

Rate Monotonic Analysis

Introduction

Periodic tasks

Extending basic theory

Synchronization and priority inversion

Aperiodic servers

Case Study: BSY-1 Trainer

A Sample Problem - Periodics

 τ_2 's deadline is 20 msec before the end of each period.

Concepts and Definitions - Periodics

Periodic task

- initiated at fixed intervals
- must finish before start of next cycle

Task's CPU utilization: $U_i = \frac{C_i}{T_i}$

- C_i = compute time (execution time) for task τ_i
- T_i = period of task τ_i

CPU utilization for a set of tasks:

$$\boldsymbol{U} = \boldsymbol{U}_1 + \boldsymbol{U}_2 + \ldots + \boldsymbol{U}_n$$

Example of Priority Assignment

Semantic-Based Priority Assignment

Policy-Based Priority Assignment

Schedulability: UB Test

Utilization bound(UB) test: a set of *n* independent periodic tasks scheduled by the rate monotonic algorithm will always meet its deadlines, for all task phasings, if

$$\frac{C_1}{T_1} + \dots + \frac{C_n}{T_n} \le U(n) = n (2^{1/n} - 1)$$

U(1) = 1.0	U(4) = 0.756	U(7) = 0.728
U(2) = 0.828	U(5) = 0.743	U(8) = 0.724
U(3) = 0.779	U(6) = 0.734	U(9) = 0.720

For harmonic task sets, the utilization bound is U(n)=1.00 for all *n*.

Note: UB test = Techniques 1 and 2 in handbook.

Sample Problem: Applying UB Test

	С	Τ	U
Task τ_1 :	20	100	0.200
Task τ ₂ :	40	150	0.267
Task τ_3 :	100	350	0.286

Total utilization is .200 + .267 + .286 = .753 < U(3) = .779

The periodic tasks in the sample problem are schedulable according to the UB test.

Timeline for Sample Problem

Exercise: Applying the UB Test

Given:

Task	С	T	U
τ_1	1	4	
τ2	2	6	
τ_3	1	10	

- a. What is total utilization?
- b. Is the task set schedulable?
- c. Draw the timeline.
- d. What is the total utilization if $C_3 = 2$?

Toward a More Precise Test

UB test has three possible outcomes:

 $0 \le U \le U(n) \implies Success$

 $U(n) < U \le 1.00 \Rightarrow Inconclusive$

 $1.00 < U \Rightarrow Overload$

UB test is conservative.

A more precise test can be applied.

Schedulability: RT Test

Theorem: for a set of independent, periodic tasks, if each task meets its first deadline, with worst-case task phasing, the deadline will always be met.

Response time (RT) test: let a_n = response time of task *i*. a_n may be computed by the following iterative formula:

$$a_{n+1} = C_i + \sum_{j=1}^{i-1} \left[\frac{a_n}{T_j} \right] C_j$$
 where $a_0 = \sum_{j=1}^{i} C_j$

Test terminates when $a_{n+1} = a_n$.

Task *i* is schedulable if its response time is before its deadline: $a_n \leq T_i$

Example: Applying RT Test -1

Taking the sample problem, we increase the compute time of τ_1 from 20 to 40; is the task set still schedulable?

Utilization of first two tasks: 0.667 < U(2) = 0.828

• first two tasks are schedulable by UB test

Utilization of all three tasks: 0.953 > U(3) = 0.779

- UB test is inconclusive
- need to apply RT test

Example: Applying RT Test -2 Use RT test to determine if τ_3 meets its first deadline: i = 3

$$a_0 = \sum_{j=1}^{3} C_j = C_1 + C_2 + C_3 = 40 + 40 + 100 = 180$$

$${}_{1} = C_{i} + \sum_{j=1}^{i-1} \left[\frac{a_{0}}{T_{j}} \right] C_{j} = C_{3} + \sum_{j=1}^{2} \left[\frac{a_{0}}{T_{j}} \right] C_{j}$$

$$= 100 + \left\lceil \frac{180}{100} \right\rceil (40) + \left\lceil \frac{180}{150} \right\rceil (40) = 100 + 80 + 80 = 260$$

Example: Applying the RT Test -3

$$= C_{3} + \sum_{j=1}^{2} \left[\frac{a_{1}}{T_{j}} \right] C_{j} = 100 + \left[\frac{260}{100} \right] (40) + \left[\frac{260}{150} \right] (40) = 30$$
$$= C_{3} + \sum_{j=1}^{2} \left[\frac{a_{2}}{T_{j}} \right] C_{j} = 100 + \left[\frac{300}{100} \right] (40) + \left[\frac{300}{150} \right] (40) = 30$$

$$a_3 = a_2 = 300$$
 Done!

Task τ_3 is schedulable using RT test.

$$a_3 = 300 < T = 350$$

Timeline for Example

Exercise: Applying RT Test

Task τ_1 : $C_1 = 1$ $T_1 = 4$

- Task τ_2 : $C_2 = 2$ $T_2 = 6$
- Task τ_3 : $C_3 = 2$ $T_3 = 10$
- a) Apply UB test
- b) Draw timeline
- c) Apply RT Test

Exercise: Worksheet

Summary

UB test is simple but conservative.

RT test is more exact but also more complicated.

To this point, UB and RT tests share the same limitations:

- all tasks run on a single processor
- all tasks are periodic and noninteracting
- deadlines are always at the end of the period
- there are no interrupts
- rate monotonic priorities are assigned
- there is zero context switch overhead
- tasks do not suspend themselves