
What to Make of Multicore Processors

for Reliable Real-Time Systems?

Technical Report TR-100401

Theodore P. Baker∗

Dept. of Computer Science
Florida State University

Tallahassee FL 32306-4530, USA
e-mail: baker@cs.fsu.edu

4 April 2010

Abstract

Now that multicore microprocessors have become a commodity, it is natural to think about employing
them in all kinds of computing, including high-reliability embedded real-time systems. Appealing aspects
of this development include the ability to process more instructions per second and more instructions per
watt. However, not all problems are amenable to parallel decomposition, and for those that are, designing
a correct scalable solution can be difficult. If there are deadlines or other hard timing constraints the
difficulty becomes much greater.

This paper reviews some of what is known about multiprocessor scheduling of task systems with dead-
lines, including recent advances in the analysis of arbitrary sporadic task systems under fixed-priority and
earliest-deadline first scheduling polices. It also examines critically the foundations of these theoretical
results, including assumptions about task independence and worst-case execution time estimates, with a
view toward their practical applicability.

1 Introduction

Over the past decade, the microprocessor industry has been moving increasingly toward symmetric multicore
architectures. The introduction of the AMD dual-core Opteron, in 2004, was followed closely by the Intel
dual-core Pentium D and the IBM dual-core Power5 processor. Increases in feature density predicted by
Moore’s Law appear to be sustainable for at least a few more generations, but increases in processing speed
do not. Pipelining and speculative execution appear to have reached a point of diminishing returns. Clock
rates also seem to have reached a limit, as power consumption increases at approximately the cube of clock
frequency. Manufacturers have decided that the way to extract improvements in performance from further
advances in miniaturization is through the use of multiple processors of moderate power, executing in parallel
[38]. Two- and four-core processors are already a commodity, eight-core processors have been delivered, and
“terra-scale” computing is predicted [30].

What will we make of these new processors? This question should be on the minds of developers of
every kind of software. Appealing prospects include the ability to process more instructions per second and
more instructions per watt. However, not all problems are amenable to parallel decomposition, and for those
that are, designing a correct scalable solution can be difficult. If there are deadlines or other hard timing
constraints the difficulty becomes much greater.

This paper seeks to convey an appreciation of the gap that exists between what is known in theory about
the problem of scheduling ideal multiprocessors to meet deadlines, and the behaviors of actual multicore
processors. It begins with a sampling of theoretical research that appears as if it should be applicable to
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this problem. It then questions the foundations of these theoretical results, including assumptions about
processor architecture, task independence and worst-case execution time estimates, with respect to their
applicability to current and future generations of multicore processors in high-reliability real-time systems.
It finally expands the focus to consider the directions that programming languages and software design
methodologies may need to go in order to better exploit multicore technology.

2 Scheduling Theory Foundations

Scheduling theory is based on abstract models of workloads and processors. A great many different models
have been studied. This paper focuses on just one type of workload model and one type of processor model.

Task workload models. In real-time scheduling theory, a task is an abstraction for a source of a potentially
infinite sequence of jobs. A job is a schedulable computation with a finite execution time. Other parameters
of each job include a release time and a deadline. Each task has a set of scheduling parameters that constrain
the execution times, arrival times, and deadlines of the sequences of jobs that it may generate. The jobs of
each task are required to be executed serially, using only one processor at a time.

A task in scheduling theory may be used to model an execution of a sequential thread of control, such
as an Ada task1, in software. Jobs correspond to bursts of computation between wait states. The execution
time of a job is the amount of processor time used during one such burst of computation, the release time
is the arrival time of the event that triggers the transition from waiting to competing for execution, and the
completion time is the time of the next transition to a wait state.

This paper focuses primarily on periodic and sporadic task systems. A sporadic task system is a set
τ = {τ1, τ2, . . . , τn} of tasks, each characterized by a triple (pi, ei, di) where: pi is the minimum separation
between release times of the jobs of the task, also known as the period of the task; ei is an upper bound on
the execution time for each job of the task, also known as the worst-case execution time (WCET); and di
is the relative deadline, which is the length of the scheduling window of each job. A periodic task system
is said to have implicit deadlines if di = pi for every task, constrained deadlines if di ≤ pi, and arbitrary
deadlines if there is no such constraint. A periodic task system is like a sporadic task system except that the
separation between release times of τi must be equal to pi. Additional parameters are sometimes specified,
such as the release times of the first job of each task, and an upper bound on release time jitter.

