
Git : Part3
Branch Management

These slides were largely cut-and-pasted from
http://excess.org/article/2008/07/ogre-git-

tutorial/ , with some additions from other
sources. I have deleted a lot from the cited

tutorial, and recommend that you listen to the
entire tutorial on line, if you can.

Branch Management

•  Review
•  Branch creation
•  Merging
•  Rebasing
•  Putting it all together

Review

Core git concepts

Git components

Index
– “staging area”
– what is to be

committed

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

Local Operations

add (stage) files

Working
directory

Repository
(.git directory)

Index
 (staging area)

checkout the project

commit

Git object model

h"p://utsl.gen.nz/talks/git‐svn/git‐model.png 

Branches

“alternate universes”

Creating branches

git branch <name> <commit>

B 

A 

git branch new HEAD

Local branches

To list them: git branch –l

 branch1
 branch2
* master

Or look at files in .git/refs/heads/

Remote branches

To see them: git branch –r

 origin/HEAD -> origin/master
 origin/master
 origin/update

Or look at files in .git/refs/remotes/

Merging branches

when alternate universes collide

Merging

git merge <branch> …
•  joins branches
•  creates commit with 2+ parents
•  can cause conflicts

requiring user intervention

C 

A 

B 

C 

A 

B 

D 

git merge new HEAD

Merge examples

git checkout –b three two

“checkout –b” creates a
new branch and checks it out

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

2-way merge

git merge one

git checkout –b three two

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

3-way merge

git checkout three

git merge one two

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

Fast-forward merge
•  Current head of the branch to

which you are merging is an
ancestor of the branch you
are merging to it.

•  The branch head is just
moved to the newer commit.

•  No merge commit object is
created
unless “-- no-ff” is specified

C 

A 

B 

C 

A 

B 

git merge new HEAD

C 

A 

B 

C 

A 

B 

D 

True merge

•  Not fast-forward
•  New commit object must be

created for new head
•  2 cases:
– No overlapping changes are

detected
•  Merge proceeds normally

– Overlapping changes are
detected
Manual intervention is required

Merge with conflicts
•  HEAD pointer is unchanged
•  MERGE_HEAD points to the other branch head
•  Files that merged cleanly are updated in the index

file and working tree
•  3 versions recorded for conflicting files:

–  Stage 1: common ancestor version
–  Stage 2: MERGE_HEAD version
–  Working tree: marked-up files (with <<< === >>>)

•  No other changes are made
•  You can start over with git reset --merge

How merge marks conflicts
Here are lines that are either unchanged from the common ancestor, or
cleanly resolved because only one side changed. 
<<<<<<< yours:sample.txt  
Conflict resolution is hard; let's go shopping.  
=======  
Git makes conflict resolution easy.  
>>>>>>> theirs:sample.txt  
And here is another line that is cleanly resolved or unmodified.

There is an alternate, 3-way, output option that also
shows the common ancestor text.

Resolving merge conflicts

Rebasing

key to reducing the difficulty of
merging

Rebase
•  Contrasts to merge
– Merge joins two branches
– Rebase preserves branches

•  Rolls changes from one branch into the other
– Changes now are now relative to newer baseline
– Allows tracking changes to baseline while

developing new branch
–  Prevents surprises later
– Avoids conflicts with eventual merges

•  Rebase frequently to avoid merge conflicts

Merging vs. Rebasing

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

git merge master

Merging vs. Rebasing

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

git rebase master

Merging vs. Rebasing

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

git rebase master

Merging vs. Rebasing

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

git rebase master

Merging vs. Rebasing

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

git rebase master

Merging vs. Rebasing

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

git rebase master

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

git rebase master

Merging vs. Rebasing

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

git rebase master

Merging vs. Rebasing

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

git rebase master

Merging vs. Rebasing

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

Putting it all together

A user story showing how rebase
is used with branch and merge,

to reduce pain of merging.

Starting out to fix a bug

git checkout –b bug-fix

git commit –a –m”B”

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

Continue making changes

git commit –a –m”C” –b

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

Decide to try out a “wicked” idea.

git checkout –b wicked master

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

Work on the wicked branch

git commit –a –m”D”

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

And some more

git commit –a –m”E”

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

git tag –a –m”got somewhere” good

Tag a good point

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

Manager asks about the bug

git checkout bug-fix

git commit –a –m “F”

So you go back to work on it some more

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

But your mind is elsewhere

git checkout wicked

so you finish off the wicked feature
git commit –a –m”G”

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

git checkout master

Bug fix and wicked
new feature
are both done,
so it’s time to merge

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

git reset --hard bug-fix

Advance the
the master to include
the bug fix

git merge wicked

Merge it into the
 master branch

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

For a more complete
description of branch
management and the the
commit-rebase-merge
cycle, see the separate
notes at the website
linked below.

h"p://nvie.com/wp‐content/uploads/2009/12/Screen‐shot‐2009‐12‐24‐at‐11.32.03.png 

