
A Flyweight RFID Authentication Protocol

Mike Burmester1 and Jorge Munilla2

1 Department of Computer Science
Florida State University, Tallahassee, FL 32306, USA

burmester@cs.fsu.edu
2 Departamento de Ingenieŕıa de Comunicaciones

Universidad de Málaga, Spain
munilla@ic.uma.es

Abstract. In this paper we first discuss the security threats that have to
be addressed when dealing with lightweight RFID protocols: in particu-
lar, privacy/integrity attacks that compromise the forward and backward
security of tags. We then analyze some recently proposed EPCGen2 com-
pliant protocols. Finally, we propose a lightweight RFID authentication
protocol that supports session unlinkability with forward and backward
security. The only cryptographic mechanism that this protocol uses is
a synchronized pseudorandom number generator (RNG), that is shared
with the backend Server. Authentication is achieved by using a few num-
bers (3 or 5) drawn from the RNG. The protocol is optimistic with
constant key-lookup, and can easily be implemented on an EPCGen2
platform.

Keywords: RFID, authentication, privacy, forward and backward security,
optimistic protocols, EPCGen2.

1 Introduction

Radio Frequency Identification (RFID) is a promising new technology that is
widely deployed for supply-chain and inventory management, retail operations
and more generally, automatic identification. The advantage of RFID over bar-
code technology is that it does not require direct line-of-sight reading. Further-
more, RFID readers can interrogate tags at greater distances, faster and con-
currently. One of the most important advantages of RFID technology is that
tags have read/write capability, allowing stored tag information to be altered
dynamically.

To promote the adoption of RFID technology and support interoperabil-
ity, EPCGlobal [10] has recently ratified the EPC Class 1 Gen 2 (EPCGen2)
standard for RFID deployments. This defines a platform for RFID protocol in-
teroperability, and supports basic reliability guarantees, provided by an on-chip
16-bit pseudo-random number generator (RNG) and a 16-bit Cyclic Redundancy
Code (CRC16). The EPCGen2 standard is designed to strike a balance between
cost and functionality, with less attention paid to security.

Several lightweight RFID authentication protocols that address security have
been proposed in the literature. Most use hash functions [23, 20, 13, 2, 9, 18],

2 Mike Burmester and Jorge Munilla

which are beyond the capability of low-cost tags and not supported by EPC-
Gen2. Some RFID protocols use pseudorandom functions [7, 25, 4], or RNGs (as
in [4, 11]), mechanisms supported by EPCGen2, but these are not optimized for
EPCGen2 compliance. We refrain from a detailed review of the literature for
RFID security which is quite extensive, and refer the reader to a comprehensive
repository available online at [1].

Recently five RFID authentication protocols specifically designed for com-
pliance with EPCGen2 have been proposed [8, 21, 24, 22, 11]. These combine the
CRC16 of EPCGen2 with its 16-bit RNG to hash, randomize and link protocol
flows, and prevent cloning, impersonation and denial of service attacks. In this
paper we analyze these protocols and show that they do not achieve their security
goals, or are unduly complex. One may argue that, because EPCGen2 supports
only a very basic RNG, any RFID protocol that complies with it is potentially
vulnerable, for example to ciphertext-only attacks that exhaust the range of the
components of protocol flows. While this is certainly the case, such attacks may
be checked by refreshing key material and/or constraining the application (e.g.,
the life-time of tags).

In this paper we are concerned with the security of lightweight low cost RFID
protocols. In particular, their forward and backward security [3]. The former
protects past tag interrogations from being linked to a captured tag. Tags are
not tamper-resistant, and therefore the adversary can access the private data of
a captured tag. Backward security protects future tag interrogations from traffic
analysis (correlation) attacks in which the adversary uses the information leaked
by tags to find their inner state. Such attacks exploit the fact that the state of
lightweight tags has (typically) low entropy.

Our main contribution in this paper is to propose a lightweight mutual
authentication RFID protocol that supports session unlinkability, forward and
backward security. For this protocol tag authentication is achieved by drawing
numbers from a RNG, shared with the backend Server. The protocol is optimistic
with constant key-lookup, and can easily be implemented on an EPCGen2 plat-
form.

We note that all cryptographic protocols use shared keys (symmetric or asym-
metric) to support security. In threshold cryptography shared functionalities are
used to distribute cryptographic applications. Closer to our application, quantum
cryptography uses quantum mechanics to support private channels. For these
channels, any attempt by the adversary to measure a communicated “qubit”
introduces detectable anomalies. Quantum channels can therefore be regarded
as shared channels with “no clone” qubits. In our protocol, shared synchronized
RNGs generate sequences of numbers that “cannot be cloned”.