Real systems often do not fit the periodic or sporadic model, or have any other sufficient constraints on the
patterns of arrivals and execution times of jobs to support schedulability analysis. One way of accommodating
such workloads is to queue their jobs to be executed by a server task. The server task is scheduled according
to an algorithm that limits the amount of processor time that the server can consume within any given time
interval, by imposing a budget. In effect, the natural job boundaries of the aperiodic workload are redrawn
by the server scheduling mechanism, which ends the current “job” of the server whenever it reaches the
limit of its budget, and releases a new “job” whenever the server’s budget is extended. Sporadic Server
[44] and Constant Bandwidth Server [1] are examples of such bandwidth-limiting algorithms, which allow the
worst-case behavior of a server to be modeled by a sporadic task in most contexts.

Identical multiprocessor models. This paper focuses on multiprocessor platforms with a set of identical
processors and shared memory with uniform access speed. Every job is presumed to be executable on any
processor, with no difference in worst-case execution time between processors.

The above models leave out many ugly details of real systems, including release time jitter and overheads
such as context-switches and migrations of tasks between processors, in order to make analysis more tractable.
When applying the theory, one must add sufficient margins to the task parameter values to account for such
differences between reality and the model2.

1This overloading of the word “task” can lead to erroneous reasoning, since not all Ada tasks can be modeled as scheduling
theory tasks. In this paper “task” always means a scheduling theory task, except in the phrase “Ada task”. “Thread” is used
for Ada tasks and other similar threads of control.

2Narrowing these margins would appear to require accounting explicitly for circular dependences between actual job execution
times and decisions made by on-line schedulers. A critical concern in the application of any such analysis would be potential
instability under execution time variations caused by factors other than the scheduler.
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3 Scheduling Algorithms and Tests

A schedule is an assignment of jobs to processors, varying over time. A schedule is feasible if it satisfies all the
constraints of the workload, including job deadlines. A collection of jobs is said to be feasible if there exists
a feasible schedule for it. For practical purposes schedules must be computable by a scheduling algorithm.
A particular workload is said be schedulable by a given algorithm if the algorithm always finds a feasible
schedule.

Scheduling algorithms can be dichotomized as static vs. dynamic, off-line vs. on-line, and preemptive vs.
nonpreemptive. Priority-based on-line schedulers are classified according to how priorities are allowed to vary.
Rate Monotonic (rm) scheduling, in which tasks with shorter periods are assigned higher priorities, is an
example of a fixed-task-priority (ftp) scheduling algorithm. Earliest-deadline-first scheduling is an example
of a fixed-job-priority (fjp) algorithm. pd2[2] is an example of a dynamic priority algorithm. Within this
paper, all on-line scheduling algorithms are assumed to be applied in preemptive mode.

A schedulability test tells whether a particular workload is schedulable by a given algorithm. A schedu-
lability test is sufficient for a given class of workload and processor models if passing the test guarantees the
workload is schedulable. It is exact if it also only fails when there is some sequence of jobs consistent with
the workload model that is not schedulable.

One of the subtleties of multiprocessors is that certain intuitively appealing scheduling algorithms are
subject to “anomalies”, in which a schedulable system becomes unschedulable because of some apparently
harmless change, such as earlier-than-expected completion of a job. A good scheduling algorithm should
continue to schedule a task system satisfactorily if actual tasks behave better than the specifications under
which the system was validated, or if the specifications of tasks are changed in a direction that reduces
the overall workload. This property, named “sustainability” in [14], has been shown to hold for some
multiprocessor scheduling algorithms and tests, but not for others (e.g. [9]).

Anyone making a choice of scheduling algorithm for an application should consider several factors, in-
cluding: (1) sufficient generality to cover the variety of workload types expected in the application; (2)
flexibility to handle the changes in task specifications that are expected over the lifetime of the application;
(3) compatibility with the operating system that will be used; (4) run-time determinism or repeatability,
as an adjunct of system testability and reliability; (5) sustainability of the algorithm and the available
schedulability tests for it; (6) effectiveness of the scheduling algorithm in scheduling jobs to complete within
deadlines; (7) effectiveness of the available schedulability tests. Studies of real-time scheduling theory mostly
focus on the last two issues, but for practical purposes it is important to consider all of them. It is also
important to consider the last two as a pair, since a scheduling algorithm can only be trusted to schedule a
particular task system correctly if it has been verified to do so.

There are several empirical ways to evaluate multiprocessor scheduling algorithms and tests. One is to
compute the success ratio on large numbers of randomly generated task systems (e.g. [8]). This can provide
useful information if the characteristics of the task sets considered are similar to those expected for a given
class of applications. It may be the only way to compare some combinations of scheduling algorithms and
schedulability tests. Such experiments can be especially informative if the task parameter values used in the
tests are adjusted to take into account the measured overheads of an actual implementation (e.g. [22])3.

