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Abstract.

A new feasibility test for preemptive scheduling of periodic or sporadic real-time tasks on a single-queue m-server
system allows for arbitrary fixed task priorities and arbitrary deadlines. For the special case when deadline equals period
and priorities are rate monotonic, any set of tasks with maximum individual task utilization umax and minimum individual
task utilization umin is feasible if the total utilization does not exceed m(1− umax)/2 + umin.
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1. Introduction

Starting at least as early as the Safeguard anti-ballistic missile system and continuing up to the present,

high performance real-time embedded systems have relied on multiprocessor architectures. With the

trend toward multi-core architectures in the current and next generation of microprocessors embedded

applications of multiprocessors are likely to become much more common.

The understanding of real-time multiprocessor scheduling has lagged behind that of single-processor

scheduling. Over the three decades since Liu and Layland’s 1973 seminal analysis of rate monotonic and

deadline scheduling(Liu and Layland, 1973), the theory of fixed-priority single-processor scheduling has

been refined, extended, and generalized, to the point that it is now very well understood (Sha et al.,

2004). During those same decades comparatively little attention was paid to the possibility of extending

the analysis to multiple processors.
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Much of the analysis of multiprocessor scheduling that has been done has focussed on a partitioned

model, in which tasks are assigned statically to processors(Dhall and Liu, 1978; Oh and Baker, 1998;

Lopez et al., 2001; Lopez et al., 2000). The alternative, global scheduling, was shown by Dhall and Liu

to have very poor worst-case performance. A task set may have processor utilization arbitrarily close to

1 and still not be schedulable on m processors using rate monotonic or earliest-deadline-first scheduling.

By comparison, even though optimal partitioning is NP complete, heuristic partitioning algorithms can

guarantee schedulability to a much higher processor utilization level than 1. For example, using rate

monotonic local scheduling and a simple first-fit-decreasing partitioning heuristic, a utilization level of

at least m(21/2 − 1) is always feasible for an m-processor system(Oh and Baker, 1998). This is not

only much better than the worst case for global scheduling; it is not far from the limit of (m + 1)/2

that applies to all fixed-job-priority multiprocessor scheduling algorithms, partitioned or not(Andersson

et al., 2001).

Recently, progress has been made in understanding global multiprocessor scheduling, based on a re-

evaluation of the result of Dhall and Liu. Their worst-case example has two kinds of tasks: “heavy” ones,

with high ratio of computation time to deadline, and “light” ones, with low ratio of computation time

to deadline. It is the mixing of those two kinds of tasks that causes a problem. A scheduling policy that

segregates the heavy tasks from the light ones, on disjoint sets of CPU’s, would have no problem with

Dhall’s example. Examination of further examples leads one to conjecture that such a hybrid scheduling

policy would not miss any deadlines until a fairly high level of CPU utilization is achieved, and might

even permit the use of simple utilization-based schedulability tests.

The preemptive scheduling of periodic tasks on multiprocessors was examined in (Andersson et al.,

2001), and it was shown that any system of independent periodic tasks for which the utilization of

every individual task is at most m/(3m − 2) can be scheduled successfully on m processors using

rate monotonic scheduling if the total utilization is at most m2/(3m − 1). In (Baruah and Goossens,

2003) there is a similar result, showing that a total utilization of at least m/3 can be achieved if the

individual task utilizations do not exceed 1/3. Andersson, Baruah, and Johnsson proposed a hybrid

scheduling algorithm, called RM-US[m/(3m− 2)], which gives higher priority to tasks with utilizations

above m/(3m− 2), that is able to successfully schedule any set of independent periodic tasks with total

utilization up to m2/(3m− 1).

This paper further advances the understanding of global fixed-priority multiprocessor schedulability.

The main contribution is a new analysis concept, called the (µ, k−1) busy interval. By analyzing the
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workload of a (µ, k−1) busy interval one can relax several of the assumptions made in the prior analyses

cited above, and derive a more general schedulability test. The principal consequences are:

1. Applicability to all fixed priority assignments, rather than just rate monotonic.

2. Applicability to tasks with arbitrary deadlines, rather than just those where deadline equals period.

3. Applicability of the RM-US hybrid model to systems with higher utilization levels, by setting the

cut-off between “heavy” and “light” at any desired utilization level, rather than just 1/3.

These results provide a means of verifying the feasibility of task sets on multiprocessor systems

that make use of global scheduling, at non-trivial utilization levels and without arbitrary constraints

on priorities and deadlines. By reducing the gap in guaranteed-feasible utilization levels between the

partitioned and global scheduling approaches, they also suggest that perhaps global scheduling should

be given more serious consideration for real-time systems. (The broader question of whether global

scheduling is preferable to partitioned scheduling, either theoretically or pragmatically, remains a subject

for further research.)

The rest of the paper presents the derivation of the theory. Section 2 defines the problem formally,

and outlines the overall approach. Section 3 derives a lower bound on the workload contributions of

competing tasks in an interval where a task misses a deadline. Section 4 defines the notion of (µ, k−1)

busy interval and derives an upper bound on the workload contributions of competing tasks in any

such interval. Section 5 combines the upper and lower bounds on workload to obtain schedulability

tests, including a red lower bound on the minimum achievable utilization for rate monotonic scheduling.

Section 6 compares the performance of those tests on some randomly generated task sets. Section 7

provides an upper bound on the minimum achievable utilization for rate monotonic scheduling. Sec-

tion 8 reviews in more detail the connections to prior work, including an application to determining an

“optimal” value of λ for RM-US[λ] scheduling. Section 9 summarizes and concludes.

2. Definition of the Problem

Suppose one is given a set of N simple independent sporadic tasks τ1, . . . , τN , where each task τi has

minimum inter-release time (called period for short) Ti, worst case computation time ci, and relative

deadline di, where ci ≤ di, and ci ≤ Ti. Each task generates a sequence of jobs, each of whose release
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time is separated from that of its predecessor by at least Ti. No special assumptions are made about

the first release time of each task.

Time is represented by the domain of rational numbers. Square brackets and parentheses are used to

distinguish whether time intervals include their endpoints. For example the time interval [t1, t2) contains

the time values greater than or equal to t1 and less than t2. All of the intervals [t1, t2], [t1, t2), (t1, t2]

and (t1, t2) are said to be of length t2 − t1.

The objective of this paper is to formulate a simple test for schedulability of a task set, expressed

in terms of the periods, deadlines, and worst-case computation times of the tasks, such that if the test

is passed no deadlines will be missed. The problem is approached by analyzing the minimum processor

load that is needed over an interval of time to cause a missed deadline.

DEFINITION 1. Let S = {τ1, . . . , τN} be any task set. A release-time assignment for S is a function

r : {1, . . . , N} × N → Time. The value r(i, j) is interpreted as the release time of the jth job of τi. All

task releases are required to be separated by at least the task period, i.e., r(i, j) + Ti ≤ r(i, j + 1).

The jobs of each task must be executed sequentially, and all jobs are scheduled on m identical

processors according to a global preemptive fixed-priority policy, where task τi always has priority over

task τi+1. Here “global” means that jobs are assigned to processors dynamically, so that whenever there

are m or fewer jobs ready they will all be executing, and whenever there are more than m jobs ready

there will be m jobs executing, all with priority higher than or equal to the priorities of the jobs that

are not executing.

Since it is not the intent of this paper to compare the efficiency of global versus partitioned scheduling,

and for the sake of simplicity of analysis, the abstract computational model does not include any

execution time penalty for preemption or for interprocessor task migration. In a real system there will be

some penalty for interrupting the execution of a processor, and there may be some penalty for reloading

the cache of the new processor with instructions/data of the task (if the cache of the old processor has

not already been overwritten by intervening other tasks). The task migration penalty is variable, and

in practical applications will add to the margin of error in schedulability analysis that already exists

due to variability in task execution times and cache effects due to preemption that occur already on

a single processor. However, if one prefers to take the task migration penalty into account explicitly,

the analysis presented in this paper could be modified to account for the worst-case preemption and

migration costs.
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Migration of a job J1 from processor P1 to processor P2 can only occur when the following two events

happen in sequence:

1. J1 must be preempted on P1. That is, while J1 is running, some job J2 with higher priority than J1

must be released.

2. P2 must become available for J1 before P1 does. That is, whatever job J ′2 (with higher priority than

J1) was running on P2 when J1 was preempted by J2 must complete.

The overhead cost of migration can be accounted for by associating it with either or both of these two

events. Assuming the main component of the overhead is paid in lost time on processor P2, supposed

it is all charged against the execution time of J2. That is, it is as if the execution of J2 were prolonged

by the amount of time it takes to migrate J1 to P2. This cost can only be charged once to each job

J2, since each job completes only once and so can have at most one (migrated) successor on the same

processor.

DEFINITION 2. Given a task set S and a release-time assignment r, the work Wi done by task τi

over a time interval [t−∆, t) is the actual amount of computation time that is used by jobs of τi in the

interval, and the load due to task τi is Wi/∆. (This definition differs slightly from some other work on

demand analysis by counting only work that is actually executed in the interval.) Wherever the notation

Wi is used the release time assignment and time interval will be clear from context.

For any integer k, 1 ≤ k ≤ N , the level k work with release-time assignment r is
∑

i≤k Wi, and the

level k load is
∑

i≤k Wi/∆.

DEFINITION 3. For a given task set and release time assignment, a first missed deadline is a time t

at which some task misses a deadline and such that no task misses a deadline before t.

If a task set misses a deadline for some release time assignment then it has a unique first missed

deadline for that release time assignment. If one can find a lower bound on the processor load over an

interval leading up to every first missed deadline, and one can guarantee that a given set of tasks could

not possibly generate so much load in such an interval, that would be sufficient to serve as a proof of

schedulability.
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3. Lower Bound on Load

One can establish a lower bound on the level k− 1 load of the interval ending at a first missed deadline

of task τk and starting with the release time of the corresponding job by observing that, since the job

does not complete by the end of the interval, the lengths of all the subintervals in which the job does not

execute, plus the execution time of the job, must exceed the length of the interval between its release

time and deadline. This fact is well known and is the basis of the prior analysis in (Phillips et al., 1997)

and others. It is illustrated in Figure 1 for the case where m = 3 and dk ≤ Tk. The diagonally shaded

rectangles indicate blocks of time during which τk executes. The dotted rectangles indicate times during

which all m processors must be busy executing other jobs that contribute to the load for this interval.

It is easy to see that the total level k − 1 work of the interval [t − dk, t) must be at least m(dk − x),

where x < ck is the amount of time that τk executes in the interval.
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Figure 1. All processors must be busy whenever τk is not executing.

kT kT

dk
dk

τk,1 τk,2 τk,2 misses deadline

τk,1

������������������������������
��������������������������������������������

�������������� ������������������
������������������ ������������������������������������������

������������������������������������������

is released is released

t
completes on time

Figure 2. More than one job of τk may execute in a τk-busy interval if dk ≥ Tk.

To allow for the possibility that dk ≥ Tk, one needs to consider intervals that may include more than

one job of τk. Figure 2 shows the release times and deadlines of two such jobs τk,1 and τk,2. The job τk,1

is delayed by two blocks of higher priority interference. This interference is not enough to cause τk,1 to



7

miss its deadline, but (because jobs of the same task must be executed sequentially) it delays the start

of τk,2 enough to cause that job to miss its deadline.

DEFINITION 4. A job is backlogged at a time t if it is released before time t and has nonzero execution

time remaining at time t. A task is backlogged if it has a backlogged job.

For any task τk, a time interval [t′, t) is τk-busy if t is a missed deadline for τk and there are backlogged

jobs of τk continually throughout the interval (t′, t).

LEMMA 5. For a given a set of tasks S and a given release-time assignment r, if τk is backlogged at

time t then there is a unique τk-busy interval [t−∆, t) such that:

1. There are no backlogged jobs of τk at time t−∆.

2. There is a job of τk released at time t−∆.

Proof. Let t′ be the latest time before t at which τk is not backlogged. There must be such a time,

since τk is not backlogged at the system start time. It must be that t′ is a release time of τk. The interval

[t′, t) satisfies the definition of τk-busy. The value t′ is unique, since τk is not backlogged at time t′ and

τk is backlogged at all times from t′ through t. 2

The unique interval guaranteed by Lemma 5 is called the maximal τk-busy interval ending at t. If

dk ≤ Tk this interval cannot be longer than dk unless τk has missed a deadline prior to t, but if dk > Tk

the interval may be arbitrarily longer than dk. For example, consider a system of m + 1 tasks, such

that T1 = · · ·= Tm+1 = 1, d1 = · · ·= dm = 1, dm+1 = 2, c1 = · · ·= cm = ε, and cm+1 = 1. The first m

tasks create a block of interference of duration ε for every release of τm+1, so that each successive job

of τm+1 completes later by ε. The first job of task τm+1 to miss its deadline will be the jth job, where

j is the least integer greater than 1/ε. It will miss its deadline at time jTm+1 + dm+1 = j + 1, since

jε > dm+1 − Tm+1 = 1. One can make j arbitrarily large by choosing ε small enough.

LEMMA 6 (lower bound on load). If t is a first missed deadline of τk then the maximal τk-busy interval

[t−∆, t) has level (k−1) load greater than m(1− ck
min{Tk,dk}).
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Proof. Let x be the amount of time τk executes in the interval [t − ∆, t). Since τk is continually

backlogged over the interval, the only times that τk does not execute are the times that all m processors

are executing jobs of tasks with higher priority than τk. The level (k−1) work of [t − ∆, t) must be at

least equal to the work of these higher priority tasks, i.e.,

∑
i<k

Wi

∆
≥ m(∆− x)

∆
= m(1− x

∆
) (1)

Let j be the number of jobs of τk that execute in the interval. The amount x of time that τk executes

in the interval is bounded as follows:

x < jck (2)

Since τk is not backlogged at the start of the interval, all of the j jobs are released on or after t−∆

and not later than t − dk (because t is a missed deadline), and the release times are separated by at

least Tk, so:

(j − 1)Tk + dk ≤ ∆ (3)

It follows from (1-3) that ∑
i<k

Wi

∆
> m(1− jck

(j − 1)Tk + dk
)

Let f : N → Time be the function defined by f(j) = jck
(j−1)Tk+dk

. The objective is to find an upper

bound for f(j), subject to the available constraints. There are two cases to consider:

1. If dk ≤ Tk then ck
dk
≥ ck

Tk
, and f is monotonically non-increasing with respect to j. To see this, take

any two fractions u
v ≥

w
x , where u, v, w, and x are positive numbers. It follows that

ux ≥ wv

uv + ux ≥ uv + wv

u(v + x) ≥ v(u + w)
u

v
≥ u + w

v + x

Letting u = jck, v = (j − 1)Tk + dk, w = ck, and x = Tk, it follows that

f(j) =
u

v
≥ u + w

v + x
= f(j + 1)
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That is, f is monotonically non-increasing.

Since f is monotonically non-increasing with respect to j and j ≥ 1, it follows that

f(j) ≤ f(1) =
ck

dk

2. If dk > Tk then ck
dk

< ck
Tk

, f is increasing with respect to j, and

f(j) ≤ lim
j→∞

f(j) =
ck

Tk

Putting the above two cases together, it follows that:

∑
i<k

Wi

∆
> m(1− ck

min{dk, Tk}
)

2

4. Upper Bound on Load

The next step is to derive an upper bound on the level (k−1) load of an interval leading up to a first

missed deadline of task τk. If one can find such an upper bound βk, it will follow that schedulability of a

task system can be guaranteed by checking that βk is less than the minimum level (k−1) load needed to

cause a missed deadline of τk. The upper bound will be defined as the sum of individual upper bounds

on the load due to each task that can preempt τk in the interval.

The work Wi done by task τi in any interval [t − ∆, t) is clearly bounded by the length ∆ of the

interval and may include:

1. a portion of the execution times of zero or more jobs that are released before t−∆ but are unable

to complete by that time, which are called carried-in jobs;

2. the full execution times ci of zero or more jobs that are released on or after time t−∆ and complete

by time t;

3. a portion of the execution time of at most one that is released at some time t− δ, 0 < δ ≤ ∆, but

is unable to complete by time t.
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To bound the size of the carried-in contribution of τi the maximal τk-busy interval is extended

downward as far as possible while still maintaining the level (k−1) load that caused τk to miss its

deadline at time t.