The rest of this paper is organized as follows. Section 2 discusses RFID
deployments and the EPCGen2 standard. Section 3 analyzes some recently pro-
posed RFID protocols that are EPCGen2 compliant. In Section 4 we propose
an optimistic lightweight RFID authentication protocol that supports session
unlinkability with forward/backward security, and consider an EPCGen2 imple-
mentation. In Section ?? we discuss its security.

A Flyweight RFID Authentication Protocol 3

2 RFID Deployments

2.1 Threat and Attacks

There are several general types of adversarial attacks on RFID deployments.
Below we list the more important ones.

1. Tag disabling (an availability attack): A causes tags to assume a state from
which they can no longer function.

2. Tag cloning (an integrity attack): A captures the identifying information of
a tag.

3. Tag tracking (a privacy attack): A traces tags from their protocol flows.
4. Replay (an integrity attack): A uses a tag’s response to a Reader’s challenge

to impersonate the tag.
5. Offline man-in-the-middle attacks(an integrity attack):A interposes between

a tag and a Reader and exchanges their (possibly modified) messages.

There are also attacks that are usually excluded from the security model used,
such as power analysis (or side-channel) attacks [17], and man-in-the-middle
relay attacks [16]. Sometimes these attacks may be prevented by using “out of the
system” protection mechanism. In this paper we are specially concerned with two
types of attack that target low cost RFID tags: attacks that disambiguate past
tag interrogations, and attacks that compromise future tag interrogations. To
secure against such attacks we use forward and backward security mechanisms.

2.2 Security Requirements

Authentication. Client authentication is a process in which one party, the
Server S, is assured of the identity of another party, the client (a tag T), by ac-
quiring corroborative evidence. We have anonymous client authentication when
the identity of T remains private to third parties that may eavesdrop on the
communication or invoke the protocol and interact with the parties directly. We
have mutual authentication if both S and T are authenticated. In our protocol
the Server is implicitly authenticated: that is, the assurance for tags is only im-
plicit.
Session unlinkability. Two interrogations of a tag T cannot be linked if, ei-
ther the first one completed successfuly, or an intermediate interrogation of T
completed successfully.
Forward Security. Past tag outputs, prior to refreshment, look random to an
adversary even if the adversary can access the internal state of the tag after it
is refreshed.
Backward Security. Future tag outputs, after refreshment, look random to an
adversary even if the adversary can access the state of the RNG of the tag (e.g.,
by analyzing its outputs) before it is refreshed. In particular, a tag T whose
RNG is compromised will recover after its RNG is refreshed, and its outputs
will look random. We will also consider weak backward security, for which the
adversary cannot impersonate T after its RNG is refreshed, but the tag T never
recovers (it is de-synchronized).

4 Mike Burmester and Jorge Munilla

2.3 The EPCGen2 Standard

The EPC Global UHF Class-1 Generation-2 standard (EPCGen2), defines the
physical and logical requirements for a passive-backscatter, Interrogator-talks-
first, radio-frequency identification system operating in the 860 - 960 MHz range.
The protocol defines two layers: a physical layer and a Tag-identification layer.
The system comprises Interrogators (Readers), and Tags. An Interrogator man-
ages Tag populations using three basic operations: Select —the operation of
choosing a Tag population, Inventory —the operation of identifying Tags, and
Access —the operation of reading from and/or writing to a Tag.

The Inventory protocol has (at least) four passes that involve: a Query, a
16-bit number RN16, an acknowledgment ACK(16) and the Tag’s identifying
data, EPC-data. The Interrogator first starts by sending a Query command that
includes a parameter Q ∈ [0 : 15] —a random-slotted collision algorithm (“Q-
protocol”) is used to singulate tags. Tags that receive Query load a random Q-
bit number into a slot counter, and decrease this counter whenever they receive
the command QueryRep. When their counter is zeroed, Tags send a number
RN16 to the Interrogator. When the Interrogator detects a reply from a Tag,
it sends an acknowledgement ACK(RN16), which requests from the tag its PC
(protocol control), EPC (electronic product code), and CRC16. If the Tag does
not receive a valid ACK(RN16) (possibly because of a collision), it transitions
to its initial state and the process is repeated.

