
Carnegie Mellon University
Software Engineering Institute

Introduction

Rate Monotonic Analysis
Introduction

Periodic tasks

Extending basic theory

Synchronization and priority inversion

Aperiodic servers

Case study: BSY-1 Trainer

1

Carnegie Mellon University

Software

Engineering

Institute

Introduction

Purpose of Tutorial

Introduce rate monotonic analysis

Explain how to perform the analysis

Give some examples of usage

Convince you it is useful

2

Carnegie Mellon University

Software

Engineering

Institute

Introduction

Tutorial Format

Lecture

Group exercises

Case study

Questions welcome anytime

3

Carnegie Mellon University

Software

Engineering

Institute

Introduction

RMARTS Project

Originally called Real-Time Scheduling in Ada Project
(RTSIA).

• focused on rate monotonic scheduling theory
• recognized strength of theory was in analysis

Rate Monotonic Analysis for Real-Time Systems
(RMARTS)

• focused on analysis supported by (RMS) theory
• analysis of designs regardless of language or

scheduling approach used

Project focused initially on uniprocessor systems.

Work continues in distributed processing systems.

4

Carnegie Mellon University

Software

Engineering

Institute

Introduction

Real-Time Systems

Timing requirements
• meeting deadlines

Periodic and aperiodic tasks

Shared resources

Interrupts

5

Carnegie Mellon University

Software

Engineering

Institute

Introduction

What’s Important in Real-Time

Criteria for real-time systems differ from that for time-
sharing systems.

•

schedulability

 is the ability of tasks to meet all hard deadlines

•

latency

 is the worst-case system response time to events

•

stability

 in overload means the system meets critical deadlines even if
all deadlines cannot be met

Time-Sharing
Systems

Real-Time
Systems

Capacity High throughput Schedulability
Responsiveness Fast average

response
Ensured worst-
case latency

Overload Fairness Stability

6

Carnegie Mellon University

Software

Engineering

Institute

Introduction

Scheduling Policies

CPU scheduling policy: a rule to select task to run next
• cyclic executive
• rate monotonic/deadline monotonic
• earliest deadline first
• least laxity first

Assume preemptive, priority scheduling of tasks
• analyze effects of non-preemption later

7

Carnegie Mellon University

Software

Engineering

Institute

Introduction

Rate Monotonic Scheduling (RMS)

Priorities of periodic tasks are based on their rates:
highest rate gets highest priority.

Theoretical basis
• optimal fixed scheduling policy (when deadlines are

at end of period)
• analytic formulas to check schedulability

Must distinguish between scheduling and analysis
• rate monotonic scheduling forms the basis for rate

monotonic analysis
• however, we consider later how to analyze systems

in which rate monotonic scheduling is not used
• any scheduling approach may be used, but all real-

time systems should be analyzed for timing

8

Carnegie Mellon University

Software

Engineering

Institute

Introduction

Rate Monotonic Analysis (RMA)

Rate monotonic analysis is a method for analyzing sets
of real-time tasks.

Basic theory applies only to independent, periodic
tasks, but has been extended to address

• priority inversion
• task interactions
• aperiodic tasks

Focus is on RMA, not RMS.

9

Carnegie Mellon University

Software

Engineering

Institute

Introduction

Why Are Deadlines Missed?

For a given task, consider
•

preemption

: time waiting for higher priority tasks
•

execution

: time to do its own work
•

blocking

: time delayed by lower priority tasks

The task is

schedulable

 if the sum of its preemption,
execution, and blocking is less than its deadline.

Focus: identify the biggest hits among the three and
reduce, as needed, to achieve schedulability

10

Carnegie Mellon University

Software

Engineering

Institute

Introduction

Rate Monotonic Theory - Experience

IBM Systems Integration Division delivered a
“schedulable” real-time network.

Theory used successfully to improve performance of
IBM BSY-1 Trainer.

Incorporated into IEEE FutureBus+ standard

Adopted by NASA Space Station Program

European Space Agency requires as baseline theory.

Supported in part by Ada vendors

11

Carnegie Mellon University

Software

Engineering

Institute

Introduction

Rate Monotonic Analysis - Products

Journal articles (e.g.,

IEEE Computer

, Hot Topics)

Videotape from SEI

Courses from Telos and Tri-Pacific

A Practitioner’s Handbook for Real-Time Analysis:
Guide to Rate Monotonic Analysis for Real-Time
Systems

from Kluwer

CASE tools from Introspect and Tri-Pacific

Operating systems and runtimes from Alsys, DDC-I,
Lynx, Sun, Verdix and Wind River

Standards: Futurebus+, POSIX, Ada 9X

12

Carnegie Mellon University

Software

Engineering

Institute

Introduction

Summary

Real-time goals are: fast response, guaranteed
deadlines, and stability in overload.

Any scheduling approach may be used, but all real-time
systems should be analyzed for timing.

Rate monotonic analysis
• based on rate monotonic scheduling theory
• analytic formulas to determine schedulability
• framework for reasoning about system timing

behavior
• separation of timing and functional concerns

Provides an engineering basis for designing real-time
systems

13

Carnegie Mellon University

Software

Engineering

Institute

Introduction

Plan for Tutorial

Present basic theory for periodic task sets

Extend basic theory to include
• context switch overhead
• preperiod deadlines
• interrupts

Consider task interactions:
• priority inversion
• synchronization protocols (time allowing)

Extend theory to aperiodic tasks:
• sporadic servers (time allowing)

Present BSY-1 Trainer case study

14

Carnegie Mellon University

Software

Engineering

Institute

Introduction

A Sample Problem
Periodics Aperiodics

τ1

τ2

τ3

20 msec

40 msec

100 msec

Servers

100 msec

150 msec

350 msec

20 msec

Data Server

2 msec

10 msec

Comm Server

10 msec

5 msec

Emergency
50 msec

Deadline 6 msec
after arrival

2 msec

Routine
40 msec

Desired response
20 msec average

τ2’s deadline is 20 msec before the end of each period

15