Analytic ways to evaluate scheduling algorithms and tests include “speedup factors” (e.g. [12]), which
are out of scope for the present paper, and utilization bounds. The utilization ui of a task τi is the ratio ei/pi
of its execution time to its period. A utilization bound for a scheduling policy is a function β such that each
task system τ is guaranteed to be schedulable if usum(τ) <= β(τ), where usum is the sum of the utilizations
of all the tasks in the system. The bound is tight if there are unschedulable task systems with usum(τ) only
infinitesimally larger than β(τ).

A density bound is an extension of the notion of utilization bound, for task systems that have other than
implicit deadlines (di 6= pi). The definition of density bound is the same as utilization bound, except that
the utilization ui is replaced by the density, defined as δi

def= ei/min(di, pi).
This paper uses utilization bounds and density bounds to provide insight into the relative effectiveness

of various methods of multiprocessor scheduling, not because they tell the whole story, but because they can
3Running schedulability tests on random task sets is not the same as simulating actual task system executions. The latter

is not a valid way to verify schedulability for multiprocessor systems since the “critical instant” property (c.f. [34]) no longer
holds.
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be stated concisely, can be compared easily, and there are examples of sufficient schedulability tests.
Care must be taken when interpreting such bounds, since they can be misleading. Both pertain only

to schedulability of worst-case (pathological) examples4. Empirical studies have shown that much higher
utilization levels can be achieved for most task systems.

4 Static Scheduling

Historically, the analysis of scheduling for multiprocessors focused first on static scheduling techniques, in
which a finite schedule is computed off-line. Static scheduling has been studied extensively in the literature
of operations research and discrete mathematics. Although optimal static scheduling is known to be NP-hard
for all but a few simple classes of problems [46], it is still practicable for real-time task systems of moderate
size. Moreover, for practical purposes optimal scheduling is not required; any schedule that satisfies the
application constraints will do.

There is a wealth of theory and published practical experience on static scheduling of multiprocessors.
One representative example is [48], which reports success in optimal multiprocessor scheduling for periodic
systems with deadlines, precedence, and exclusion constraints. A more recent one is [31], which shows how
to approximate optimal scheduling using linear programming.

Static schedules have several virtues. They can handle complex forms of constraints and achieve a high
degree of optimization. Optimizations can be applied to a variety of criteria, including output jitter, power,
and memory. They can eliminate the need for software locking, by scheduling access to shared resources
during non-overlapping time intervals. They can also minimize buffering and dataflow blocking, such as
between producers and consumers. Though static schedules are intrinsically periodic, they can be adapted
to handle sporadic and aperiodic workloads by means of a periodic server. Since the schedule repeats,
behavior observed during a few periods of testing is a valid predictor of behavior over longer periods of
time. Static scheduling may also prove to be a practical necessity for accurate analysis of the effects of
task-dependent interference between processors on WCET.

Static scheduling does have shortcomings, including a tendency to over-allocate processor time, and
fragility with respect to run-time variations in workload and longer-term changes in system specifications.
Static scheduling may be impracticable for systems in which the release times and execution times of jobs
are highly variable or cannot be predicted with confidence. In the single-processor domain, the limitations
of static scheduling have led to widespread adoption of priority-based on-line scheduling algorithms.

However, where the workload is sufficiently predictable, static scheduling may still be the best way to
achieve reliable high performance from a multicore processor. Moreover, with multiple cores one can apply
static scheduling to an appropriate subset of the system functionality, on a subset of the processors, and
apply dynamic scheduling to the rest.

5 Partitioned Dynamic Scheduling

Until recently, partitioned scheduling was widely held to be the only way to use multiprocessors for embedded
real-time systems. It is a very natural and convenient bridge from single-processor dynamic scheduling to a
multiprocessor platform. By assigning each task to one processor, statically, and then applying a dynamic
local scheduling algorithm and schedulability test, one achieves some of the predictability of a static schedule
and some of the flexibility of a dynamic scheduler, without having to develop any new scheduling algorithms
or schedulability tests. Finding a partition that is feasible locally on each processor may be accepted as
a sufficient system-level schedulability test, if the tasks are sufficiently independent. Sustainability of the
schedulability analysis carries over from the single-processor local scheduling algorithm.

Optimal assignment of tasks to processors is a form of bin-packing problem, which is NP-hard, but
optimality is not required. The First-Fit-Decreasing-Utilization partitioning algorithm has been cited as

4Care must also be taken when applying a utilization or density bound outside the constraints of the model for which it has
been proven. Some of the original published proofs only mention periodic task systems. There is a pattern of these analyses
remaining valid for sporadic tasks, because good scheduling algorithms are sustainable under later job release times that do
not violate the sporadic minimum separation constraint. Another pattern is of utilization bounds extending to density bounds.
One should not assume any such extension is valid without checking that it has been proven.

