
Tunnels ProblemTunnels ProblemTunnels Problem
Programming Puzzles and CompetitionsProgramming Puzzles and Competitions

CIS 4900 / 5920CIS 4900 / 5920
Spring 2009Spring 2009

Outline

• A problem from ACM ICPC’07
• An example of a Min Cut problem
• Also uses an adaptation of the

dynamic programming scheme of the
Floyd-Warshall algorithm

Tunnels Problem

• Spy is inside underground complex.
• Rooms are connected by point-to-point

tunnels, plus tunnels to the outside.
• Spy wants to escape.
• We can track him and set off explosions

that collapse tunnels.
• We need a strategy that will prevent him

from escaping but destroy the smallest
number of tunnels.

* From 2007 ACM ICPC contest

Example 1

4 6
1 2
1 3
2 4
3 4
4 0
4 0

14

3

2

0

EXIT START

Example 1

4 6
1 2
1 3
2 4
3 4
4 0
4 0

14

3

2

0

EXIT START

Example 1

4 6
1 2
1 3
2 4
3 4
4 0
4 0

14

3

2

0

EXIT START

Example 2

4 6
1 2
1 3
1 4
2 0
3 0
4 0

0

2

4

3 1

EXIT START

MinCut Problem
Cut = partition of a graph into two parts: S

contains the designated “source” node s
and T contains the “target” node t.

Cut size

Min Cut = minimum-size cut with given
source and target nodes.

Is this a min-cut problem?

4 6
1 2
1 3
1 4
2 0
3 0
4 0

0

2

4

3 1
T

S

No, it’s not quite that simple

4 6
1 2
1 3
1 4
2 0
3 0
4 0

0

2

4

3 1

EXIT START

but this is a min-cut with source 2

We need to consider all sources
that lie between 1 and 0

4 6
1 2
1 3
1 4
2 0
3 0
4 0

0

2

4

3 1

EXIT START

Need to consider duplicate edges

4 6
1 2
1 3
1 4
2 0
2 0
3 0
4 0

0

2

4

3 1
T

S

Lesson: Read the description
carefully. Don’t rely on the provided
test cases.

Use integer-weighted edges

4 6
1 2
1 3
1 4
2 0
2 0
3 0
4 0

0

2

4

3 1
T

S
3

Strategy

1. Compute mincut size minCut(x) for every source
node x.

2. Compute maxMinMinCut(s,t) as the maximum, over
all paths p from s to t, of the minimum value of
minCut(v) over all the nodes v along the path p.

3. If minCut(s) ≤ maxMinMinCut(s,t), blow up minCut(s)
tunnels and block the spy where he is.

4. Otherwise, delay the decision and when the spy
moves to another room, repeat from 2 with the
new room as s.

Example

t s

3
2

All-sources MinCut

t s3

2
1

4

2

3

3

3

3
2

2

maxMinMinCost (s,t) = 2

t s3

2
1

4

2

3

3

3

3
2

2

Application of the strategy

t s3

2
1

4

2

3

3

3

3
2

2

Application of the strategy

t s3

2
1

4

2

3

3

3

3
2

2

Another case

t s3

2
1

4

2

3

3

3

3
2

2

Another case

t s3

2
1

4

2

3

3

3

3
2

2

Another case, continued

t s3

2
1

4

2

3

3

3

3
2

2

How to compute minCost(s)?

Review:

Ford-Fulkerson Algorithm

• Start with zero flow
• Repeat until convergence:

– Find an augmenting path, from s to t
along which we can push more flow

– Augment flow along this path

See separate notes on this algorithm.

Ford-Fulkerson Algorithm

for (each edge (u,v) є E[G])
f[u][v] = f[v][u] = 0;

while (∃ path p from s to t in Gf) {
cf(p) = min {cf(u,v) | (u,v) є p};
for (each edge (u,v) є p) {

f[u][v] = f[u][v] + cf(p)
f[v][u] = -f[u][v]

}
}

O(E)

O(E)

O(E x f*)

f* = maximum flow, assuming integer flows,
since each iteration increases flow by at least one unit

int findMaxFlow (int s, int t) {
int result = 0;
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++) flow[i][j] = 0;
for (;;) {

int Increment = findAugmentingPath(s, t);
if (Increment == 0) return result;
result += capTo[t];
int v = t, u;
while (v != s) { // augment flow along path

u = prev[v];
flow[u][v] += capTo[t];
flow[v][u] -= capTo[t];
v = u;

}}}

static int findAugmentingPath(int s, int t) {
for (int i = 0; i < n; i++) {

prev[i] = -1;
capTo[i] = Integer.MAX_VALUE;}

int first = 0, last = 0;
queue[last++] = s; prev[s] = -2; // s visited already
while (first != last) {

int u = queue[last--];
for (int v = 0; v < n; v++) {

if (a[u][v] > 0) {
int edgeCap = a[u][v] - flow[u][v];
if ((prev[v] == -1) && (edgeCap > 0)) {

capTo[v] = Math.min(capTo[u], edgeCap);
prev[v] = u;
if (v == t) return capTo[v];
queue[last++] = v;

}}}}
return 0;

}

This uses depth-first search.

How to compute maxMinMinCost(u,v)?

Next:

minCut[p] = min {minCut[v] : v є p, v ≠ t}

maxMinMinCut[i][j] = x iff
1. ∃ path p from i to j such that

minCut[p] = x, and
2. ∀ path p from i to j minCut[p] ≤ x

t s3

2
1

4

2

3

3

3

3
2

2

i j

k

maxMinMinCut[i][j]

maxMinMinCut[i][k] maxMinMinCut[k,j]

paths that go
though only
nodes 0..k-1

Analogy to shortest path

i j

k

maxMinMinCut[i][j]

maxMinMinCut[i][k] maxMinMinCut[k,j]

paths that go
though only
nodes 0..k-1

for k=0, maxMinMinCut[i,j] = minCut[j].

for k>0 maxMinMinCut[i,j] = minCut[j].

static void findMaxMinMinCut() {
int ij, ik, kj, kk;
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
if (a[i][j] > 0) maxMinMinCut[i][j] = minCut[j];

for (int k = 0; k < n; k++)
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++) {
ij = maxMinMinCut[i][j];
ik = maxMinMinCut[i][k];
kj = maxMinMinCut[k][j];
if ((ik > 0) && (kj > 0)) {

kk = Math.min (ik, kj);
if (kk > ij) maxMinMinCut[i][j] = kk;

}
}

}

This uses depth-first search.

www.cs.fsu.edu/~baker/pc/tunnels/Tunnels.java

Full program:

