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Abstract

This report describes a necessary and sufficient test for the schedulability of a set of sporadic hard-
deadline tasks on a multiprocessor platform, using any of a variety of scheduling policies including global
fixed task-priority and earliest-deadline-first (EDF). The contribution is to establish an upper bound on
the computational complexity of this problem, for which no algorithm has yet been described. The compute
time and storage complexity of the algorithm, which performs an exhaustive search of a very large state
space, make it practical only for tasks sets with very small integer periods. However, as a research
tool, it can provide a clearer picture than has been previously available of the real success rates of global
preemptive priority scheduling policies and low-complexity sufficient tests of schedulability.

1 Introduction

This report describes a “brute force” algorithm for determining whether a hard-deadline sporadic task
system will always be scheduled so as to meet all deadlines, for global preemptive priority scheduling
policies on multiprocessor platforms. The algorithm is presented in a generic form, that can easily be
applied to earliest-deadline-first, fixed-priority, least-laxity-first, or just about any other priority-based
scheduling policy.

Symmetric multiprocessor platforms have long been used for high performance real-time systems. Re-
cently, with the introduction of low-cost multi-core microprocessor chips, the range of potential embedded
applications of this kind of architecture as expanded rapidly.

The historically dominant approach to scheduling real-time applications on a multiprocessor has been
partitioned; that is, to assign each task (statically) to a processor, and then apply a single-processor
scheduling technique on each processor. The alternative is global scheduling; that is, to maintain a
single queue of ready jobs and assign jobs from that queue dynamically to processors. Despite greater
implementation overhead, the global approach is conceptually appealing in several respects.

Several sufficient tests have been derived for the schedulability of a sporadic task set on a multiprocessor
using a given scheduling policy, such as global preemptive scheduling based on fixed task priorities (FTP)
or deadlines (EDF) [1, 2, 3, 5, 6, 7, 10, 13]. For example, it can be shown that a set of independent
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periodic tasks with deadline equal to period will not miss any deadlines if it is scheduled by a global EDF
policy on m processors, provided the sum of the processor utilizations does not exceed (m−1)umax+umax,
where umax is the maximum single-task processor utilization [13, 10].

One difficulty in evaluating and comparing the efficacy of such schedulability tests has been distin-
guishing the causes of failure. That is, when one of these schedulability tests is unable to verify that a
particular task set is schedulable there are three possible explanations:

1. The problem is with the task set, which is not feasible, i.e., not able to be scheduled by any policy.

2. The problem is with the scheduling policy. The task set is not schedulable by the given policy, even
though the task set is feasible.

3. The problem is with the test, which is not able to verify the fact that the task set is schedulable
by the given policy.

To the best of our knowledge there are no previously published accounts of algorithms that can
distinguish the above three cases. The intent of this paper is to take one step toward closing this gap,
by providing an algorithm that can distinguish case 2 from case 3.

The algorithm presented here is simple and obvious, based on modeling the arrival and scheduling
processes of a sporadic task set as a finite-state system, and enumerating the reachable states. A task set
is then schedulable if and only if no missed-deadline state is enumerated. Although the computational
complexity of this state enumeration process is too high to be practical for most real task systems, it
still interesting, for the following reasons:

1. Several publications have incorrectly asserted that this problem can be solved by a simpler algo-
rithm, based on the presumption that the worst-case scenario occurs when all tasks have jobs that
arrive periodically, starting at time zero.

2. To the best of our knowledge, no other correct algorithm for this problem has yet been described.

3. This algorithm has proven to be useful as a research tool, as a baseline for evaluating the degree
to which faster, but only sufficient, tests of schedulability fail to identify schedulable task systems,
and for discovering interesting small examples of schedulable and unschedulable task sets.

4. Exposure of this algorithm as the most efficient one known for the problem may stimulate research
into improved algorithms.