4



being very effective in some publications. However, in practice one would want to use an ordering heuristic
that takes into account addition considerations, including localization of data sharing, balancing data flow
rates between cores, and distributing excess processor capacity among the processors.

Since the allocation of processing resources is forced to be done fixed-size chunks, partitioned scheduling
is generally not work conserving; that is, a processor may be idled while tasks eligible for execution on other
processors are not able to execute. This can result in partitioning failures at low utilization levels, and even
when partitioning is successful the idling of processors can result in longer average-case response times and
lower total system throughput than with global scheduling.

For partitioned preemptive Earliest-Deadline-First (edf) scheduling, a utilization bound of mb1/umax(τ)c+1
b1/umax(τ)c+1

for m processors was derived in [36]. For the unrestricted case where umax(τ) = 1 this reduces to (m+ 1)/2.
The proof is for periodic task systems only. This worst-case utilization bound is tight in the sense that
a scheduling algorithm that does not vary priority within a single job cannot achieve a utilization bound
higher than (m+ 1)/2 on m processors, whether scheduling is partitioned or global. That is easy to see by
considering a set of m+ 1 tasks, each with processor utilization infinitesimally larger than 50% [4].

For partitioned rm, a utilization bound of (n−1)(21/2−1)+(m−n+1)(21/(m−n+1)−1) for m processors
and n tasks was derived in [35]. For large n, this reduces to (m + 1)(21/2 − 1). This result was proven to
be tight for “reasonable” partitioning schemes based on the single-processor rm utilization bound as a test
of schedulability, and the proof has been claimed to extend to all partitioning schemes. The proof is for
periodic task systems only.

Partitioned scheduling can handle periodic and sporadic task sets, and can also handle aperiodic work-
loads scheduled under a bandwidth-limiting server mechanism. Several authors have studied partitioning
algorithms for these more general workload models, but a description of those results does not fit within the
scope of the present paper.

An advantage of partitioned scheduling is that efficient single-processor locking mechanisms such as srp
[5] can be applied for resources that are only shared by tasks on the same processor, and higher-overhead
global locking mechanisms can be reserved for resources shared across processors. Space limitations here
permit only the barest summary of research on protocols for global locks, which is still inconclusive. The most
appropriate locking protocol for global resources will depend on (1) whether task scheduling is partitioned
or global, (2) the priority model, and (3) the length of critical sections. However, a central consideration in
all cases is to minimize idle processor time caused by tasks awaiting global locks. One approach, used by
the Distributed Priority Ceiling Protocol (d-pcp) [40], is to bind each globally shared resource to a single
processor and execute sections on it via remote procedure calls to a high priority server on that processor.
An alternative approach, used by the Multiprocessor Priority Ceiling Protocol (m-pcp) [40], Multiprocessor
Stack Resource Protocol (m-srp)[25], and Flexible Multiprocessor Locking Protocol (fmlp) [20], is to raise
tasks holding global locks to nonpreemptible local priority. It was shown in [37] that using the same priorities
for local scheduling and service order on global locks could be harmful for overall system schedulability, as
compared to service based on tasks’ tolerance for blocking, or even FIFO. The m-srp and fmlp adopt FIFO
service. The fmlp additionally optimizes short-wait locks by using bare spinlocks. The performances of
some of these algorithms in actual implementations on multiprocessors are reported in [21, 41, 26].

Unfortunately, critical sections are not the only kind of blocking that can occur in a real system. Dataflow
blocking can occur, in which one task waits for data or buffer space to be produced by another. This kind of
blocking does not require idling the processor in a single-processor system or with global scheduling, because
whenever one task has to wait for another to perform an action the scheduler can give the processor of
the waiting task to the awaited task. In contrast, if the waiting task and the awaited task are on different
processors, the waiting task’s processor may become idle. This idle time can reduce system throughput
in the short term, which can cause congestion later, resulting in missed deadlines. If care is not taken in
assigning deadlines or priorities across processors, a third task may preempt the awaited task on its processor,
resulting in potentially unbounded blocking. Appropriate buffering can reduce data flow blocking, but the
partitioning algorithm still needs to pay attention to matching average data flow rates across processors.

A partitioning of tasks among processors may be fragile. If the execution time of one task increases,
there is no limit to the range of the potential side effects. Repartitioning and lock protocol changes may be
necessary. The effects may cascade across every processor. Fragility may be reduced by distributing excess
capacity evenly across processors.