DEFINITION 7. A time interval [t′, t) is (µ, k−1) busy if the level (k−1) load is greater than µ. It is a

maximal (µ, k−1) busy interval if it is (µ, k−1) busy and there is no t′′ < t′ such that [t′′, t) is also (µ, k−1)

busy.

LEMMA 8. If t is a first missed deadline of τk and 0 < µ ≤ m(1 − ck
min{Tk,dk}) then there is a unique

maximal (µ, k−1) busy interval [t− ∆̂, t), and ∆̂ ≥ dk.

Proof. By Lemma 5, there is a unique maximal τk-busy interval [t′, t). Since t is a missed deadline

for τk, the length of this τk-busy interval is at least dk. By Lemma 6, the level (k−1) load of this interval

is greater than µ. Therefore, the set of all starting points t′′ ≤ t′ of (µ, k−1) busy intervals [t′′, t) is

non-empty. This set must have a minimal member, since there are no backlogged jobs at the start time

of the system. Let ∆̂ = t− t′′ for this minimum value t′′ and the lemma is satisfied.

2

DEFINITION 9. Given a task set S, a release-time assignment r, a task τk that has a first missed

deadline at time t, and a value µ, the unique interval [t− ∆̂, t) that is guaranteed by Lemma 8 is called

the (µ, k−1) busy interval of τk. From this point on, let [t− ∆̂, t) denote such an interval.

The next step in the analysis is to find an upper bound on the load Wi

∆̂
due to each task τi in a

(µ, k−1) busy interval. The only interesting cases are those where τi can make a contribution to the the

level (k−1) load, that is, where i < k.

LEMMA 10 (upper bound on load). If t is a first missed deadline of task τk, 0 < µ ≤ m(1− ck
min{Tk,dk}),

and [t − ∆̂, t) is the corresponding (µ, k−1) busy interval, then the contribution Wi/∆̂ of each task τi,

i < k, to the load of the interval is strictly bounded above by the function βµ,k(i) defined to be the lesser

of the value 1 and the value given by the expression in Table I.

Proof.
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Table I. Cases for βµ,k(i), the upper bound on Wi

∆̂
.

Case βµ,k(i)

m−µ
m−1

≥ ci

Ti
min{1, ci

Ti
(1 + Ti−ci

dk
)}

m−µ
m−1

< ci

Ti
min{1, ci

Ti
(1 + Ti−ci

dk
) + di

dk
( ci

Ti
− m−µ

m−1
)}

Let j be the number of jobs of τi that execute in the interval. If j = 0 the lemma is satisfied trivially.

Therefore, it is only necessary to consider the case where j ≥ 1.

Let ε > 0 be the amount of time that the last of these j jobs of τi executes in the interval, and let

t− δ be the release time of this job. Observe that ε ≤ δ and ε ≤ ci.

Let t− ∆̂− φ be the release time of the first job of τi that is released before t− ∆̂ and executes in

the interval, if such exists; otherwise, let φ = 0.

ic ic ic

(µ,k−1)

ic

tt − δ

preamble

d
T T T T

di

i iii

i

busy interval

∆ −φ t − ∆̂t − ̂

. . .

Figure 3. Preamble of (µ, k−1) busy interval.

If φ > 0 the interval [t− ∆̂−φ, t− ∆̂) is non-empty and must be τi-busy. Call this the preamble with

respect to ti of [t − ∆̂, t). In this case reasoning similar to that of Lemma 6 can be used to bound the

amount of work that τi may carry from the preamble into [t− ∆̂, t), as follows.

Let x be the total amount of time spent executing jobs of τi in the preamble and let y be the

sum of the lengths of all the subintervals within the preamble where all m processors are simultaneously

executing jobs that preempt τi. Since τi can execute when and only when there are less than m processors

executing jobs that preempt τi, y = φ − x. It follows that the total amount of level i work executed in

the preamble must be at least my + x. Putting this together with the fact that the interval [t− ∆̂, t) is

(µ, k−1) busy, one can conclude that the level (k−1) work of the entire interval [t − ∆̂ − φ, t) is at least

µ∆̂ + my + x.
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By the definition of maximal (µ, k−1) busy interval, the level (k−1) load of the interval [t− ∆̂− φ, t)

is less than µ. It follows that if φ > 0 then

µ∆̂ + my + x < µ(φ + ∆̂)

m(φ− x) + x = my + x < µφ

x(1−m) < φ(µ−m)

x >
m− µ

m− 1
φ

If φ = 0 the preamble is empty and so it follows that in all cases x > m−µ
m−1 φ.

By subtracting out m−µ
m−1 φ as a lower bound on the work x of τi done in the preamble, one can obtain

the following bound on the load due to τi in the (µ, k−1) busy interval [t− ∆̂, t):

Wi

∆̂
≤

ci(j − 1) + ε− m−µ
m−1 φ

∆̂
(4)

Because of the minimum separation constraint,

(j − 1)Ti + δ ≤ ∆̂ + φ

(j − 1) ≤ ∆̂ + φ− δ

Ti

and so

Wi

∆̂
≤

ci
∆̂+φ−δ

Ti
+ ε− m−µ

m−1 φ

∆̂

The expression on the right of the above inequality is increasing with respect to ε. Since ε ≤ ci, the

value of the expression is never greater than when ε = ci.

