Git : Part3
Branch Management

These slides were largely cut-and-pasted from
http://excess.org/article/2008/07/ogre-git-
tutorial/ , with'some additions from other
sources. I have deleted a lot from the cited
tutorial, and recommend that you listen to the
entire tutorial on line, if you can.

Branch Management

* Review

* Branch creation

* Merging

 Rebasing

* Putting it all together

Review

Git components

Index kﬂ?ﬂ)

topicA
— “staging area” index s |
— what is to be H
committed | é
G
|
F

B C

ﬁ(o v1.4.4

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Local Operations

g L

Git object model

Git::Repository
+path: pathname T
+repository: pathname = & path ~ "/.git" . Git::Object
+objects: Hash of (oid == Git::0bject) *:1" +oid: Str where { SHAl valid }
+refs: Hash of (Str == oid) +type: enum of ("blob", "tree", "commt", "tag")
—<>+heads: Hash of (Str == oid) +get_shal_sum(): SHAL
+HEAD: Str where { exists & heads{$ } }
+tags: Hash of (tagname == oid) e
|most refs
annotated refs
1Y i : <l 9.7 it 1.
Git::Commit < Git::Tag . .
- - Git::File
+author: Email::Address +tagger: !Errml: :Address
+committer: Email::Address +de:fcr.|.pt19n: Str .
+subject: Str where { 1/\n/ } +object: Git::Commt
. +description: Str +check_PGP_signature(keyring): bool
J+parents: Array of (Git::Commit) .
+tree: Git::Tree L.
tree
parents .
] Git::Tree Git::Blob
+dentries: Array of (mode, filename, oid) +Contents: Str
THE GIT MODEL
Expressed in UMLwith PerG-ish ty pe descriptions
31st May, 2006 - sam.vilain@cataly st.net.n2
Copyright Catalyst IT (N2 Ltd. GNU Free Documentation License applies. * dentries

http://utsl.gen.nz/talks/git-svn/git-model.png

Branches

Creating branches

git branch <name> <commit>

k HEAD) new

B

|

A

git branch new HEAD

Local branches

To list them: git branch —1
branchl
branch?2
* master

Or look at filesin .git/refs/heads/

Remote branches

To see them: git branch —r
origin/HEAD -> origin/master
origin/master
origin/update

Or look at files in .git/refs/remotes/

Merging branches

Merging HEAD new

+§

git merge <branch> ...
e joins branches
* creates commit with 2+ parents

* can cause conflicts
requiring user intervention

\

(HEAD A new

=N

git merge new HEAD

Merge examples

one two

B C

g

git checkout —b three two

“checkout —b” creates a _one , (three/ \ two /
new branch and checks it out

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

2-way merge

git checkout —b three two

one two

glt merge one one

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

3-way merge

(three)

two

git checkout three
git merge one two

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.p¢

Fast-forward merge

 Current head of the branch to
which you are merging is an
ancestor of the branch you
are merging to it.

* The branch head is just
moved to the newer commit.

* No merge commit object is
created
unless "-- no-ff" is specified

git merge new HEAD

HEAD new

o

e

True merge i) (e

+§

* Not fast-forward

* New commit object must be
created for new head

« 2 cases: (HEAD A new /

— No overlapping changes are
detected

* Merge proceeds normally

— Overlapping changes are
detected
Manual intervention is required

\

=N

Beware of false security!

« Just because there are no overlapping
changes does not mean the changes are
semantically compatible.

— It only means they do not modify the same region
of the same file.

* S0, unless the merge is a fast-forward, there
is a good chance that your merge will break
the software.

» This is the reason for following a discipline
that forces all merges to be fast-forward.

Merge with conflicts

HEAD pointer is unchanged
MERGE_HEAD points to the other branch head

Files that merged cleanly are updated in the index
file and working tree

3 versions recorded for conflicting files:

— Stage 1: common ancestor version

— Stage 2: MERGE_HEAD version

— Working tree: marked-up files (with <« === >>>)
No other changes are made

You can start over with git reset --merge

How merge marks conflicts

Here are lines that are either unchanged from the common ancestor, or
cleanly resolved because only one side changed.