For security, link cover-coding can be used to obscure information during
Reader to Tag transmissions. To cover-code a data, an Interrogator first re-
quests a random number from the Tag. Then, the Interrogator performs a bit-
wise XOR of the data with this random number, and transmits the result (cover
coded or ciphertext) to the Tag. Tags may also store a 32-bit Kill Password,
and a 32-bit Access Password, and implement a 16-bit pseudo-random number
generator (RNG), and a 16-bit Cyclic Redundancy Code (CRC16). CRCs are
error-detecting codes that check (non-malicious) errors caused by faults during
transmission. Observe that CRC16 is an additive operator with strong linear-
ity aspects (the modulo operator is homomorphic), and therefore its use as a
cryptographic tool is not appropriate.

The probability that the adversary guesses the next number of a RNG in-
creases with the number of outcomes observed. Consequently correlation and
exhaustive search attacks get easier as more numbers are drawn. This issue is
not addressed adequately by EPCGen2. The standard specifies that a drawn
RN16 is not predictable with probability better than 0.025%, given the out-
comes of prior draws. This bound is very crude: it is too high in the case when
only one number is drawn, and too low when many numbers are drawn (e.g. more
than a cycle of the RNG). In general we have to make certain that the entropy
of a RNG is sufficiently large and/or regularly refreshed to prevent correlation
attacks and/or exhaustive search attacks. We refer the reader to [4] for further
discussion regarding the RNG of EPCGen2.

A Flyweight RFID Authentication Protocol 5

3 An Analysis of Recently Proposed EPCGen2 Protocols

We consider five recently proposed EPCGen2 compliant protocols and show
that they either fall short of their claimed security, have weaknesses that may
be exploited by an adversary, or are unduly complex.

1. The Chen-Deng protocol [8]. This is subject to a replay attack because the
flows of the Reader and tag use independent randomness (for details see [6]).

2. The Sun-Ting protocol Gen2+ [24]. This is also subject to a replay attack
because only the tag provides randomness (for details see [6]).

3. The Qingling-Yiju-Yonghua protocol [21]. This protocol uses CRC16 as a ci-
pher. So private information can easily be manipulated, and only one eaves-
dropped interrogation is needed to clone a tag (for details see [6]).

4. Seo-Baek propose two protocols [22].
(a) The first is subject to a replay attack (causing de-synchronization) be-

cause tag authentication does not involve any randomness from the
Reader. Only one eavesdropped interrogation is needed. Again CRC16
is used as a cipher, so private information can be manipulated.

(b) The second is also subject to a replay attack because the randomness of
the flows is determined entirely by the tag. Only one previous imperson-
ation of a Reader (sending a query) is needed.

5. The Choi-Lim anti-cloning protocol [11]. In this protocol each tag T shares
three private 32-bit values with the Server S: a kill password PWkill, an
access password PWaccess and a tag serial number Tsn. Below we describe a
simplified version:

(a) S ⇒ R → T : Q, a query.
T : Select a 32-bit random number Rt and:

(b) T → R ⇒ S : M1 = Rt ⊕ PWkill.
S : Select a 32-bit random number Rr and:

(c) S ⇒ R → T : M2 = Rr⊕PWaccess and M3 = RNG(Rt⊕Rr)⊕PWaccess.
T : get Rr from M2. Compute RNG(Rt⊕Rr) and check M3. If it is correct:

(d) T → R ⇒ S : M4 = RNG(RNG(Rt ⊕Rr))⊕ Tsn.
S : check that M4 is correct. If it is correct, accept T as an authorized tag.

This protocol has two weaknesses: (a) the Reader can be impersonated, and
(b) it is subject to a related-key attack [4]. For the impersonation attack, the
adversary A first eavesdrops on an interrogation to get: Q,M1,M2,M3, M4,
and then impersonates the Reader R as follows: when T sends a new M ′

1, A
computes M ′

2 = M2⊕M ′
1⊕M1, and M ′

3 = M3, and sends these to T . These
are clearly valid. Although the Choi-Lim protocol does not claim mutual
authentication, if this service is not provided, it is unduly complex —see
e.g. [4].

6 Mike Burmester and Jorge Munilla

For the related-key attack, observe that the adversary can obtain “cipher-
texts” M4 (=RNG(K⊕Ni)⊕Tsn) and “plaintexts” M3 (=Ni) that are re-
lated by the key PWaccess (=K). Note also that the number of the plaintexts-
ciphertexts pairs is not bounded because the adversary can impersonate the
Reader (attack (a)).

4 A Flyweight RFID Authentication Protocol

Our protocol uses a synchronized RNG that can be refreshed by the Reader.
RNGs are finite state machines with two distinguished components: state and
generate. To draw a number from the RNG, algorithm generate uses state to
generate a new value for state and an output number. Refreshing a RNG involves
updating state with fresh (high entropy) randomness —see Figure 1. In our case
this randomness is provided by the Reader through the cryptographic function
refresh.