The same expression is decreasing with respect to δ. By definition, δ ≥ ε. It follows that the maximum

value of the expression on the right side of the inequality is never greater than when δ = ε = ci.

Wi

∆̂
≤

ci
∆̂+φ−ci

Ti
+ ci − m−µ

m−1 φ

∆̂
=

ci

Ti
(1 +

Ti − ci

∆̂
) +

φ( ci
Ti
− m−µ

m−1 )

∆̂
(5)

The value of the expression on the right side of the above inequality may be increasing or decreasing

with respect to φ, depending on whether ci
Ti
≤ m−µ

m−1 .
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Case 1: If ci
Ti
≤ m−µ

m−1 the value of the expression on the right of inequality (5) is non-increasing with

respect to φ, and since φ ≥ 0, the global maximum is achieved when φ = 0. It follows that

Wi

∆̂
<

ci

Ti
(1 +

Ti − ci

∆̂
) ≤ ci

Ti
(1 +

Ti − ci

dk
) (6)

Case 2: If ci
Ti

> m−µ
m−1 the value of the expression on the right of inequality (5) is increasing with respect

to φ. Since there are no missed deadlines prior to t and the job released at time t − ∆̂ − φ does not

complete by t− ∆̂, φ < di. It follows that

Wi

∆̂
<

ci

Ti
(1 +

Ti − ci

∆̂
) +

di( ci
Ti
− m−µ

m−1 )

∆̂

Since ci
Ti

> m−µ
m−1 and ∆̂ ≥ dk,

Wi

∆̂
<

ci

Ti
(1 +

Ti − ci

dk
) +

di( ci
Ti
− m−µ

m−1 )
dk

(7)

In addition, since Wi is the actual execution time of task τi in the interval and a task may not execute

on more than one processor at a time, we also have Wi

∆̂
≤ 1 in all cases. Taking this into account, the

upper bounds for Wi

∆̂
derived in each of the above cases correspond to the expressions in Table I.

2

5. Schedulability Tests

Based on the above analysis, one can now prove the following theorem, which provides a sufficient

condition for schedulability.

THEOREM 11 (O(N3) schedulability test). A set of sporadic tasks S = {τ1, . . . , τN} is schedulable on

m processors using preemptive fixed-priority scheduling if, for every task τk, k = m + 1, . . . , N , there

exists a positive value µ ≤ m(1− ck
min{Tk,dk}) such that

k−1∑
i=1

βµ,k(i) ≤ µ (8)

where βµ,k(i) is as defined in Table I.
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Proof. The proof is by contradiction. Suppose there are a task set S and a release time assignment

r for which some task τk has a first missed deadline at time t. By the priority ordering, k > m. Let

[t− ∆̂, t) be the (µ, k−1) busy interval guaranteed by Lemma 8. By the definition of (µ, k−1) busy,

k−1∑
i=1

Wi

∆̂
> µ

By Lemma 10, Wi

∆̂
≤ βµ,k(i), for i = 1, . . . , k − 1. It follows that

k−1∑
i=1

βµ,k(i) ≥
k−1∑
i=1

Wi

∆̂
> µ

The above is a contradiction of (8).

2

To use the above condition as a schedulability test, it might seem necessary to consider all possible

values of µ for each k. On the contrary, the only values of µ that need to be considered are the upper

bound and the points at which the function βµ,k(i) is discontinuous with respect to the parameter µ.

That is, at the points

µi = m− ci

Ti
(m− 1)

for i = 1, . . . , k, and

µmax = m(1− ck

min{Tk, dk}
)

The computational complexity of checking (8) for all such values of of µ for each value of k is O(N3).

If one is willing to sacrifice some precision for a faster test, one can check fewer values of µ, resulting

in an O(N2) schedulability test. There are many possible heuristics for choosing a subset of the values

of µ to considers. Any one of the values of µ checked in the O(N3) test would be sufficient. If only one

value of µ is to be checked, using the largest possible value seems to give the best result in most cases.

COROLLARY 12 (O(N2) test). A set of sporadic tasks τ1, . . . , τN is schedulable on m processors if for

every task τk, k = m + 1, . . . , N ,

k−1∑
i=1

βµ,k(i) ≤ µ (9)

where λk = ck
min{Tk,dk} and µ = m(1− λk).
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Proof.

The proof is by direct application of Theorem 11 for µ = m(1− λk).

2

If one is willing to sacrifice some more precision for a still faster test, there is an O(N) test.

COROLLARY 13 (O(N) schedulability test). A set of sporadic tasks τ1, . . . , τN is schedulable on m

processors if

N−1∑
i=1

min{1,
ci

Ti
(1 +

Ti − ci

dmin
)} ≤ m(1− λmax) (10)

where λi = ci
min{Ti,di} , λmax = max{λi | i = 1, . . . , N}, and dmin = min{di | i = 1, . . . , N}.

Proof.

Corollary 13 is proved by application of Theorem 11. Consider any task τk. Let µ = m(1− λmax). It

follows that µ ≤ m(1 − λk), and m−µ
m−1 > ci

Ti
for all i. Therefore, since k ≤ N and dk ≥ dmin, if (10) is

satisfied then
k−1∑
i=1

βµ,k(i) ≤
N−1∑
i=1

min{1,
ci

Ti
(1 +

Ti − ci

dmin
)} ≤ µ

By Theorem 11, the task set must be schedulable. 2

If one assumes the deadline of each task is equal to its period Theorem 11 also yields a lower bound

on the minimum achievable utilization for rate monotonic scheduling.

