A

Tunnels Problem

Programming Puzzles and Competitions

CI1S 4900 7/ 5920
Spring 2009 %




Outline

e A problem from ACM ICPC'QO7/
 An example of a Min Cut problem

e Also uses an adaptation of the
dynamic programming scheme of the
Floyd-Warshall algorithm

—~

A@‘

|




Tunnels Problem

Spy Is Inside underground complex.

Rooms are connected by point-to-point
tunnels, plus tunnels to the outside.

Spy wants to escape.

We can track him and set off explosions
that collapse tunnels.

We need a strategy that will prevent him
from escaping but destroy the smallest
number of tunnels.

* From 2007 ACM ICPC contest




46
12
13
24
34
40
40

Example 1

EXIT

START




46
12
13
24
34
40
40

Example 1

EXIT

START




46
12
13
24
34
40
40

Example 1

EXIT

START




46
12
13
14
20
30
40

Example 2




MinCut Problem

Cut = partition of a graph into two parts: S
contains the designated “source” node s
and T contains the “target” node t.

Cut size c(S,T) = 3 c(u, v)
neSwel |(uw)el
Min Cut = minimum-size cut with given
source and target nodes.




Is this a min-cut problem?




No, It's not quite that simple

46
12
13
14
20
30
40

but this is a min-cut with source 2




46
12
13
14
20
30
40

We need to consider all sources
that lie between 1 and O




Need to consider duplicate edges

46
12
13
14
20
20
30
40

Lesson: Read the description
carefully. Don’t rely on the provided
test cases.




46
12
13
14
20
20
30
40

Use integer-weighted edges




Strategy

Compute mincut size minCut(x) for every source
node X.

Compute maxMinMinCut(s,t) as the maximum, over
all paths p from s to t, of the minimum value of
minCut(v) over all the nodes v along the path p.

I T minCut(s) < maxMinMinCut(s,t), blow up minCut(s)
tunnels and block the spy where he is.
Otherwise, delay the decision and when the spy

moves to another room, repeat from 2 with the
new room as s.







All-sources MinCut




maxMinMinCost (s,t) = 2




Application of the strategy




Application of the strategy




Another case

1 S
>\2 <
\
N
\
4 )
3 e e
2 2
t ’ .,3
// 3




Another case




Another case, continued




Review:

How to compute minCost(s)?

A@‘

|




Ford-Fulkerson Algorithm

e Start with zero flow

e Repeat until convergence.:

— Find an augmenting path, from s to t
along which we can push more flow

— Augment flow along this path

—~

A@‘

|

See separate notes on this algorithm.




Ford-Fulkerson Algorithm

for (each edge (u,v) € E[G]) }

f[u][v] = FV[u] = O; o

while (3 path p from s to tin Gy) { } O(E)
C¢(p) = min {C¢(u,v) | (u,v) € p};

for (each edge (u,v) € p) { > OEx )
Flullv] = Tu][v] * c«(p)
flv][u] = -flu][v] J

}

}

A" 2> ) = maximum flow, assuming integer flows,
~ @ since each iteration increases flow by at least one unit
\
\




Int findMaxFlow (int s, Int t) {
Int result = 0;
for (int 1 =0; 1<n; I+4)
for (intj =0; j<n; j++) Flow[i][j] = O;
for (3;) {
Int Increment = findAugmentingPath(s, t);
If (Increment == 0) return result;
result += capTo[t];

Intv =1t, u;
while (v !=s) { // augment flow along path
u = prev|vj;

flow[u][v] += capTo[t];
flow[v][u] -= capTo[t];
V = U,




static int findAugmentingPath(int s, int t) {
for (int1=0;1<n;i++) {
prev[i] = -1;
capTo[i] = Integer.MAX VALUE;}
int first =0, last = O;
queue[last++] = s; prev[s] = -2; // s visited already
while (first != last) {
int u = queueflast--J;
for (intv=0; v<n; v++) {
It (alu][v] > 0) {
int edgeCap = afu][v] - flow[u][V];
If ((prev[v] == -1) && (edgeCap > 0)) {
capTo[v] = Math.min(capTo[u], edgeCap);
prev[v] = u;
If (v==1) return capTo|v];
queue[last++] = v;

1

return O;

This uses depth-first search.




Next:

How to compute maxMinMinCost(u,v)?




minCut[p] = min {minCut|v] :vep, Vv % t}

maxMinMinCut[i][j] = x Iff
1. d path p fromi to j such that
minCut[p] = X, and
2. YV path p from i to ] minCut[p] ¢ x

1

4




Analogy to shortest path

maxMinMinCuti[J] 0

paths that go

though only
nodes 0..k-1
maxMinMinCutj[k] '




maxMinMinCuti[J] 0

paths that go
though only
nodes 0..k-1

jaxMinMinCut[k,j]

maxmMinMinG

for k=0, maxMinMinCutfi f] = minCutfj].

for k>0 maxMinMinCutfi j] = minCutfj].




static void findMaxMinMinCut() {
nt iy, ik, kf, kk;
for (inti=0;i<n, I++)
for (intj =0, J<n, J++)
If @filfj] > 0) maxMinMinCutfil[j] = minCutfj],
for (int k = O; k <n, k++)
for (int1=0;1<n, I++)
for (inty=0;y<n J++) {
If = maxMinMinCutfi][J];
Ik = maxMinMinCutfi][k];
Kk = maxMinMinCut[k][]],
If((tk>0) &k (kf > 0)) {
kk = Math.min (ik, kf),
IT (kk > i) maxMinMinCutfi][J] = kk;

This uses depth-first search.




Full program.

www.cs.fsu.edu/~baker/pc/tunnels/Tunnels.java

"‘

A@‘