While it may seem wasteful to only use 50% of of the theoretical processing capacity of a system, thinking
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in terms of the worst-case utilization bound may not be so bad. Pushing for high utilization of cores on
multicore processors may be just as bad for performance as pushing disk and memory utilization to high
levels on single-processor systems. For reasons explained in Section 8, trying to schedule all processors at
100% capacity is likely to be counter-productive, as job execution times can grow with greater intercore
contention for data paths and memory access. Moreover, idle cores need not necessarily translate to wasted
power.

Partitioned scheduling is easy to implement. The partitioning is done off-line. The on-line component
is low-overhead because of the per-processor task ready-queues, which incur less contention for concurrent
access and can be protected by a lighter-weight locking mechanism than is required to maintain a global
ready-queue.

Test coverage with partitioned scheduling will be better than with a globally scheduled system, because
of the reduction in the number of possible combinations of concurrent task activities on different processors.
Execution times should also be more predictable, for the preceding reason and also because of the absence
of migration events.

6 Task Splitting

An inherent limitation of all partitioned scheduling schemes is that each task must execute entirely on one
processor. This constraint makes optimal partitioning NP-hard, and prevents a pure partitioned scheduling
algorithm from achieving a utilization bound greater than (m+ 1)/2.

Recent research has attacked this limitation using task splitting techniques. These algorithms deviate
from the strict partitioned model by allowing limited planned migration of a few tasks, typically up to m−1
tasks for m processors. The partitioning algorithm assigns tasks to processors in some heuristic order. When
it reaches a point where adding another task to a given processor would cause a local deadline miss it splits
that task in two, assigning a fraction to the given processor that will fit without causing any missed deadlines,
and migrating the remainder to another processor. This approach is able to get past the (m+ 1)/2 limit on
utilization bounds for partitioned fixed-job-priority scheduling.

Several task splitting techniques have been proposed. One noteworthy recent example is [29], which
demonstrates that a partitioned fixed-task-priority (ftp) scheduling algorithm can achieve the utilization
bound mn(21/n−1) on m processors. This is of special interest because it equals the worst-case rm utilization
bound for a single processor. Another recent example is [32], which is based on preemptive edf local
scheduling and obtains a utilization bound of m(4

√
2 − 5) on m processors, or about 65% of the total

processing capacity.
So far, it does not seem that any of these techniques has been tested in an implementation, so there

remain questions about their practicability.

7 Global Scheduling

As an alternative to partitioned scheduling, a dynamic scheduling algorithm may be applied in global mode,
where all tasks compete for execution on all processors. Global dynamic scheduling can be work-conserving,
which can result in better scheduling performance than partitioned scheduling. In fact, there is a very simple
global dynamic scheduling algorithm that can meet all deadlines at utilizations up to 100%.

The key to understanding how to get 100% processor utilization and still meet deadlines with the workload
and processor models described here is to recognize the importance of keeping all processors busy. It is easy
to keep a single processor busy, by never idling the processor if there is work to be done; this can be achieved
without constraining the order in which jobs are executed, and so there is no conflict with executing jobs in
deadline order, and no problem achieving all deadlines up to 100% processor utilization. With more than
one processor, the situation changes. The job execution order can affect the ability to keep all processors
busy. For example, if a dual-processor scheduler has two short jobs and one long job ready, and decides to
execute the short jobs first, it may end up later with one processor idle. The problem is that a single job
cannot use additional processors5. One way to work around this limitation is to split up the job’s execution

5Unless, of course, one breaks out of the task model and codes jobs for parallel execution. This is one of the weaknesses of
the task model, discussed further in Section 9.
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and interleave it serially with other tasks. Suppose the processor time can be split up into small enough units
that each task τi can be assigned a fraction ui of a processor between its release time and its deadline. Such
a scheduler is optimal in the sense of never missing a deadline for a feasible task system, and can achieve
100% utilization without missing deadlines on implicit-deadline periodic task systems.

While this ideal processor sharing model is impracticable to implement, [15] showed that the same
utilization bound can be achieved by a quantum-based time-slicing approximation. A number of variants
of this proportional fair-share (Pfair) scheduling concept have been explored. One variant, called pd2, is
work-conserving and has been shown to be optimal for the scheduling of independent asynchronous implicit-
deadline periodic tasks [2].