COROLLARY 14 (utilization test). A set of sporadic tasks, all with deadline equal to period and uti-

lization less than or equal to one, is guaranteed to be schedulable on m processors using preemptive rate

monotonic scheduling if

N∑
i=1

ci

Ti
≤ m

2
(1− umax) + umin (11)

where umax = max{ ci
Ti

| i = 1, . . . , N} and umin = min{ ci
Ti

| i = 1, . . . , N}.
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Proof.

Since deadline equals period, λi = ci
Ti

= ui for all i. The τk be any task. Let µ = m(1 − umax). It

follows that µ ≤ m(1− λk), and m−µ
m−1 > ci

Ti
for all i. Since ci < Ti ≤ dk and dk = Tk,

min{1,
ci

Ti
(1 +

Ti − ci

dk
)} =

ci

Ti
(1 +

Ti − ci

Tk
)

By the rate monotonic ordering of task priorities, Ti ≤ Tk for i < k, and so

ci

Ti
(1 +

Ti − ci

Tk
) ≤ ci

Ti
(1 +

Ti − ci

Ti
) = 2

ci

Ti
− (

ci

Ti
)2 < 2

ci

Ti

Therefore,
k−1∑
i=1

βµ,k(i) =
k−1∑
i=1

ci

Ti
(1 +

Ti − ci

Tk
) ≤

k−1∑
i=1

2
ci

Ti
≤ 2

N∑
i=1

ci

Ti
− 2

N∑
i=k

ci

Ti

If condition (11) is satisfied it follows that, for k = 1, . . . , N ,

k−1∑
i=1

βµ,k(i) ≤ 2(
m

2
(1− umax) + umin)− 2umin = µ

and by Theorem 11, the task set must be schedulable.

2

Note that (Baker, 2003a) and (Baker, 2003b) claimed a stronger result, in which the umin term of

the utilization bound above is replaced by umax. The proof given for that stronger result had a flaw,

based on failure to properly distinguish λk from λmax.

Theorem 11 and its corollaries provide three general fixed-priority schedulability tests, one of com-

plexity O(N3), one of complexity O(N2), and one of complexity O(N), and a utilization-bound test for

rate monotonic scheduling in the case where deadline equals period.
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6. Simulations

It is natural to wonder how the performances of these tests compare. In order to address this question,

simulation experiments were conducted, using pseudo-randomly generated task sets.

The performance measure chosen for these simulations is the ratio A/B, where A is the number of

task sets that a given test verifies as schedulable and B is the number of task sets tested. (Note that B

is not the number of schedulable task sets, since the only known necessary and sufficient algorithms for

totally determining general schedulability are computationally impractical.)

Simulations were conducted for various numbers of processors, task sizes, and priority assignment

rules, and with various algorithms for randomly generating the task periods, deadlines, and execution

times. In the interest of brevity, just a few results are presented here.

The procedure was to generate a random set of m + 1 tasks, run all the schedulability tests on that

set, then add another randomly generated task to the set, run all the schedulability tests on the new

set, etc., until the set grew to a size that it missed a deadline when simulated with all tasks released

together at time zero. The procedure was then repeated. This method of generating random task sets

produces a fairly uniform distribution of total utilizations. For example, the histogram in Figure 4 is of

the total utilization over one collection of 1,000,000 task sets. This collection of task sets had individual

task utilizations approximately uniformly distributed over the range 0.05 to 0.2, with a few high and

low outliers due to the use of whole integers for all time values. The distribution is sparse at the low

end because sets with four or fewer tasks were thrown out of the sample.

The histograms in Figures 5 and 4 show the performance of the schedulability tests on two repre-

sentative experiments, corresponding to the same collection of task sets as Figure 4. The plots show

the fraction of the total number of task sets that each schedulability test reports to be schedulable, for

various utilization levels, expressed as percentages. The line labeled “Sim” is provided as a coarse upper

bound on the fraction of the task sets that might be schedulable, obtained by simulating the execution

when all the tasks are initially released at time zero. This coarse bound is used because there is no

known computationally feasible algorithm for determining with certainty whether or not each task set

is schedulable.

The higher-complexity tests clearly are able to identify a larger number of schedulable task sets at the

higher utilization levels. In all experiments, the O(N) test and utilization bound tests performed much

worse than the O(N2) and O(N3) tests. The O(N3) test performed consistently better than the O(N2)
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Figure 4. Distribution of total utilizations in experiments with four processors.
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Figure 5. Deadline equals period and rate monotonic priorities.

test, but the margin was not large and the performance was essentially identical on many experiments,

including those with wider variations in individual task utilizations and deadlines.
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Figure 6. Random deadlines and deadline monotonic priorities.

7. An Upper Bound on Minimum Achievable Utilization

Corollary 14 provides a lower bound on the minimum achievable utilization for rate monotonic schedul-

ing. The following theorem provides an upper bound.

THEOREM 15 (upper bound on minimum achievable RM utilization). There exist task sets that are

not feasible with preemptive RM scheduling on m processors and have utilization arbitrarily close to

umax + m ln( 2
1+umax

), where umax is the maximum single-task utilization.

Proof.