Section 2 reviews the formal model of sporadic task systems, and what it means for a task system to be
schedulable. Section 3 describes a general abstract model of system states, and Sections 4 and 5 explain
how to compute the state transitions in the model. Section 6 shows how this model fits several well
known global multiprocessor scheduling policies. Section 7 describes a generic brute-force schedulability
testing algorithm, based on a combination of depth-first and breadth-first search of the abstract system
state graph. Section 8 provides a coarse estimate of the worst-case time and storage requirements of
the brute-force algorithm. Section 10 summarizes, and indicates the direction further research on this
algorithm is headed.

2 Sporadic Task Scheduling

A sporadic task τi = (ei, di, pi) generates a potentially infinite sequence of jobs, characterized by a
maximum (worst case) compute time requirement ei, a maximum response time (relative deadline) di ,
and a minimum inter-arrival time (period) pi. It is assumed that ei ≤ min(di, pi), since otherwise a task
would be trivially infeasible.
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A sporadic task system τ is a set of sporadic tasks {τ1, τ2, . . . , τn}.
An arrival time sequence ai for a sporadic task τi is a finite or infinite sequence of times ai,1 < ai,2 < · · ·

such that ai,j+1 − ai,j ≥ pi, for j = 1, 2, . . .. A arrival time assignment r for a task set is a mapping of
arrival time sequences ai to tasks τi, one for each of the tasks in τ . An arrival time assignment and a
task set define a set of jobs.

An m-processor schedule for a set of jobs is a partial mapping of time instants and processors to jobs.
It specifies the job, if any, that is scheduled on each processor at each time instant. For consistency, a
schedule is required not to assign more than one processor to a job, and not to assign a processor to a
job before the job’s arrival time or after the job completes. For a job arriving at time a, the accumulated
compute time at time b is the number of time units in the interval [a, b) for which the job is assigned
to a processor, and the remaining compute time is the difference between the total compute time and
the accumulated compute time. A job is backlogged if it has nonzero remaining compute time. The
completion time is the first instant at which the remaining compute time reaches zero. The response
time of a job is the elapsed time between the job’s arrival time and its completion time. A job misses its
absolute deadline if the response time exceeds its relative deadline.

The laxity (sometimes also known as slack time) of a job at any instant in time prior to its absolute
deadline is the amount of time that the job can wait, not executing, and still be able to complete by its
deadline. At any time t, if job J has remaining compute time e and absolute deadline d, its laxity is
`J(t) def= d− e.

The jobs of each task are required to be executed sequentially. That is the earliest start time of a job
is the maximum of: its arrival time; the completion time of the preceding job of the same task. This
earliest start time is also called the ready time of the job.

The decision algorithm described here is restricted to integer values for task periods, compute times,
and deadlines. This is not a serious conceptual restriction, since in any actual system time is not infinitely
divisible; the times of event occurrences and durations between them cannot be determined more precisely
than one tick of the systems most precise clock. However, it is a practical restriction, since the complexity
of the algorithm grows exponentially with the number of clock ticks in the task periods, compute times,
and deadlines, as will be explained later.

The notation [a, b) is used for time intervals, as a reminder that the interval includes all of the time
unit starting at a but does not include the time unit starting at b.

These conventions allow avoid potential confusion around end-points and prevent impractical schedu-
lability results that rely on being able to slice time at arbitrary points. They also permit exhaustive
testing of schedulability, by considering all time values in a given range.

3 The Abstract State Model

Determining whether a sporadic task system τ can miss any deadlines if scheduled according to a given
algorithm can be viewed as a reachability problem in a finite non-deterministic state transition graph.
Given a start state in which no jobs have yet arrived, the problem is to determine whether the system
can reach a state that represents a scheduling failure. A task set is schedulable if-and-only-if there is no
sequence of valid transitions from the system start state to a failure state.

Ha and Liu [11] defined the concept of predictable scheduling policy, and showed that for for all
preemptive global fixed-task-priority and fixed-job-priority scheduling policies are predictable. As a
consequence, in considering such scheduling algorithms we need only consider the case where each job’s
compute time requirement is equal to the worst-case compute time requirement of its generating task.