RNGs are refreshed to ensure resilience against: (a) traffic analysis attacks
that exploit the correlation between successive numbers drawn from a RNG
(state entropy leakage) and, (b) impersonation attacks resulting once the state of
the RNG is fully compromised. That is: to ensure that the adversary cannot guess
the next output with probability better than a certain threshold (a correlation
attack), or use an exhaustive analysis of all possible values of state that produce
the tag’s output, and to restrict the impact of a compromised state until it is
next refreshed. For a detailed discussion on security issues of RNGs, see [3],[15].

fresh randomness refresh state- -

generate

6

- pseudorandom number

¾

6

key

?

Fig. 1. Refreshing the state of a RNG.

4.1 The Protocol

Each tag T shares with the backend Server S a synchronized RNG (same al-
gorithm, key, seed), say gtag =gtag(state). T and S are mutually authenticated
by exchanging either three (optimistic case), or five consecutive numbers from
gtag. Five numbers are required only when the interrogation is interrupted (i.e.,
when the first number has already been used: alarm is ON). The security of
the protocol is based on the fact that: (a) random numbers drawn from a RNG
cannot be predicted by the adversary, and (b) T and S are synchronized at all
times. Synchronization is guaranteed by making certain that T ,S always share
at least one number. The protocol supports mutual authentication and a certain

A Flyweight RFID Authentication Protocol 7

degree of privacy (session unlinkability), with forward and backward security,
and is provably secure, as we shall see.

Each tag T stores in non-volatile memory two numbers, its identifier IDtag,
gtag (the current state), a key used for refreshing Kr, and a 1-bit flag cnt:
(RN1, RN2; IDtag, gtag,K

r, cnt). The Server S stores in a database for each T ,
a list of six numbers, IDtag, gtag(state), Kr and a 1-bit flag cnt′:

DB = {(RN cur
1 , RNnext

1 , RN2, RN3, RN4, RN5; IDtag, gtag, K
r, cnt′)}.

The lists in DB are doubly indexed by RN cur
1 and RNnext

1 respectively. To
initialize the values of its variables, the tag draws two successive values RN1, RN2

from gtag and sets cnt ← 0. The Server S, sets cnt′ ← 0, draws six successive
numbers from the RNG of each tag and assigns their values to the variables in
the tags’ lists:

RN cur
1 , RN2, RN3, RN4, RN5, RNnext

1 (in this order).

To update these values, S uses the function update in which: cnt′ ← 0,
RN cur

1 ← RNnext
1 and the five values RN2, RN3, RN4, RN5, RNnext

1 , are up-
dated by drawing new numbers from gtag. In the protocol, each T shares at all
times with S at least one number: either RN1 = RN cur

1 or RN1 = RNnext
1 .

Protocol
1. R→ T : Query
T : Set alarm ← cnt, cnt ← 1, and broadcast RN1.

2. T → R ⇒ S : RN1

S : Check in DB
If RN1 = RN cur

1 for an item in DB then set alarm′ ← cnt′, cnt′ ← 1 and
broadcast RN2.

Elseif RN1 = RNnext
1 for an item in DB then set alarm′ ← 0, update and

broadcast RN2.
Else abort.

3. S ⇒ R → T : RN2

T : Check RN2.
If RN2 is correct then draw five successive numbers from gtag, assign them
to the variables RN3, RN4, RN5 (volatile), RN1, RN2, and set cnt ← 0.

If alarm = 0 then broadcast RN3.
Else broadcast RN4.

Else abort.
4. T → R ⇒ S: RN∗, which is either RN3 (alarm = 0) or RN4 (alarm = 1)
S : Check the received value RN∗.
If RN∗ = RN3 and alarm′ = 0 then update, and ACCEPT the tag as the

authorized T .
Elseif RN∗ = RN4 then set RN cur

5 ← RN5, broadcast RN3 and update.
Else abort.

8 Mike Burmester and Jorge Munilla

5. S ⇒ R → T : RN3

T : Check RN3.
If it is valid (alarm = 1 and RN3 is correct) then broadcast RN5.
Else abort.

6. T → R ⇒ S: RN5

T : Check RN5.
If RN5 = RN cur

5 , then ACCEPT the tag as the authorized T .
Else abort.