The goal of the proof is to show that there is an infinite sequence of task sets S′m,1, S
′
m,2, S

′
m,3, . . .,

each of which is not schedulable on m processors and for which

lim
k→∞

U(Sm,k) = umax + m ln(
2

1 + umax
)

Instead of constructing such a sequence of unschedulable task sets directly, it will be sufficient to

construct an infinite sequence of barely schedulable task sets Sm,1, Sm,2, Sm,3, . . ., whose utilizations

converge to the desired limit. Then, for each k, an unschedulable task set S′m,k can be obtained from

Sm,k by increasing the execution time cN of the lowest-priority task by an amount that converges to zero
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for sufficiently large k. Since the limit of the amounts by which the task execution times are increased

is zero, the limit of the utilizations of the sequence of unschedulable task sets S′m,k is the same as the

limit of the utilizations of the barely schedulable task sets Sm,k. Therefore, to prove the theorem it is

sufficient to construct the sequence Sm,1, Sm,2, Sm,3, . . . of barely schedulable task sets.

The construction of the barely schedulable task sets and the proof of the limiting utilization are

derived from (Liu and Layland, 1973). The differences are that there are m processors instead of one,

and the utilization of the longest-period task is bounded by umax.

Let pi = ( 2
1+umax

)
i
k for i = 1, . . . , k + 1. The periods of the N = mk + 1 tasks in Sm,k are defined to

be

T(i−1)m+1 =T(i−1)m+2 = · · ·=Ti·m = pi for i = 1, . . . , k

TN = pk+1

and the execution times of the tasks are defined to be

c(i−1)m+1 =c(i−1)m+2 = · · ·=ci·m = pi+1 − pi for i = 1, . . . , k

cN = 2p1 − pk+1 = TN − 2
k∑

i=1

(pi+1 − pi)

c1 c1

c1

c1
c1

c1

c2 ck

c2

c2 ck ck
ck
ck

c2

c2
ck

c2

p1 pkp3p2 pk+1
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...
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0

 deadlineτ τN N

cN

release

=TN

Figure 7. Task set that is barely schedulable.

As shown schematically in Figure 7, when all the tasks are released together at time zero they execute

as k blocks of m, with task τN being forced to execute during the time the other tasks are idle. Such

a task set is barely schedulable. Any increase in the execution time of task τN will cause it to miss its

deadline. The utilization of such a task set is

U(Sm,k) =
2p1 − pk+1

pk+1
+

k∑
i=1

m
pi+1 − pi

pi
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= 2(
k∏

i=1

pi

pi+1
)− 1 + m(

k∑
i=1

pi+1

pi
)−mk

= 2(
k∏

i=1

(
1 + umax

2
)

1
k )− 1 + m(

k∑
i=1

(
2

1 + umax
)

1
k )−mk

= 2(
1 + umax

2
)− 1 + mk(

2
1 + umax

)
1
k )−mk

= umax + mk((
2

1 + umax
)

i
k − 1)

L’Hôpital’s Rule can be applied to find the limit of the above expression for large k, which is

lim
k→∞

U(Sm,k) = umax + m ln(
2

1 + umax
)

2

Of course, the actual minimum achievable RM utilization is somewhere between the lower bound

given by Corollary 14 and the upper bound given by Theorem 15. The values of umax + m ln( 2
1+umax

(upper) and m
2 (1− umax) (lower) are plotted in Figure 8, for m betweeen 1 and 32. Though this paper

only shows that the minimum achievable RM utilization lies between these two bounding functions,

the author suspects (for reasons explained in the next section) that the actual minimum achievable

utilization may correspond exactly to the higher of these two bounds.

8. Relation to Prior Work

In (Andersson et al., 2001), a periodic task set {τ1, τ2, . . . , τN} is defined to be a light system on m

processors if it satisfies the following properties:

1.
∑N

i=1
ci
Ti
≤ m2

3m−2

2. ci
Ti
≤ m

3m−2 , for 1 ≤ i ≤ n.

They then proved the following theorem:

THEOREM 16 (Andersson, Baruah, Jonsson). Any periodic task system that is light on m processors is

scheduled to meet all deadlines on m processors by the preemptive rate monotonic scheduling algorithm.
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Figure 8. Upper and lower bounds on minimum achievable utilization

The above result is narrower but slightly tighter than Corollary 14. If one takes umax = m/(3m− 2),

it follows that the system of tasks is schedulable to meet deadlines if

N∑
i=1

ci

Ti
≤ m

2
(1− m

3m− 2
) =

m2 −m

3m− 2

In (Baruah and Goossens, 2003) there is the following similar result.

COROLLARY 17 (Baruah & Goossens). A set of tasks, all with deadline equal to period, is guaranteed

to be schedulable on m processors using rate monotonic scheduling if ci
Ti
≤ 1/3 for i = 1, . . . , N and

N∑
i=1

ci

Ti
≤ m/3



23

This is a special case of Corollary 14. If one takes umax = 1/3, it follow that the system of tasks is

schedulable to meet deadlines if

N−1∑
i=1

ci

Ti
≤ m

2
(1− 1/3) + umin ≤ m/3

The results presented in this paper generalize and extend the above cited results in the following

ways:

1. Theorem 11 can be applied to tasks with arbitrary deadlines. This is important for systems where

some tasks have tighter deadlines, due to bounded jitter requirements, and other tasks have looser

deadlines, due to buffering.

2. Theorem 11 can be applied to any set of sporadic tasks, without an arbitrary upper bound on

individual task utilizations.

3. Corollary 14 can be applied to task systems with umax > m
3m−2 , and for task systems with umax <

m−2
3m−2 it provides a higher utilization bound than m2

3m−2 .

In (Andersson et al., 2001), the following hybrid scheduling algorithm is proposed:

ALGORITHM 1. RM-US[λ]

(heavy task rule) If ci
Ti

> λ then schedule τi’s jobs at maximum priority.

