
Git

Slides constructed from
http://excess.org/article/2008/07/

ogre-git-tutorial/ , Dr Sara
Stoecklin’s notes in SCM, and other

sources.

Preliminary version – to be updated some day, I hope. 

Git

•  A collection of tools developed by Linux
kernel group for SCM
– Now used by several other groups, and

apparently growing in popularity
•  Actually implements a replicated versioned

file system
•  Can be used to implement a variety of

software configuration management
models and workflows

Git Flavor

•  A collection of many tools
•  Evolved from scripts
•  Suited to a C programmer’s mentality
•  Everything is exposed and accessible
•  Need to understand the underlying model
•  Very flexible
– You can do anything the model permits
– Including shooting yourself in the foot

Git has a lot of commands

but you can get by with a subset for
everyday use

and maybe a few more gui tools

gitk 
mergetool 
gui 
citool 
shell 

or maybe a few more occasionally

Groups of Git operations

•  Setup and branch-switching
–  init, checkout, switch branch

•  Modification
– add, delete, rename, commit

•  Getting information
– status, diff, log

•  Create reference points
– tag, branch

Source code

contains
– Directories
– Files

is the substance of a software configuration

Repository

Contains
– files
– commits

records history of changes to configuration

Repository

Contains
– files
– commits
– ancestry relationships

Ancestry relationships

form a directed acyclic graph
 (DAG)

Ancestry graph features

Tags
–  identify versions of interest
–  including “releases”

Ancestry graph features

HEAD
–  is current checkout
– usually points to a branch

Head may point to any commit

In this case it is
said to be detached.

Git components

Index
– “staging area”
– what is to be

committed

Working directory, Index,
and Repository

Three top-level abstractions

History

 Staging area

 Files you edit

Staging

add, remove, rename

add 

Committing

commit

commit 

Reading tree

checkout, read-tree, reset

checkout 

Checking out

checkout, checkout-index, reset

checkout 

The repository

Repository files

•  .git/config
•  .git/description – used by gitweb
•  .git/info/exclude – files to ignore

.git/objects
|-- 23
| ‘-- d4bd826aba9e29aaace9411cc175b784edc399
|-- 76
| ‘-- 49f82d40a98b1ba59057798e47aab2a99a11d3
|-- c4
| ‘-- aaefaa8a48ad4ad379dc1002b78f1a3e4ceabc
|-- e7
| ‘-- 4be61128eef713459ca4e32398d689fe80864e
|-- info
| ‘-- packs
‘-- pack
 |-- pack-b7b026b1a0b0f193db9dea0b0d7367d25d3a68cc.idx
 ‘-- pack-b7b026b1a0b0f193db9dea0b0d7367d25d3a68cc.pack

loose 

Git object model

Repository object naming convention

“content addressable” (hashed)

Data values determine hash

Hash value is filename

File contains data

Object types

•  Blobs
•  Trees
•  Commits
•  Tags

Blobs

Trees

Trees

Trees

Commits

Commits

Commits

Commits

Objects are immutable

Basic command format

git <options> <command> <options>

Online help

•  list of common commands
git help

•  Brief per-command help
git command –h

•  man pages
man git-<command>
git help <command>
git <command> --help

Configuration
$HOME/.gitconfig

git config –global user.name “Ted Baker”
git config –global user.email baker@cs.fsu.edu
git config –global color.pager true
git config –global cour.ui auto

A typical developer story

Showing how various commands
are used, in context.

Working on branches

Start with some tree

git checkout –b bug-fix

git commit –a –m”B”

Continue making changes

git commit –a –m”C” –b

Decide to try out a “wicked”
alternate idea.

git checkout –b wicked master

Do some work on this alternate
branch.

git commit –a –m”D”

And some more work.

git commit –a –m”E”

You have gotten to a good point.

git tag –a –m”got somewhere” good

Manager asks about the bug

git checkout bug-fix

git commit –a –m “F”

So you go back to work on it some more

But your mind is elsewhere

git checkout wicked

so you finish off the wicked feature
git commit –a –m”G”

git merge wicked

Then merge in the
new feature.

git reset --hard bug-fix

First advance the
the master to include
the bug fix.

git checkout master

Bug fix and wicked
new feature
are both done,
so it’s time to merge.

Another story

This set of slides has not yet
been completely transcribed

from the original web tutorial.

Nice diagrams

Some helpful diagrams collected
from the Web.

Git transport commands

A Git workflow

