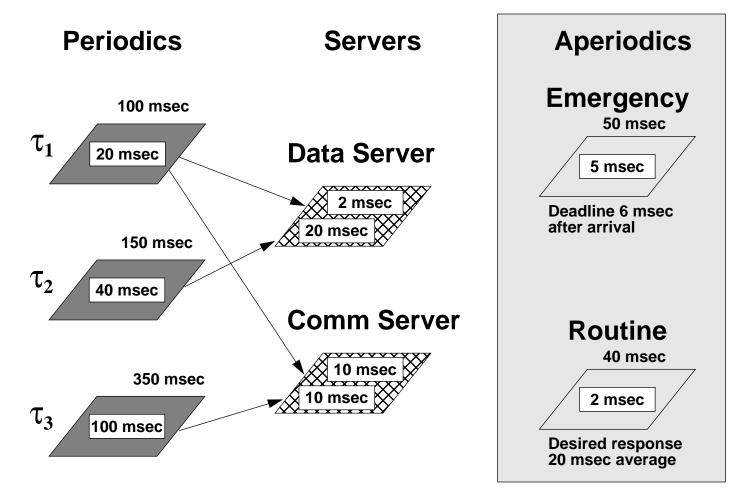


Rate Monotonic Analysis

Introduction

Periodic tasks

Extending basic theory


Synchronization and priority inversion

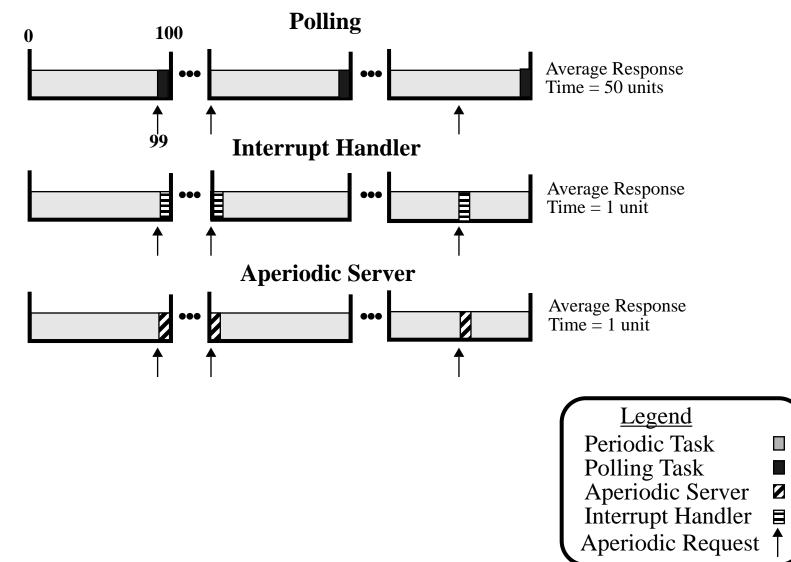
Aperiodic servers

Case study: BSY-1 Trainer

Sample Problem: Aperiodics

 τ_2 's deadline is 20 msec before the end of each period.

Concepts and Definitions


Aperiodic task: runs at unpredictable intervals

Aperiodic deadline:

- hard, minimum interarrival time
- soft, best average response time

Scheduling Aperiodic Tasks

Aperiodic Servers

Can be compared to periodic tasks:

- fixed execution budget
- replenishment interval (period)

Priority adjusted to meet requirements


Sporadic Server (SS)

Modeled as periodic tasks:

- fixed execution budget (C)
- replenishment interval (T)

Priority adjusted to meet requirements

Replenishment occurs one "period" after start of use.

Sample Problem: Aperiodics

The sample problem has the following requirements:

- emergency event:
 - 5 msec of work
 - arrives every 50 msec, worst-case
 - hard deadline 6 msec after arrival
- routine event:
 - 2 msec of work on average
 - arrives every 40 msec on average
 - desired average response of 20 msec after arrival

Sample Problem: Sporadic Servers

Emergency server (ES); for minimum response:

- set execution budget to processing time: *C* = 5
- set replenishment interval to minimum interarrival time: T = 50

Routine server (RS); for average response:

- set execution budget to processing time: C = 2
- use queueing theory to determine required replenishment interval, *T*

Then assign priorities based on periods, T_i , of tasks.

Routine Server Period Using M/D/1 queueing approximation:

$$W = \frac{\frac{(T_R)^2}{I}}{2\left(1 - \frac{T_R}{I}\right)} + C_R$$

I = average interarrival time between events

W = average response time

C_R = capacity of sporadic server = processing time

T_R = required sporadic server replenishment period

Routine Server Budget

Computing server replenishment interval:

$$T_R = (C_R - W) + \sqrt{(W - C_R) (W - C_R + 2I)}$$

$$T_R = (2 - 20) + \sqrt{(20 - 2) (20 - 2 + 80)}$$
$$T_R = 24$$

Note: For more details, see RMA handbook.

Sample Problem: Schedulability Analysis (BIP)

The task set is now:

Task	Period	Execution Time	Priority	Blocking Delays	Deadline
$ au_{E}$	50	5	Very High	0	6
$ au_{R}$	24	2	High	0	24
τ_1	100	20	Medium	20	100
τ_2	150	40	Low	10	150
τ_{3}	350	100	Very Low	0	350

Sample Problem: Schedulability Analysis

Using the RT test, worst-case response times are

- $\tau_{\rm E}$: 5 ms
- τ_R: 7 ms
- τ₁: 56 ms
- τ₂: 88 ms
- τ₃: 296 ms

All requirements for sample problem are satisfied.