(light task rule) If ci
Ti
≤ λ then schedule τi’s jobs according to their normal rate monotonic priorities.

They then proved that Algorithm RM-US[m/(3m − 2)] correctly schedules on m processors any

periodic task system whose total utilization is at most m2/(3m−2). The proof is based on the observation

that the upper bound on total utilization guarantees the number of heavy tasks cannot exceed m. The

essence of the argument is that Algorithm RM-US[m/(3m− 2)] can do no worse than scheduling each

of the heavy tasks on its own processor, and then scheduling the remainder (which must must be light

on the remaining processors) using RM.

Corollary 14 extends the analysis of RM-US[λ] to other values of λ. Let ξ be the number of tasks

with utilization greater than or equal to λ. If ξ < m, the algorithm can do no worse than scheduling

the ξ highest utilization tasks on dedicated processors and scheduling the N − ξ lowest-utilization tasks
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on the remaining m − ξ processors. The corollary guarantees that the latter tasks can be scheduled

unless their combined utilization exceeds m−ξ
2 (1 − λ). That is, no deadline can be missed unless the

total utilization, including both heavy and light tasks, exceeds

m− ξ

2
(1− λ) + ξλ

If no restrictions are placed on the task set, the optimum value of λ for use with RM-US and the

utilization bound test is the one that maximizes with respect to λ the minimum with respect to ξ of

the above expression. Since the value of the expression is decreasing with respect to ξ for λ < 1/3 and

is increasing with respect to ξ for λ > 1/3, the minimum is maximized when λ = 1/3, in which case

the worst-case guaranteed feasible utilization is m
3 . Of course, the value λ = 1/3 is optimal only with

respect to verifying schedulability using the utilization bound test, which is probably not tight.

It is argued in (Lundberg, 2002) that the true optimum value of λ for RM-US[λ] is approximately

0.3748225282. The basis of the argument is an assertion that a task experiences the maximum competing

load when there is ‘block interference similar to that shown in Figure 1, and argues that the worst-case

block interference occurs with task sets similar to the family of examples in the proof of Theorem 15,

whose limiting utilization is λ + m ln( 2
1+λ). If Lundberg’s reasoning can be made rigorous, it would

follow that umax + m ln( 2
1+umax

) is the actual worst-case RM utilization bound.

The schedulability tests presented in Section 5 also suggest the following generalization of the RM-US

idea:

ALGORITHM 2. DM-Hybrid

Choose N − ξ (where 0 ≤ ξ < m) tasks with the lowest value of ci
min{di,Ti} and call those the light

tasks; call the rest of the tasks the heavy tasks. Schedule the ξ heavy tasks maximum priority, and the

other tasks according to deadline-monotonic priorities.

The number ξ of heavy tasks is chosen so that the remaining N − ξ tasks set can be verified as

schedulable on the remaining m − ξ processors, according to whatever schedulability test is available.

For example, if one uses the O(N3) test, one would choose the smallest ξ such that the N − ξ lowest-

utilization tasks pass the O(N3) test for schedulability on m− ξ processors. If such a ξ exists, it follows

that the task set is schedulable.
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9. Conclusions

Efficiently computable schedulability tests have been given for general fixed-priority scheduling on a

homogeneous multiprocessor system, with arbitrary deadlines. These improve on previously known

multiprocessor RM schedulability conditions by relaxing the assumptions of rate monotonic priorities

and deadline being equal to period.

For the case where period equals deadline this analysis gives a simple lower bound on the minimum

achievable utilization. That is, a system of independent periodic or sporadic tasks can be scheduled by

RM scheduling to meet all deadlines if the total utilization is at most m
2 (1− umax) + umin, where umax

is the maximum of the individual task utilizations and umin is the minimum. This result can be used to

verify the RM schedulability of systems of tasks with sufficiently low individual processor utilization,

or combined with a hybrid scheduling policy to verify the schedulability of systems with a few high-

utilization tasks. It can be applied statically, or applied dynamically as an admission test. This improves

on previously known utilization-based multiprocessor RM schedulability tests, by allowing both higher

total utilizations and higher individual task utilizations. In addition to the lower bound on the minimum

achievable RM utilization, an upper bound of umax +m ln( 2
1+umax

) has been derived. However, the exact

minimum achievable RM utilization remains an open question.

The existence of these schedulability tests makes verification of single-queue (global) fixed-priority

multi-processor schedulability an option for certain classes of task sets. This may be of immediate

interest for real-time applications on symmetric multiprocessing operating systems that support global

scheduling as the default. Removing one of the reasons often given for favoring a queue-per-processor

(partitioned) approach to multiprocessor scheduling also opens the way for additional research.

Further study is needed into the comparative strengths of global versus partitioned scheduling. One

question is about the average-case performance. The worst-case utilization bounds seem very close, but

is that also true of the average case? A second question is about the implementation overhead. Global

scheduling has higher overhead in at least two respects: the contention delay and the synchronization

overhead for a single dispatching queue is higher than for per-processor queues; the cost of resuming

a task may be higher if it is on a different processor (due to interprocessor interrupt handling and

cache reloading) than on the processor where it last executed. The latter cost can be quite variable,

since it depends on the actual portion of a task’s memory that remains in cache when the task resumes

execution, and how much of that remnant will be referenced again before it is overwritten. It seems that



only experimentation with actual implementations can determine how serious are these overheads, and

how they balance against any advantages global scheduling may have for on-time completion of tasks.
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