A criticism of the Pfair approach is that by slicing time finely it incurs a large scheduling overhead.
Brandenburg et al. [22] performed experiments using an implementation of the pd2 algorithm on a variant
of the Linux operating system kernel using an 8-core Sun “Niagara” processor. They measured the scheduling
overheads on a few examples, and then applied schedulability tests to large numbers of randomly generated
task systems with shared resources and critical sections. Potential dataflow blocking was not taken into
account. The task execution times were adjusted to allow for scheduling overheads, and schedulability tests
were modified to take into account blocking times due to critical sections. The experiments showed that
that pd2 had serious problems with high preemption and migration costs until the scheduler was modified
to stagger the time-slicing points of the processors across the cores, so that quantum expirations no longer
occurred synchronously on all processors. Even with this improvement, pd2 did not seem to perform as well
as partitioned edf, except for systems with tasks near the 50% utilization region (which is known to be
pathological for partitioning algorithms), and without a high degree of global resource sharing. However, it
is difficult to say whether such experiments will accurately predict performance in any particular application.

Global applications of edf and rm were neglected for decades after Dhall [24] showed that the utilization
bound on m processors is 1 (as if the system had only one processor). The proof is a pathological case
involving m low-utilization (light) periodic tasks and one high-utilization (heavy) task with slightly longer
period. Fortunately, closer study of this phenomenon over the past seven years revealed ways of obtaining
much better performance.

A global edf utilization bound of m− (m−1)umax(τ) was derived in [45, 27]. This shows that worst-case
behavior only occurs for large values of the maximum individual task utilization umax. The bound can be
shown to be tight by generalization of the Dhall example. However, it is not an exact schedulablity test,
and other forms of tests have done much better in experiments with random task systems [8]. The global
edf utilization bound extends to a density bound for sporadic task systems with arbitrary deadlines. In this
more general form it has been called the “density test” for global edf schedulability.

For global rm, a utilization bound of m
2 − (m2 − 1)umax(τ) was derived [17]. It also extends to a density

bound.
Variants of edf have been designed with higher utilization bounds for systems with large umax. An

algorithm called edf-us[ζ] gives top priority to jobs of tasks with utilizations above threshold ζ and schedules
jobs of the remaining tasks according to their deadlines [45]. It achieves a utilization bound of (m + 1)/2,
which is tight.

Similar variants of rm have also been proposed. rm-us[ζ] gives higher priority to tasks with utilizations
above ζ [4, 7]. A rm-us utilization bound of m+1

3 is proven in [17]. A tight bound is not known, though [39]
argued that the optimum value of ζ is approximately 0.3748225282.

Another recently discovered ftp priority assignment algorithm, known as sm-us[ζ] and based on ordering
tasks by slack, has been shown to have a utilization bound ofm(2/(3+

√
3)) onm processors, or approximately

38% of the total processing capacity [3].
Despite the low worst-case utilization bounds, fixed-job-priority algorithms have several advantages. They

perform fewer context switches than the Pfair methods, and hence have lower scheduling overhead. They can
achieve more precise control over timing, by using interval timers that are finer grained than the overhead of
quantum-based scheduling methods would permit. In the case of fixed-task-priority, support already exists
in most operating systems, including Linux.

Although the fixed-job-priority (fjp) algorithms do not have any practicable exact schedulability tests6,
there is a steadily growing collection of practicable sufficient-only tests for fjp scheduling policies, including

6The only known exact tests are based on exhaustive exploration of the scheduling state space, are limited to integer time
values, and have unacceptable growth in time and space [10, 28].
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the utilization bounds cited above and a number of more accurate tests that cannot be described within the
space limitations here. Examples for edf include [6, 16, 11, 18] and examples for ftp include [7, 17, 13].
These tests are difficult to compare. They generally cannot be strictly ranked in scheduling effectiveness, in
the sense that there are examples of schedulable task systems that are recognized as schedulable by each test
that are not recognized as schedulable by others. Some definitely appear to be more effective than others, on
the average, for randomly chosen task systems. Some have good speed-up factors but do not perform well
on the average. Some have been shown to be sustainable, some have been shown to be unsustainable, and
the sustainability of others remains unknown. Other important properties, including the effects of blocking
due to critical sections have not been studied well. So, it is likely to take several more years of study for any
consensus to emerge on which of these tests are most useful in practice.

Global scheduling is more difficult to implement than partitioned scheduling. The shared dispatching
queue is a bottleneck which becomes more serious as the number of cores grows7. The interprocessor
interrupts needed to trigger scheduling on other processors are also costly. However, experiments with
implementations of several global scheduling algorithms, including pd2 and global edf, in a variant of the
Linux kernel have been reported, and the performance looks good [22]. Adding support for the rm-us and
edf-us hybrids would be extremely simple, and would increase scheduling effectiveness without adding any
overhead.

Testing is likely to be more difficult for globally scheduled systems, unless explicit interprocessor syn-
chronization points are inserted to reduce timing variations. That is, introduction of task migrations on top
of preemptions increases hugely the number of different combinations of potential parallel interactions that
may occur between tasks.

