M ⊕ (A||A),

since M∗
l = Ml ⊕ A and M∗

h = Mh ⊕ A, by Equations (1). Therefore the tag
T can be cloned after an eavesdropped interrogation. Impersonating the Reader
is even simpler: A does not need a previous interrogation. A sends any value
R∗r to an authorized tag T to get M∗ from T . Then, A can compute a valid
N∗ = M∗ ⊕ (A′||A′), where A′ = CRC(R∗r)⊕ CRC(0).

3.3 Analysis of the Sun-Ting Gen2+ protocol

Gen2+ [18] is a four passes mutual authentication protocol. Each tag shares with
the back-end server S a random (l + 1)-word string k (l ≤ 127) called keypool.
S stores the keypool of each tag T together with its EPC and other identifying
data in a database DB. In the protocol T gets identified by revealing information
about its keypool, which S uses to locate the tag in DB. The keypool of each
tag is updated every 14 successful authentications to prevent cloning attacks.
We briefly describe the protocol.

1. R→ T : query
T : Draw a 16-bit pseudorandom number, and use the first 14 bits as 7-bit
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addresses, a and b, to mark a segment k[a : b] of the keypool, and the last
two bits to compute a check by XORing the two lsb of the a-th word and
the b-th word. If a ≥ b, the segment k[a : b] contains the words from a to b,
otherwise k[a : b] = k[a : l − 1]||k[0 : b].

2. T → R ⇒ S : a, b, check
S : First compute check for every k ∈ DB, and remove those keypools k with
different check. Then compute the CRC(k[a : b]) of all remaining keypools
in the reduced database DB′, and finally compute the central key ck′, whose
bits are obtained by taking a majority vote in the corresponding positions
of the CRC(k[a : b]) in DB′ (0 dominates 1).

3. S ⇒ R → T : ck′

T : Compute ck = CRC(k[a : b]) for the locally stored keypool and compare
it with ck′: if their Hamming distance is greater than a threshold t (typically
t = 1) do not respond. Otherwise, send the locally stored EPC.

4. T → R : nothing or EPC
S : If there is no response from T then remove from DB′ those keypools k
for which the Hamming distance of CRC(k[a : b]) from ck′ is less or equal to
t, and repeat Step 1.
If the EPC of one of the tags T in DB is received, then T is identified, and
R is considered authentic by the tag.

This protocol is clearly subject to replay attacks because only the tag contributes
to the randomness of protocol flows. The adversary A needs to eavesdrop on
only one tag interrogation to get the required protocol flows. The protocol is
also subject to a more complex statistical attack in which A first eavesdrops on
a number of tag interrogations and then replays the tag flows to the Reader R,
changing adaptively the last challenge. This makes it possible for A to build up
gradually sufficient information about the CRC’s of the words in a tag’s keypool
so as to clone the tag. Below we describe the attack in more detail.

1. A eavesdrops on m < 14 successful interrogations of T (prior to a keypool
update). A stores for every interrogation the values:

([a, b, check]1, ck′1), ([a, b, check]2, ck′2), . . . , ([a, b, check]p, ck′p),

where p is the number of challenges or rounds in the interrogation (p ≈
log(T )/log(4), where T is the total number of tags).

2. A impersonates T and replays all but the last of the challenges in each
interrogation. The last challenge is replaced by [x, x, 00]p, 0 ≤ x ≤ l. R
responds with x′ computed by taking a majority vote on the CRC(k[x : x])
for all keypools k in the reduced DB′. Note that repeating the first (p− 1)
rounds guarantees that the target tag is always in DB′. A repeats this step
for each one of the l words of the keypool.

3. A analyzes the collected data. Let n be the number of keypools remaining
in DB′ after the penultimate round (p − 1). A can compute the CRC16 of
the word x in the keypool of T , because of the binary structure of ck′: e.g.,
when n = 1 then ck′ = CRC(x) and when n = 2, ck′ is strongly biased with
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3/4 of its bits being 0. The case n = 2 is particularly important because it
occurs with high probability (> 48%, for T = 1000, l = 127, and t = 1).
Using this information it is now possible to determine CRC(w) of the word
w in the keypool of T .

4. A now impersonates R to T and tries to compute a valid ck′ for a given
[a, b, check]. By exploiting the linearity aspects of CRC16, the CRC16 of an
interval k[a : b] = wa · · ·wb can be computed from the CRC16s of its words:

CRC(k[a : b]) =
b⊕

i=a

CRCi−a+1(wi)⊕
(b−a−1)⊕

1

CRCi(0),

where CRCi is CRC iterated i-times. Note also that there is no bound on
the number of times that A can try to compute a valid ck′, since the number
of challenges in an interrogation is not bounded.