<< yours:sample.txt

Conflict resolution is hard; let's go shopping.

Git makes conflict resolution easy.
>>>>>>> theirs:sample.txt
And here is another line that is cleanly resolved or unmodified.

There is an alternate, 3-way, output option that also
shows the common ancestor text.

Resolving merge conflicts

 Only two choices
a. Decide not to merge: git-reset --hard
b. Resolve the conflicts

e Resolution tools

— Use a mergetool: git mergetool

kdiff3,tkdiff, meld, xxdiff, emerge, vimdiff, gvimdiff, ecmerge,
diffuse, tortoisemerge, opendiff, p4merge, araxis

— Look at the diffs, and edit: git diff

Rebasing

key to reducing the difficulty of
merging

Rebase

» Contrasts to merge
— Merge joins two branches
— Rebase preserves branches

* Rolls changes from one branch into the other
— Changes now are now relative to newer baseline

— Allows tracking changes to baseline while
developing new branch

— Prevents surprises later
— Avoids conflicts with eventual merges

 Rebase frequently to avoid merge conflicts

Merging VS. Rebasing

(_test (test
E £
|
D | D
(master (master, —IC
B : B
A A

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Merging VS. Rebasing

master master

git merge master
http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Merging VS. Rebasing

(test
test
F
E E
Dl
D | D
\master ——¢ C (master —fC
B : B
A A

git rebase master

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Merging VS. Rebasing

master

git rebase master

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Merging VS. Rebasing

master

s

git rebase master

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Merging VS. Rebasing

master

i

git rebase master

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

E'

oA

master master ‘

git rebase master

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Merging VS. Rebasing

master master

git rebase master

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Merging VS. Rebasing

master master

e

git rebase master

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Merging VS. Rebasing

, é l.lFll
‘ 3
| D]

master Caster,—c
B]
(A]

git rebase master

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Putting it all together

A user story showing how rebase
is used with branch and merge,
to reduce pain of merging.

Starting out to fix a bug

A \master
git checkout —b bug-fix

HEAD
(bug—fi } A {_master /
git commit —a —m”B”
(_HEAD /
\bug—fi /— B
N]
A master /

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Continue making changes

(_HEAD
(bug—fi —{B

N

A { master /

git commit —a —m”C” —b
\HEAD /
(bug—fi .—{C

A __master /

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Decide to try out a "wicked" idea.

_HEAD /
\bug—fi /— C
B
N

A {_master /

git checkout —b wicked master

bug—fi - C (HEAD
B)_/
_‘
A master

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Work on the wicked branch

(bug—fi —fC _HEAD J

B wicked

. . A { t]
git commit —a —m"”D” \master/

_HEAD /

D | wicked

\bug—fi — C

A __master /

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

And some more

\HEAD /
D wicked
\bug—fi /— C
B
A \master,
git commit —a —m"E” HEAD
E‘ wicked
\bug—fi /— C
B
A \master,

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Tag a good point _—

L E wicked
D
\bug—fi /—f C]
B
master
git tag —a —m”got somewhere” good
_HEAD /
wicked
EF/E
D
(bug—fi —fC]
B

master

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Manager asks about the bug

git checkout bug-fix :
D
\bug—fi /—1 C |
So you go back to work on it some more =
Ve
git commit —a —m “F”
(bug=fi —{F]

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

But your mind is elsewhere

git checkout wicked

so you finish of f the wicked feature
git commit —a —m”"G”

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Bug fix and wicked
new feature

are both done,

so it's time o merge

git checkout master

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Advance the
the master to include
the bug fix

= ™\

git reset --hard bug-fix

Merge it into the
master branch

. T

git merge wicked

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

For a more complete
description of branch
management and the the
commit-rebase-merge
cycle, see the separate
notes at the website
linked below.

http://nvie.com/wp-content/uploads/2009/12/Screen-shot-2009-12-24-at-11.32.03.png