This protocol is optimistic because an interrogation needs only three numbers to
be drawn when the adversary is passive. If an active adversary A tries to replay
flows, this will cause T to activate alarm, and two additional numbers will be
needed (Pass 5 and Pass 6). It must be noted that the numbers RN3, RN4 and
RN5 are always fresh (never sent more than once), because at this point T and S
have already updated their values for the next interrogation. S needs to perform
at most two lookups in DB (for RN curr

1 , and RNnext
1) to identify T .

Although we have not included timers to simplify the presentation, these
have to be included in any implementation so that sessions can be closed. Thus,
parties will abort the process if no response is received within a certain time
th after sending a challenge. These timers can prevent certain kinds of active
attack, but it is assumed that they are not precise enough to avoid “on-line
man-in-the-middle relay attacks”. Thus, any active attack that involves relaying
flows between the parties faster than th will succeed. It is considered as a “on-line
man-in-the-middle relay attack” and the protocol will be subject to it. Naturally,
the more accurate th is, the harder these attacks become [19].

4.2 Refreshing a RNG

RNGs need to be refreshed for resilience. In our protocol this randomness is
provided by the Reader when needed: i.e., when the probability that the state
of the RNG of a tag may be compromised is higher than a certain threshold (it
will depend on the specific features of the implemented RNG). Some new non-
volatile variables are required. The Server requires to store an intermediate state′

of the RNG, two numbers RNstart
1 and RNend

1 which mark the start and end
of a refreshment, and a number R that provides the randomness. We illustrate
in Figure 2 the effect of refreshing a stream of numbers generated by a shared
RNG. The Server uses a 1-bit trigger refresh to refresh a tag.

Current Streams s sq q q q q q q qRNcur
1 RNnext

1

A {state′}
RN2 RN3 RN4 RN5

6refresh

Refreshed Streamq q q q qs
B

RNr
1RN ′

2 RNr
2 RNr

3

Fig. 2. Transition from the current stream to the refreshed stream. A and B mark the
start (RNstart

1) and the end (RNend
1) of the refreshing.

A Flyweight RFID Authentication Protocol 9

Next we describe the two passes of the protocol that need to be modified.

Refresh RNG

S decides to refresh the state of T : Set refresh ON, RNstart
1 ← RNnext

1 , get
state′ (by drawing four numbers from gtag) and generate a random number R.

2.′ T → R ⇒ S : RN1

S : Check if RN1 is in DB and refresh is ON (Else, go to normal execution).
If RN1 = RNend

1 then set refresh OFF and go to normal execution.
Elseif RN1 = RNstart

1 :
If RN1 = RNnext

1 then update.
Set stateref ← refresh (Kr; R, state′), draw two numbers from
gtag(stateref) and assign their values to RN ′

2, RNnext
1 .

Set RNend
1 ← RNnext

1 , alarm′ ← cnt′, cnt′ ← 1. Broadcast R and RN ′
2.

Else go to normal execution
3.′ S ⇒ R → T : R, RN ′

2

T : If the format corresponds to “refresh” (Else, go to normal execution):
Store the current state of gtag, draw three numbers from gtag(state), and
assign their values to RN3, RN4, RN5.
Set stateref ←refresh (Kr; R, state′), where state′ is the current state of gtag.
Draw one number from gtag(stateref) and assign its values to: RN2

′.
If it is correct, draw two more numbers and assign their values to RN1, RN2.

The protocol continues normally (broadcast RN3 or RN4 according to
the value of alarm).

Else restore the state of gtag to state and abort.

Another possible way to refresh the RNG of a tag with entropy from the Reader
involves flipping the order of the numbers drawn (e.g., flipping RN2 and RN3),
so that one bit of state (determined by a counter) is refreshed. This would sup-
port resilience against correlation attacks if the information leaked when five
numbers are drawn from a RNG is no more than one bit. We shall discuss the
security of our protocol in Section ??.

4.3 EPCGen2 Implementation

The EPCGen2 Protocol has four passes for identification (acknowledged state)
that involve: a Query, a number RN16, an acknowledgment Ack(RN16) and
EPCdata. To enable authentication and session unlinkability, we replace RN16
by RN1, Ack(RN16) by RN2 and EPCdata by RN3 (optimistic case). If RN1

has been used previously (alarm is ON), then two more numbers have to be
exchanged.

To ensure that it is hard to find the state of an EPCGen2 RNG by using an
exhaustive search over all possible state values that produce a given sequence of
numbers, the entropy of the state of RNG must be sufficiently large. If a 32-bit
state with refreshment provides adequate security then we may use the following
simple implementation: refresh (Kr;R, state) = g(Kr ⊕R⊕ state), where R is a

10 Mike Burmester and Jorge Munilla

32-bit random number and Kr a 32-bit key (e.g. Kaccess). Alternatively we can
use Fgtag (Kr ⊕ R ⊕ state), where Fgtag is the pseudo-random function defined
by gtag [12] .