Another current area of weakness of global scheduling is the handling of critical sections. Intrinsically,
global scheduling will incur greater overhead for lock and unlock operations than partitioned scheduling,
because using light-weight local locking protocols for some critical sections is not an option. Moreover, the
state of knowledge regarding suitable protocols for globally scheduled systems is behind that for partitioned
systems. This author is unaware of any experiments with global scheduling analogous to those cited for
partitioned scheduling in [26, 21, 41], but conjectures that when such experiments are done they will reveal
that allocating global locks in scheduling priority order (as in [43, 42]) out-performs FIFO service if scheduling
priorities or deadlines are applied globally. Likewise, global application of scheduling priorities should also
result in reduced blocking if the srp’s highest-locker priority is assigned to global lock holders, rather than
the m-srp’s total nonpreemptibility.

8 Cracks in the Foundations

Despite progress in theoretical understanding of real-time scheduling on multiprocessors, there is cause for
concern about the validity of the theory for actual systems. The problem is that real multicore processors
do not fit the assumptions of the models on which the theory is based.

One false assumption is that jobs running on different processors have independent execution times.
Concurrent jobs can already interfere on a single processor, but the interferences occur around context
switch points, which are not very frequent and can be bounded. On a multiprocessor, cache and memory
bus conflicts between jobs can occur throughout the jobs’ executions. Even predicting context switching
costs is potentially more complicated on a multiprocessor, as the cost of a switch will depend on whether
it includes migration between processors, whether the migration crosses cache domains, and what other
tasks do to the cache between context switches. For example, [22] reports cases, on an 8-core processor
with shared L2 cache, where the cost of migration was less than the cost of preemption. They attributed
this effect to migration allowing a preempted task to resume executing sooner than if it had been forced
to wait for its previous processor to become available again, and so incurring less loss of cache affinity.
Besides concurrent cache contention and task migrations, other dynamic factors that can affect execution
times include prefetching-hardware contention, memory-controller contention, and memory-bus contention.
These are reported to account for variations in execution time of “60%, 80% and sometimes 100%” between
executions of the same program [19].

7The standard Linux kernel maintains per-core task dispatching queues, and only performs migrations at longer intervals,
for this reason.
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A second false assumption is that the execution time of a job will be independent of which core executes
it and when. One example is reported in [47], where an undocumented asymmetry with respect to memory
bandwidth between the cores on an Intel Xeon 5345 quad-core processor resulted in differences of up to 400%
in completion times of identical jobs running in parallel on different cores. Another example is the “Turbo
Boost” feature of the IntelTM Core i7TM processor, which varies the execution speed of each core in response
to developing hot spots within the chip [23].

The central false assumption, which underlies both of those above, is that one can schedule processors
to meet deadlines effectively while entirely ignoring the on-chip bus and memory network. The emerging
picture is that with more cores the primary scheduling bottleneck shifts from the processors to the resources
that move information between them. Scheduling the cores without accounting for this network is näıve and
unlikely to produce satisfactory outcomes.

A few efforts have been made at static WCET analysis that predicts and accounts for cache misses
on multicore processors. The methods appear to be intrinsically limited, by growth of the number of
combinations of potentially interfering concurrent computations that must be considered, to very simple
task and hardware models. None appear to have been tested against actual performance of a real system.

Perhaps the most ambitious WCET analysis attempt so far is [33]. It assumes the workload is specified
as a finite set of jobs assigned statically to processors, which are related by precedence constraints. The
system is represented graphically as a UML-like “message sequence chart”, which shows how jobs trigger
releases of other jobs across processors over time. The example studied is a two-core processor with private
2KB direct-mapped L1 cache and shared set-associated L2 cache with associativity ranging from 1 to 4 and
size ranging from 1KB to 16KB. The analysis only considers instruction cache. The tasks are assumed to
be scheduled by priority, but given the way the analysis process iteratively refines estimates of earliest start
times and latest completion times along with the job WCET estimates, it could just as well produce a static
schedule. So, this work supports consideration of static scheduling.

It is going to be very difficult to find WCET bounds for multicore machines that are simultaneously
trustworthy and not absurdly high, and it is likely to become more difficult as one moves from static to
partitioned to global scheduling. The lack of good WCET estimates is likely to severely limit practical
applications of hard-real-time scheduling theory for multicore processors. Obtaining useful guarantees of
hard deadlines at significant levels of system loading may just be impracticable.

9 Predictions

Supposing that the claims above about multicore processors are valid – including growing difficulties with
execution time variability and bottlenecks within the on-chip – where are we headed? With the acknowledg-
ment that this is a case of piling speculation upon speculation, here are some predictions.

