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Case study: BSY-1 Trainer
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Purpose of Tutorial

 

Introduce rate monotonic analysis

Explain how to perform the analysis

Give some examples of usage

Convince you it is useful
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Tutorial Format

 

Lecture

Group exercises

Case study

Questions welcome anytime
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RMARTS Project

 

Originally called Real-Time Scheduling in Ada Project 
(RTSIA).

• focused on rate monotonic scheduling theory
• recognized strength of theory was in analysis

Rate Monotonic Analysis for Real-Time Systems 
(RMARTS)

• focused on analysis supported by (RMS) theory
• analysis of designs regardless of language or 

scheduling approach used

Project focused initially on uniprocessor systems.

Work continues in distributed processing systems.
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Real-Time Systems

 

Timing requirements
• meeting deadlines

Periodic and aperiodic tasks

Shared resources

Interrupts
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What’s Important in Real-Time

 

Criteria for real-time systems differ from that for time-
sharing systems.

 

• 

 

schedulability

 

 is the ability of tasks to meet all hard deadlines

• 

 

latency

 

 is the worst-case system response time to events

• 

 

stability

 

 in overload means the system meets critical deadlines even if 
all deadlines cannot be met

 

Time-Sharing 
Systems

Real-Time 
Systems

Capacity High throughput Schedulability
Responsiveness Fast average 

response
Ensured worst-
case latency

Overload Fairness Stability
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Scheduling Policies

 

CPU scheduling policy: a rule to select task to run next
• cyclic executive
• rate monotonic/deadline monotonic
• earliest deadline first
• least laxity first

Assume preemptive, priority scheduling of tasks
• analyze effects of non-preemption later
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Rate Monotonic Scheduling (RMS)

 

Priorities of periodic tasks are based on their rates: 
highest rate gets highest priority.

Theoretical basis
• optimal fixed scheduling policy (when deadlines are 

at end of period)
• analytic formulas to check schedulability

Must distinguish between scheduling and analysis
• rate monotonic scheduling forms the basis for rate 

monotonic analysis
• however, we consider later how to analyze systems 

in which rate monotonic scheduling is not used
• any scheduling approach may be used, but all real-

time systems should be analyzed for timing
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Rate Monotonic Analysis (RMA)

 

Rate monotonic analysis is a method for analyzing sets 
of real-time tasks.

Basic theory applies only to independent, periodic 
tasks, but has been extended to address

• priority inversion
• task interactions
• aperiodic tasks

Focus is on RMA, not RMS.
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Why Are Deadlines Missed?

 

For a given task, consider
• 

 

preemption

 

: time waiting for higher priority tasks
• 

 

execution

 

: time to do its own work
• 

 

blocking

 

: time delayed by lower priority tasks

The task is 

 

schedulable

 

 if the sum of its preemption, 
execution, and blocking is less than its deadline.

Focus: identify the biggest hits among the three and 
reduce, as needed, to achieve schedulability
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Rate Monotonic Theory - Experience

 

IBM Systems Integration Division delivered a 
“schedulable” real-time network.

Theory used successfully to improve performance of 
IBM BSY-1 Trainer.

Incorporated into IEEE FutureBus+ standard

Adopted by NASA Space Station Program

European Space Agency requires as baseline theory.

Supported in part by Ada vendors
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Rate Monotonic Analysis - Products

 

Journal articles (e.g., 

 

IEEE Computer

 

, Hot Topics)

Videotape from SEI

Courses from Telos and Tri-Pacific

 

A Practitioner’s Handbook for Real-Time Analysis: 
Guide to Rate Monotonic Analysis for Real-Time 
Systems

 

 

 

from Kluwer

CASE tools from Introspect and Tri-Pacific

Operating systems and runtimes from Alsys, DDC-I, 
Lynx, Sun, Verdix and Wind River

Standards: Futurebus+, POSIX, Ada 9X
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Summary

 

Real-time goals are: fast response, guaranteed 
deadlines, and stability in overload.

Any scheduling approach may be used, but all real-time 
systems should be analyzed for timing.

Rate monotonic analysis
• based on rate monotonic scheduling theory
• analytic formulas to determine schedulability
• framework for reasoning about system timing 

behavior
• separation of timing and functional concerns

Provides an engineering basis for designing real-time 
systems
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Plan for Tutorial

 

Present basic theory for periodic task sets

Extend basic theory to include
• context switch overhead
• preperiod deadlines
• interrupts

Consider task interactions:
• priority inversion
• synchronization protocols (time allowing)

Extend theory to aperiodic tasks:
• sporadic servers (time allowing)

Present BSY-1 Trainer case study
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A Sample Problem
Periodics Aperiodics

τ1

τ2

τ3

20 msec

40 msec

100 msec

Servers

100 msec

150 msec

350 msec

20 msec

Data Server

2 msec

10 msec

Comm Server

10 msec

5 msec

Emergency
50 msec

Deadline 6 msec
after arrival

2 msec

Routine
40 msec

Desired response
20 msec average

τ2’s deadline is 20 msec before the end of each period
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