
Software Configuration
Management

Slides derived from Dr.
Sara Stoecklin’s notes

and various web sources.

What is SCM?

SCM goals

•  Manage the changes to documents,
programs, files, etc.

•  Track history
•  Identify person responsible for each

change, and reasons
•  Recover (roll back to) previous versions as

necessary
•  Maintain sets of compatible versions of

files (configurations)

Several related concepts & terms

•  Source code vs. configuration management
– both called SCM

•  Revision control ≈ version control
•  Web content management
•  Work flows

Definition according to Wiki
Configuration management is the management of

features and assurances through control of
changes made to hardware, software,
firmware, documentation, test, test fixtures
and test documentation of an system,
throughout the development and operational
life of a system.

Source Code Management or revision control is
part of this.

Definition According to Dennis

Configuration and change management is
the tracking of the state of the
artifacts (hardware, software,
firmware, documentation, test, test
fixtures and test documentation of an
system) throughout the development of
a system.

Configuration Management Defined
The management and control of all any

changes made to any and all features of
the software development activity. This
includes hardware, software,
documentation, and firmware.

Configuration management can be done with
a tool. These tools range in price from $0
to $400,000. It depends on how many
features you wish to manage and how well
you want to manage them.

Why do we care?
Remember Apollo 13.
If a change needs to be made to ANY artifact

then when you put them all together again you
had better make it right. Suppose you have a
programming error and need to change it,
recompile and use that software.

What version of the hardware did you use for
the original? What version of the OS, DB,
compiler? What version of the file
management software? All that should be
the same to recompile. So we must manage.

Why do we care?

Suppose we change requirements and get
a new use case diagram. Do other things
have to change? Will we have more
actors, attributes, screen?. So even
when the documentation of the system
changes as it evolves, we must track
that, too.

What are the artifacts?
Hardware – ANY hardware that is used by the

system.
Software – system software (OS, DB, Compiler,

etc), supporting software (sorters, mergers,
utilities), application software (you wrote or
you use).

Firmware – ANY firmware used by the system.
Documentation – deliverables for development,

documentation maintained for the operation
of the system, etc.

Configuration Management Includes
Change management - of changes to the

specifications of a potential software system
Documentation management –of all documentation

including defects, specification, testing,
purchasing, emails, memos, agendas…every single
documentation detail

Hardware/firmware configuration management - of
all the hardware and firmware.

Source code management –of changes to the source
code including the application code, operating
system, compilers, utilities, database
management system, communication system,
middleware, etc.

Configuration Management Standards

e.g.

IEEE Std. 828-1998 IEEE Standard for Software Configuration
Management Plans

ANSI/EIA-649-1998 National Consensus Standard for
Configuration Management

MIL-STD-973 Military Standard for Configuration
Management[1] (cancelled, but still good reference)

GEIA Standard 836-2002 Configuration Management Data
Exchange and Interoperability

Source Code Management

•  One of the important parts of
configuration management

•  For any development project you need
to have a SCM plan

•  SCM is closely connected with team
workflow
– Workflow defines how SCM is done
– How tools are used

Complicating factors for SCM

•  Multiple versions
•  Multiple branches (e.g., development, bug

fix, old releases)
•  Multiple authors
•  Concurrent activities
•  Geographical distribution
•  Disk crashes, human errors

SCM Model Differences

•  Centralized vs. Distributed
•  Pushed vs. pulled updates
•  Handling of concurrent updates

– Atomic commit operations (transactions)
– File locking
– Version merging

There are many SCM tools

•  RCS
•  CVS
•  Subversion (svn)
•  Git
•  Mercurial (hg)
•  Bazaar (bzr)
•  … many more

Key terms and concepts
•  File vs. configuration
•  Version/revision numbers
•  Timestamps
•  Releases
•  Repository
•  Working copy, or sandbox
•  Baseline/trunk/mainline/master
•  Branches/forks
•  Change list or patch

More terms and concepts

•  “Checkout” has multiple meanings
– Get local working copy (or make it visible?)
– Locked, or not?
– Configuration versus file

•  Export/import
•  Commit
•  Conflict (superficial, or deep)
•  Merge
•  Tags

Centralized vs. distributed
SCM models

Centralized SCM

Operations require server
–  single point of failure
–  bottleneck

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

Decentralized SCM

Anyone can be a server

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

How decentralized SCM
works.

Start with a global repository

Clone it

Can make cheap local clones via links

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

Changes can be pushed back
upstream

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

published to web

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

or shared with trusted peers

h"p://edgyu.excess.org/git‐tutorial/2008‐07‐09/intro‐to‐git.pdf 

Benefits of decentralization

•  Non-intrusive micro-commits
•  Detached operation (off net)
•  No single point of failure
•  Backups are trivial
•  Very flexible
•  ... ?

Problems with decentralization

•  No “locking”
•  No single authoritative version
•  Relies on clock synchronization
•  Requires greater discipline, imposed by

team workflow rules

Example workflow models

Suitable for use with Git or
other distributed SCM tool.

Agile workflow 

All developers are equal, all push changes to same repository. 
Repository is always up to date with the current “wave front”. 

tp://progit.org/book/ch5‐1.html 

UML Sequence Diagram 
for an Agile team. 

Agile workflow 

h"p://nvie.com/wp‐content/uploads/2009/12/Screen‐shot‐2009‐12‐24‐at‐11.32.03.png 

Managed repository 

. 
Only one person can push changes to the blessed repository. 
Means less chance for accidents, but we now have a bo"leneck. 

tp://progit.org/book/ch5‐1.htm 

An alternate way of sharing a repository, using branches. 

h"p://agentdero.cachefly.net/unethicalblogger.com/images/basic_slide_workflow.png 

Linux‐like hierarchical model 

h"ps://codebeamer.com/cb/displayDocument/workflow‐c.png?
object_comment_id=529&history=false&noYficaYon=false 

Android Git Workflow 
h"p://source.android.com/submit‐patches/
workflow 

Two kinds of review, verificaYon by mulYple 
testers before admission to repository. 

In this course
•  If you use an IDE such as VB Studio or Eclipse

then you can use a SCM plug-in
–  Several are available.

•  However, if you are not using an IDE you will need
to use command-line operations, scripts, or a
separate GUI tool for version control.

•  For Spring 2010 we will use Git.
–  So, you will need to learn it.
–  During your career you will probably need to

learn and use several others.