This attack can be modified and enhanced in different ways. For example, A
could use the different tidbit checks sent by the tag to guess the values of the lsb
of different words, or ask for intervals of different length and combine this with
the previous analyzed data. A could also simplify the attack, by trying to find
the CRC of only short block words, and then wait until T asks for an interval
that can be made from these blocks.

4 Gen2Sec: a Secure EPCGen2 compliant RFID protocol

We next consider a novel Radio Frequency Identification protocol, Gen2Sec,
which only uses the RNG supported by EPCGen2 for security.

4.1 The protocol

In our protocol each tag T is identified by drawing consecutive numbers from its
RNG. T draws three numbers, RN1, RN2, RN3, and sends RN1 to the server S
as a commitment. If S shares the RNG(gtag) with the tag (the algorithm RNG
as well as its mutable state gtag), and if both RNGs are synchronized, then S
can also draw these same numbers. It can therefore reply to the tag with the
challenge RN2. T now sends RN3 as its response. This third step is also used to
keep the RNGs of S and T synchronized. One more challenge-response round is
needed to deal with replay attacks when these are detected (an alarm triggers
this): S then draws and sends the next number RN4 as challenge and T responds
by sending RN5.

Altogether three numbers are drawn when the adversary is passive and five
when the adversary is active. The security of the protocol is based on the fact
that the random numbers sent by the tag cannot be predicted by the adversary,
and consecutive numbers drawn in each interrogation are pseudorandom. Our
protocol identifies tags (not Readers) and is provably secure. It offers a degree
of privacy (session unlinkability), as we shall see in the following section.
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We now describe the protocol in detail. Each tag T shares with the back-end
server S an identifier IDtag, its generator (including mutable state) RNG(gtag)
and at least one pseudorandom number among the most recent six values ex-
tracted from the RNG (which guarantees synchronization as described below).
S stores in a database for each tag a list of seven numbers, IDtag and gtag:

DB = {RNold
1 , RN cur

1 , RNnext
1 , RN2, RN3, RN cur

4 , RN cur
5 ; IDtag, gtag}.

The lists of DB are doubly indexed by RNnext
1 and RN cur

1 respectively. The tag
T stores in non-volatile memory two pseudorandom numbers, its identifier and
gtag (its state):

(RN1, RN2, IDtag, gtag).

To initialize the values of its variables, the tag draws two successive values
RN1, RN2. S draws six successive numbers from the RNG(gtag) of each tag and
assigns their values to the variable in the tags lists: RN cur

1 , RN2, RN3, RN cur
4 ,

RN cur
5 , RNnext

1 (in this order). RNold
1 is set to a null value. In the protocol S

uses a timer and an alarm to manage inventories, thwart man-in-the-middle
relay attacks and avoid replay attacks, as well as an update function in which:
RN cur

1 ← RNnext
1 , and the five values RN2, RN3, RN cur

4 , RN cur
5 , RNnext

1 , are
updated by drawing new numbers from RNG(gtag).

Gen2Sec Protocol

1. R→ T : query

2. T → R ⇒ S : RN1

S : Check in DB
If RN1 = RN cur

1 for an item in DB then:
If RN1 = RNold

1 then set alarm ← 1, set timer and broadcast RN2.
Else set RNold

1 ← RN1, set alarm ← 0, set timer and broadcast RN2.
If RN1 = RNnext

1 for an item in DB then RNold ← RN1, update,
set alarm ← 0, set timer and broadcast RN2.

3. S ⇒ R → T : RN2

T : Check RN2.
If RN2 is valid then draw five successive numbers from RNG(gtag) and assign
them to

the variables RN3, RN4, RN5 (volatile), RN1, RN2, and broadcast RN3.

S: On timeout abort.

4. T → R ⇒ S: RN3

S: Check RN3.
If RN3 is valid for IDtag then:

If alarm = 0 then update and ACCEPT that T has identifier IDtag.
Else set RN4 ← RN cur

4 , RN5 ← RN cur
5 , update, and broadcast RN4.

Else abort.

5. S ⇒ R → T : RN4
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T : Check RN4.
If it is valid then broadcast RN5.

S: On timeout abort.