The end of hard real time? There will be increasing pressure to design real-time systems that are “softer”
in order to accommodate the increasing difficulty of obtaining reliable WCET estimates and the resultant
decrease in precision and trustworthiness of schedulability analyses. Where hard deadlines cannot be avoided,
designers will need verify them under conservative assumptions. Softer real-time tasks will need to get by
with statistical performance estimates, derived from testing and static analysis based on observed execution
times. The system scheduling policy will need to enforce bandwidth limitations on all tasks accurately
enough support the requirements of the tasks with hard deadlines.

If it turns out that processors are no longer the system bottleneck, and if power can be saved while they
are idle, achieving high processor utilization will be less important. Queuing theory and the utilization-
bound results suggest that as the number of cores and the number of tasks go up, work flow will increasingly
approximate a fluid – so long as individual tasks are small. Dedicating a core to a task that is too large to
fit this model or has a very strict deadline may be wiser than trying to push processor utilizations to some
limit that is believed to be safe based on an unrealistic theoretical model.

As suggested in Section 5, the time may be coming when the processor allocation problem resembles the
memory and disk allocation problems. If so, it may be time to adopt similar management strategies, such
as allocating time in equal quanta to better fit the fluid model, and allowing a reasonable amount of spare
capacity to even out the flow.
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Threads considered harmful? There will be pressures to re-think the thread-based concurrent programming
paradigm. The concept of a thread as the basic unit of concurrent programming and the idea of threads
sharing their entire address space seem to be firmly entrenched in programming languages, operating systems,
and programming culture. However, if the rules of microprocessor architecture are changing, it may be time
for these conventions to change also.

We should look closely at the current thread model with respect to demand for on-chip network band-
width, ability to handle fine-grained concurrency, and inappropriate scheduling constraints.

Threads enforce more serialization than is required for some applications. Thinking in terms of threads
has led researchers in scheduling theory to constrain the jobs of each task to be executed serially, and use
only one processor at a time. If these constraints stand in the way of fully exploiting the parallel execution
possibilities of a multiprocessor, pressure will build to relax them.

With enough processors, it becomes profitable to split jobs into smaller units that can run in parallel. The
ability to split a job requires forethought in the software’s design and coding, but the number of ways in which
a job is split is a performance-tuning and scheduling decision, which depends on the hardware configuration
and the rest of the workload. It is not clear that such details should be hard-coded into the software. It is not
clear, either, that fine-grained parallelism introduced solely as an opportunity for performance improvement
should be expressed using the same programming constructs as are used to express mandatory elements
of asynchrony and concurrency derived from the problem domain, or be burdened by their heavier-weight
semantics.

Several problems with threads come from implicit sharing of their entire memory space. If the program-
ming language and operating system make it easy for threads to share variables, programmers will access
variables from multiple threads without careful consideration, or even without awareness of doing it. This is
bad, since variable sharing has negative consequences for software reliability, performance, and schedulability
analysis. The more shared memory accesses a task makes, the more load it puts on the data paths between
processors, caches, and memory, and the longer and more variable its execution times become. The more
variables are shared intentionally the more chance for errors in synchronization, and of course every instance
of unintentional sharing is a ticking bomb.

What to do in Ada? It is a good time to take inventory of the Ada language, to see what it provides
for constructing reliable highly concurrent real-time software using multicore processors. What does the
language have that helps or hurts? It is good that Ada has a well developed concurrent programming model.
However, some specifics may not be so good. Should the language should be changed, or should a particular
style of usage be developed for multicore systems? Questions to consider include:

• How can we reduce casual memory sharing, and make intentional memory sharing more visible, with
a view to modeling and managing the flows of data between cores?

• How can we design software that can make use of additional cores as they become available, without
redesigning and re-coding, and in a way that is amenable to schedulability analysis?

Ada already has several features that make data sharing visible, including task entry parameters, pro-
tected objects, and the package sharing model of the Distributed Systems Annex. Would it be practical
to program in Ada under the restriction that these be the only avenues for data sharing between threads?
Would this be enough?

It might help to adopt an event-driven programming style, in which all computations are explicitly broken
into jobs, which are queue-able data objects, executed by virtual servers. The servers could be implemented
as Ada tasks. A system could be tuned by allocating multiple servers to a single queue, or having a single
server serve multiple queues. Having the jobs carry much of their own data may reduce memory contention
between cores. If the primary flows of data are via job objects, the flow of data between cores may be
modeled and managed in terms of the flow of jobs. In this context, it may also be time to take a second look
at the “featherweight task” model of [5] as well as other ways of expressing parallelism at a finer grain and
with lower overhead than current Ada tasks.

These are just a few initial considerations. Inventive minds, with further practical experience using
multicore processors, will surely think of more.
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