We have not discussed collisions occurring during Inventory in our protocol,
for simplicity. We note here that bits of RN1 can be used to load the slot counter
with the Q-bit number. If a collision occurs and new bits of RN1 have to be used,
the alarm is set to 1 and six passes are required. If collisions become a serious
problem other solutions can be employed, such as, for example, using bits of
RN2 or generating an extra number.

5 A security framework for RFID

A typical RFID deployment involves tags T , Readers R and a back end Server
S. Tags are wireless transponders that typically have no power of their own
and respond only when they are in an electromagnetical field, while Readers are
transceivers that generate such fields. Readers implement a radio interface to
the tags and a high level interface to a back end server. S is a trusted entity
that processes private tag data. Readers do not store locally any private data
and the channels that link the Server and authorized Readers are assumed to be
secure.

We adopt the Byzantine threat model. All parties including the adversary A
are modeled as a probabilistic Turing machines. A controls the delivery schedule
of all communication channels, and may eavesdrop into, or modify, their contents
and may also instantiate new communication channels and directly interact with
honest parties.

5.1 The UC framework

The universal composability (UC) framework specifies a particular approach
to security proofs for protocols, and guarantees that proofs that follow that ap-
proach remain valid if the protocol is, say composed with other protocols (modu-
larity) and under arbitrary concurrent protocol executions (including with itself).
The UC framework defines a real-world simulation, an ideal-world simulation, an
emulation E that translates protocol runs from the real-world to the ideal-world,
and an interactive environment Z that captures whatever is external to the cur-
rent protocol execution. The components of a UC security formalization are:

1. A mathematical model of real protocol executions in which honest parties (the
tags and the Server) correctly execute as specified, and adversarial parties
under the control of the adversary A that can deviate from the protocol in
an arbitrary way. A can interact with the environment Z, in arbitrary ways.

2. An idealized model of executions, where the security properties of the pro-
tocol depend on the behavior of an ideal functionality F . F controls the
ideal-model adversary Â so that it reproduces as faithfully as possible the
behavior of A.

A Flyweight RFID Authentication Protocol 11

3. A proof that, for each adversary A there is a simulator E that translates
real-world runs in the presence of A into ideal-world protocol runs in the
presence of Â such that, no environment Z can distinguish whether A is
communicating with a instance of the protocol in the real-world or Â is
communicating with F in the ideal-world.

In the UC framework, the context of a protocol execution is captured by a session
identifier sid. The sid is controlled by the environment Z and reflects external
aspects of execution. All parties involved in a protocol execution instance share
the same sid.

Theorem 1. The proposed protocol guarantees availability, tag authentication
and session unlinkability in the UC framework provided a cryptographically se-
cure RNG is used and Server and tags are synchronized.

Proof.

1. Availability requires that at all times each tag shares at least one number
with the server.

2. Tag authentication requires that the Server can corroborate values produced
by the tag in terms of the state of their shared RNG.

3. Session unlinkability requires that: given two tag interrogations A cannot
decide (with probability better than 0.5 + negligible) whether these involve
the same tag or not, provided that either the first updated successfully, or
an intermediate interrogation of the tag updated successfully.

Server is always synchronized with the tag by storing two values, the current
R1cur and the next one R1next, and updating (update function) these values only
after checking that the tag has previously done it. The check is the reception of
R1next and/or R3 (alarm = 0) or R4 (alarm = 1).

In the real-world, we model an attacker as an efficient procedure A that
interacts with the system, controlling the delivery schedule of all communication
channels. A may send and receive flows from/to the honest parties according to
the protocol described in the Section 4, and modify these flows as wished. The
game continues in this fashion until the attacker decides to be authenticated. For
a particular RNG with a security parameters m (lengths of the random numbers),
we let Pr[A(m, c, outputs)] denote the probability of A being authenticated. The
parameter c is a flag that indicates if the state of the RNG is compromised and
outputs represents the set of messages broadcast by the honest parties till the
moment that the adversary tries to be authenticated.

In the ideal world, we specify the functionality Fauth of the protocol to cap-
ture tag authentication and session unlinkability. The functionality Fauth is il-
lustrated in Figure 3. There are four commands: Initiate activates the Server
and tags, Next is used to get the next flow, Repeat is used to repeat interro-
gations (protocol executions) that were not completed, Authenticate decides
if Server and tag are authenticated (mutually), and Compromise takes into
account the case where the state of the tag is compromised, assuming that the

12 Mike Burmester and Jorge Munilla

Functionality Fauth

Fauth has session identifier sid and only admits commands with the same sid.