6. T → R ⇒ S: RN5

S: Check RN5.
If RN5 is valid for IDtag then ACCEPT that T has identifier IDtag.
Else abort.

This protocol is optimistic in the sense of communication efficiency, because
just three flows are necessary to identify a tag T when the adversary A is pas-
sive. T sends a commitment in Pass 1, S sends a challenge in Pass 2, and T
gets identified in Pass 3. A may try to impersonate T by obtaining the flows
RN1, RN2 and RN3, through an offline man-in-the-middle attack. However this
would cause the Server S to activate the alarm. When this happens an addi-
tional interrogation is needed (Pass 5 and Pass 6). If A attempts to replay the
numbers RN1, RN2, RN3, RN4 and RN5, A will fail because in the mean time S
and T will have updated the locally stored values of the pseudorandom numbers.

In the following section we will discuss the security issues of this protocol in
a formal framework.

5 A security framework for RFID

5.1 RFID deployments

A typical RFID deployment involves tags T , Readers R and a back-end Server
S. Tags are wireless transponders that typically have no power of their own
and respond only when they are in an electromagnetical field, while Readers are
transceivers that generate such fields. Readers implement a radio interface to
the tags and a high level interface to a back-end server. S is a trusted entity
that processes private tag data. Readers do not store locally any private data.

We adopt the Byzantine threat model. All parties including the adversary A
are modeled as a probabilistic Turing machines. A controls the delivery schedule
of all communication channels, and may eavesdrop into, or modify, their contents
and may also instantiate new communication channels and directly interact with
honest parties. However the channels that link the Server and authorized Readers
are assumed to be secure. Readers do not store any private tag information.

5.2 The UC framework

The universal composability (UC) framework specifies a particular approach
to security proofs for protocols, and guarantees that proofs that follow that ap-
proach remain valid if the protocol is, say composed with other protocols (modu-
larity) and under arbitrary concurrent protocol executions (including with itself).
The UC framework defines a real-world simulation, an ideal-world simulation, an
emulation E that translates protocol runs from the real-world to the ideal-world,
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and an interactive environment Z that captures whatever is external to the cur-
rent protocol execution. The components of a UC security formalization are:

1. A mathematical model of real protocol executions in which honest parties (the
tags and the Server) correctly execute as specified, and adversarial parties
under the control of the adversary A that can deviate from the protocol in
an arbitrary way. A can interact with the environment Z, in arbitrary ways.

2. An idealized model of executions, where the security properties of the pro-
tocol depend on the behavior of an ideal functionality F . F controls the
ideal-model adversary Â so that it reproduces as faithfully as possible the
behavior of A.

3. A proof that, for each adversary A there is a simulator E that translates
real-world runs in the presence of A into ideal-world protocol runs in the
presence of Â such that, no environment Z can distinguish whether A is
communicating with a instance of the protocol in the real-world or Â is
communicating with F in the ideal-world.

In the UC framework, the context of a protocol execution is captured by a session
identifier sid. The sid is controlled by the environment Z and reflects external
aspects of execution. All parties involved in a protocol execution instance share
the same sid.

Theorem 1. Gen2Sec guarantees availability, tag authentication and session
unlinkability in the UC framework provided a cryptographically secure RNG is
used.

Note that the UC simulation approach described here can be readily used to
derive a concrete security estimate for Gen2Sec in terms of the estimated prob-
ability of breaking the underlying RNG, given an adversarial budget for com-
putation and communication. This makes the approach useful beyond its ability
to prove security under traditional assumptions of ideal cryptographic primi-
tives (such as a cryptographically strong RNG) which may not hold for specific
instantiations of the scheme.

Proof. We sketch an outline of the proof. First we specify the functional-
ity Fauth of the protocol to capture availability, tag authentication and session
unlinkability.

1. Availability requires that the Server and tags be synchronized at all times.
2. Tag authentication requires that the Server can corroborate values produced

by the tag in terms of the state of their shared RNG.
3. Session unlinkability requires that: given two tag interrogations A cannot

decide (with probability better than 0.5 + negligible) whether these involve
the same tag or not, provided that either the first completed successfully, or
an intervening interrogation of the tag completed successfully.

The functionality Fauth is illustrated in Figure 1. There are four commands:
Initiate activates the Server and tags, Send is used to send an output of one
party (tag or Server) to the other (Server or tag) and get their response, Repeat
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Functionality Fauth

Fauth has session identifier sid and only admits commands with the same sid.

Upon receiving Initiate from Server : Generate a unique subsession identification
number sser. Create a new DB, record and send to A: flow(sser, ·, Query).