Upon receiving Initiate: generate a unique subsession identification number
sid and select five random numbers: r1, r2, r3, r4 and r5. Then, set index ← 0,
alarm ← 0 and assign values to the arrays flows1(1, ..., 4) = [Query, r1, r2, r3] and
flows2(1, ..., 6) = [Query, r1, r2, r4, r3, r5]. OUTPUT sid.

Upon receiving Next(sid):

Set index ← index + 1
If alarm = 0 and index < 5 then OUTPUT flows1(index)
Elseif alarm = 1 and index < 7 then OUTPUT flows2(index)
Else ignore.

Upon receiving Repeat(sid):

If index < 3 then set alarm ← 1 and index ← 0.
Else ignore.

Upon receiving Authenticate(sid):

If alarm = 0 and index = 4 then ACCEPT(tag).
Elseif alarm = 1 and index = 6 then ACCEPT(tag).
Else abort

Upon receiving Compromise(sid):

If state is compromised then OUTPUT r1, r2, r3, r4 and r5.
Else ignore

Fig. 3. The functionality Fauth.

adversary is able to know the output of the RNG. It must be also noted that
in the real world all protocol flows involve pseudorandom numbers whereas in
the ideal world we have random numbers: the environment Z cannot distinguish
these because is a PPT machine. We let Pr[Â(m, c, outputs)] denote the prob-
ability of the adversary Â being authenticated after interacting with the ideal
process.

We must show that a real-world adversary A who can access protocol flows
cannot succeed with probability greater than negligible in generating the flows
of a “new” interrogation that is accepted by the Server, but not accepted in the
ideal-world by Fauth (corresponding to an interrogation that is generated in a
way not specified by the protocol): if this happens Z will distinguish real-world
from ideal-world executions.

Formally, we say that this protocol guarantees tag authentication if for every
probabilistic polynomial-time attacker algorithm A, the difference

|Pr[A(m, c, outputs)]− Pr[Â(m, c, outputs)]| (1)

is negligible in the security parameter m.
Session unlinkability and tag authentication is guaranteed (except when state

is compromised, c is ON) if the adversary is not able to distinguish between true

A Flyweight RFID Authentication Protocol 13

random numbers used by the functionality Fauth, and pseudo random numbers
generated by RNG.

It follows that, if ‡ can distinguish real from ideal simulations, it can also
distinguish real simulations with the pseudo-random function RNG from ideal
simulations with a truly random function. This will lead to a contradiction, if
RNG is indistinguisable from random by any PTT adversaries.¤

The extension of this proof to the backward security is straightforward if the
function refresh is cryptographically secure. Formally

Theorem 2. This protocol guarantees that an adversary is not able to authen-
ticate itself after a refreshing even if he knows the current state of the RNG
provided that refresh is a cryptographically secure function and Kr is not com-
promised.

Proof. Indeed, if the RNG of a tag gets compromised (its state), then only the
actual tag will be able to refresh the state of its RNG and thus get authenticated
by S. If an adversary is able to authenticate himself, it follows that he is able
to compute the refreshed state what leads to a contradiction if refresh is a
cryptographically secure function and Kr is not compromised. ¤

Acknowledgement

Research partly supported by the Spanish Ministry of Science and Innovation
and the European FEDER Funds, under Project TIN 2008-02236/TSI.

References

1. Avoine, G. http://www.avoine.net/rfid/.
2. Avoine, G., and Oechslin, P. A scalable and provably secure hash based RFID

protocol. Proc. IEEE Int. Workshop on Pervasive Computing & Communication
Security (PerSec 2005), IEEE Computer Society Press.

3. Barak, B., and Halevi, S. A model and architecture for pseudo-random gen-
eration with applications to /dev/random. ACM Conf. on Computer and Com-
munications Security (2005), V. Atluri, C. Meadows, and A. Juels, Eds., ACM,
pp. 203–212.

4. Burmester, M., and de Medeiros, B. The Security of EPC Gen2 Compliant
RFID Protocols. ACNS (2008), S. M. Bellovin, R. Gennaro, A. D. Keromytis, and
M. Yung, Eds., Lecture Notes in Computer Science, vol. 5037, pp. 490–506.

5. Burmester, M., van Le, T., de Medeiros, B., and Tsudik, S. Provably Se-
cure Ubiquitous Systems: Universally Composable RFID Authentication Protocols.
ACM Transactions on Information and System Security (TISSEC) (2009).

6. Burmester, M., de Medeiros, B., Munilla, J., and Peinado, A. Secure EPC
Gen2 Compliant Radio Frequency Identification. E-print #2009/147, International
Association for Cryptological Research, 2009.

7. Burmester, M., van Le, T., and de Medeiros, B. Provably secure ubiqui-
tous systems: Universally composable RFID authentication protocols. Proc. 2nd
IEEE CreateNet Int. Conf. on Security and Privacy in Communication Networks
(SECURECOMM 2006), IEEE Press.

14 Mike Burmester and Jorge Munilla

8. Chen, C.-L., and Deng, Y.-Y. Conformation of EPC Class 1 Generation 2
standards RFID system with mutual authentication and privacy protection. En-
gineering Applications of Artificial Intelligence, Elsevier, In Press (2009).

9. Dimitriou, T. A secure and efficient RFID protocol that can make big brother
obsolete. In Proc. Intern. Conf. on Pervasive Computing and Communications,
(PerCom 2006) (2006), IEEE Press.

10. EPC Global. EPC Tag Data Standards, http://www.epcglobalinc.org
11. Eun Young Choi, D. H. L., and Lim, J. I. Anti-cloning protocol suitable

to epcglobal class-1 generation-2 rfid systems. Computer Standards & Interfaces
Available online, In press, Corrected Proof (2008).

12. Goldreich, O., Goldwasser, S., and Micali, S. How to construct pseudoran-
dom functions. Journal ACM 33, 4 (1986).

13. Henrici, D., and Müller, P. M. Hash-based enhancement of location privacy
for radio-frequency identification devices using varying identifiers. Proc. IEEE Int.
Conf. on Pervasive Computing and Communications (2004), 149–153.

14. Juels, A. Minimalist cryptography for low-cost RFID tags. In Proc. Int. Conf. Se-
curity in Communication Networks (SCN 2004) (2004), LNCS, vol. 3352, Springer,
pp. 149–164.

15. Kelsey, J., Schneier, B., Wagner, D., and Hall, C. Cryptanalytic attacks
on pseudorandom number generators. In FSE (1998), S. Vaudenay, Ed.,LNCS,
vol. 1372, Springer, pp. 168–188.

16. Kim, C. H., Avoine, G., Koeune, F., Standaert, F.-X., and Pereira, O.
The Swiss-Knife RFID Distance Bounding Protocol. In ICISC (2008), P. J. Lee
and J. H. Cheon, Eds., vol. 5461 of Lecture Notes in Computer Science, Springer,
pp. 98–115.

17. Mangard, S., Popp, T., and Oswald, M. E. Power Analysis Attacks - Revealing
the Secrets of Smart Cards, Springer - ISBN: 0-387-30857-1. 2007.

18. Molnar, D., Soppera, A., and Wagner, D. A scalable, delegatable pseudonym
protocol enabling ownership transfer of RFID tags. In Proc. Workshop on Selected
Areas in Cryptography (SAC 2005) (2006), LNCS vol. 3897, Springer.

19. Munilla, J., Peinado, A. Distance bounding protocols with void-challenges for
RFID. In In Workshop on RFID Security - RFIDSec ’06 (2006).

20. Ohkubo, M., Suzuki, K., and Kinoshita, S. Cryptographic approach to
“privacy-friendly” tags. In Proc. RFID Privacy Workshop (2003).

21. Qingling, C., Yiju, Z., and Yonghua, W. A minimalist mutual authentication
protocol for RFID systems and BAN logic analysis. Computing, Communication,
Control and Management, ISECS International Colloquium (2008), 449–453.

22. Seo, D., Baek, J., and Cho, D. Secure RFID Authentication Scheme for EPC
Class Gen2. In Proc. 3rd Int. Conf. on Ubiquitous Information Management and
Communication (ICUIMC-2009), pp. 221–227.

23. Sharma, S. E., Weiss, S. A., and Engels, D. W. RFID systems and security
and privacy implications. Proc. Workshop Cryptographic Hardware and Embedded
Systems (CHES 20002) (2003), LNCS, vol. 2523, Springer, pp. 454–469.

24. Sun, H.-M., and Ting, W.-C. A gen2-based rfid authentication protocol for
security and privacy. IEEE Transactions on Mobile Computing 99, 1 (2009).

25. van Le, T., Burmester, M., and de Medeiros, B. Universally Composable
and Forward-Secure RFID Authentication and Authenticated Key Exchange. Proc.
ACM Symp. on Information, Computer, and Communications Security (ASIACCS
2007), ACM Press, pp. 242–252.