Upon receiving Initiate from tag : if flow(sser, ·, Query) ∈ DB, then generate
a unique subsession identification number stag, select five random numbers:
r1, r2, r3, r4 and r5 and assign them to the subsession (sser, stag). Set alarm ← 0.
Send (tag,stag) to A.

Upon receiving Send(sser, stag) from A:

If flow(stag, sser, r5) ∈ DB then ACCEPT(tag) and delete all flows of (sser, stag)
in DB.

ElseIf flow(sser, stag, r4) ∈ DB then record and send to A: flow(stag, sser, r5).
ElseIf flow(stag, sser, r3) ∈ DB then:

If alarm=0 then ACCEPT(tag) and delete all flows of (sser, stag) in DB.
Else record and send to A: flow(sser, stag, r4).

ElseIf flow(sser, stag, r2) ∈ DB then record and send to A: flow(stag, sser, r3).
ElseIf flow(stag, sser, r1) ∈ DB then record and send to A: flow(sser, stag, r2).
ElseIf flow(sser, ·, Query) ∈ DB then record and send to A: flow(stag, sser, r1).
Else ignore.

Upon receiving Repeat(sser, stag) from A:

If flow(stag, sser, r3) ∈ DB then ignore.
ElseIf flow(sser, stag, r2) ∈ DB then delete all flows of (sser, stag) in DB.

Set alarm ← 1, record and send to A: flow(sser, ·, Query). Send(sser, stag).
ElseIf flow(stag, sser, r1) ∈ DB then delete all flows of (sser, stag) in DB.

Record and send to A: flow(sser, ·, Query).
Else ignore.

Upon receiving message Impersonate(sser, tag) from A : If flow(sser, ·, Query) ∈
DB and tag is corrupted then ACCEPT(tag).

Fig. 1. The functionality of Gen2Sec.

is used to repeat interrogations that were not completed (the adversary did
not send the required flows), and Impersonate is used to impersonate tags.
Observe that in both the protocol and Fauth, the receiving party of any message
or subroutine output is activated next. For more details on security proofs in
the UC framework, the reader is referred to [20].

We must show that a real-world adversary A who can access protocol flows
cannot succeed with probability greater than negligible in generating the flows
of a “new” interrogation that is accepted by the Server, but not accepted in the
ideal-world by Fauth (corresponding to an interrogation that is generated in a
way not specified by the protocol): if this happens Z will distinguish real-world
from ideal-world executions.

We first emulate real-world actions in the ideal-world. For this purpose we
simulate copies Â, of the real adversary, Ŝerver, of the real Server, t̂ag, of real
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tags, and the interactions of the protocol with Z, in particular its invocations of
Fauth. For our protocol it is straightforward to show that any interrogation in
the real-world that is accepted by the Server is also accepted in the ideal-world
by the functionality Fauth because:

1. At all times each tag shares at least one number with the Server (availability);
2. If the Server accepts the tag then a fresh flow of numbers must have been

used (tag authentication);
3. If for any two interrogations either the first one completed successfully before

the second, or an intervening interrogation completed successfully, then the
tag will have updated the values it stores (session unlinkability).

This first property holds because the values of the stored numbers are updated by
T and S with each successful execution. If the previous execution of the protocol
was not disrupted then RN cur

1 = RN1 (in this case one update is needed);
otherwise we may get RNnext

1 = RN1 (two updates are needed). Note that the
numbers RN3, RN4 and RN5 are used only once. For the second observe that the
adversary (e.g., a rogue tag or reader) cannot guess the protocol flows because
these are generated by a RNG. There is of course a small failure probability
due to “lucky” guessing. The adversary cannot clone a tag because it cannot get
access to the seed of the RNG of the tag (which is never revealed). For the last
observe that, if the first interrogations completed successfully, or an intervening
interrogation completed successfully, then the tag will have updated the values it
stores. Finally, in the real world all protocol flows involve pseudorandom numbers
whereas in the ideal world we have random numbers: the environment Z cannot
distinguish these because it is a PPT machine.

Observe that there are impersonation attacks in the real-world that are not
captured in the ideal-world: if a tag updates its RNG while the Server does not
(RN3 was not delivered) then A can try to impersonate the tag by re-using the
flows RN1 and RN3. However it will only succeed with negligible probability in
guessing RN5 in response to the Server’s query RN4. Therefore Z will not see
any difference between the successful instances in real-world and ideal-world. ut
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