In order to reduce the time and storage complexity of determining schedulability, it is desirable to
express the system state as simply as possible, and to eliminate from consideration as many states as
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possible.
Given a task system τ , an abstract system state S is an n-tuple of the form

((nat(S1), rct(S1)), . . . , (nat(Sn), rct(Sn)))

The value nat(Si) denotes the earliest next arrival time for task τi, relative to the current instant, and
the value rct(Si) denotes the remaining compute time of the job of τi that is currently contending for
processor time.

If rct(Si) is zero there is no job of τi contending for processor time. That is, all the jobs of τi that have
arrived so far have been completed. In this case the earliest time the next job of τi can arrive is nat(Si)
time units from the present instant. That value cannot be negative, and it is zero only if a job of τi can
arrive immediately.

If rct(Si) is positive, there is a job J of τi contending for processor time and J needs rct(Si) units of
processor time to complete. In this case, nat(Si) is the offset in time, relative to the current instant,
of earliest time that the next job of τi after J can arrive. If the value is negative, the earliest possible
arrival time of the next job of τi after J is nat(Si) time units in the past.

It follows that the task abstract state determines the following information for each task in a system:

• Task τi has a ready job if-and-only-if rct(Si) > 0.

• The remaining compute time of the current ready job of τi is rct(Si).

• The time to the arrival of the next job after the current ready job of τi is nat(Si).

• The time to the next deadline of the current ready job of task τi is

ttd(Si) = nat(Si)− (pi − di) (1)

• The laxity of the current ready job of τi is

laxity(Si) = ttd(Si)− rct(Si) (2)

There are two kinds of state transitions. The passage of one instant of time is modeled by a clock-tick
state transition, which is deterministic. A job becoming ready is modeled by a ready state transition.
Ready transitions are non-deterministic, because the sporadic task model allows a job to arrive any time
≥ one period after the arrival time of the preceding job in the same task.

An abstract system state is reachable if it is reachable from the start state via a finite sequence of
clock tick and ready transitions.

The system start state is defined to be ((0, 0), . . . , (0, 0)). That is, the state in which there are no tasks
contenting for processor time, and all tasks are eligible to arrive.

An abstract state is a failure state if there is some task τi for which laxity(Si) < 0, that is, if the
remaining time to deadline is less than the remaining compute time of the current ready job of τi.

It follows from the construction of the model that a task system is schedulable to meet deadlines
if-and-only-if no failure state is reachable from the start state. This can be tested using any finite graph
reachability algorithm.

4 Clock-Tick Transitions

The clock-tick successor of a state S depends on the set run(S) of tasks that the scheduling policy
chooses to execute in the next instant. It is assumed that run(S) includes only tasks τi that need to
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execute (that is, rct(Si) > 0) and that the scheduling policy is work-conserving (that is, the number of
tasks in run(S) is the minimum of the number of available processors and the number of tasks that are
competing for processor time.

The clock-tick successor S′ = Next(S) of any abstract system state S is then computable as follows:

rct(S′
i)

def=
{

rct(Si) if τi /∈ run(S)
rct(Si)− 1 if τi ∈ run(S)

nat(S′
i)

def=
{

max(0,nat(Si)− 1) if rct(Si) = 0
nat(Si)− 1 if rct(Si) > 0

The reasoning behind the computation of rct(S′
i) is simple. S′ represents a state one time unit further

into the future than S, so when going from S to S′ the remaining compute time is reduced by one time
unit for those jobs that are scheduled to execute, and is unchanged for those jobs that are not scheduled
to execute.

The reasoning behind the computation of nat(S′
i) involves two cases, based on whether there is a job

of τi contending for processor time in S:
(i) If rct(Si) = 0 then there is no job of τi contending for processor time, and the earliest time a job of
τi can arrive is nat(Si) time units after S. If nat(Si) ≤ 0 the inter-arrival constraint permitted a job
of τi to arrive at the time of S, but it did not arrive and so can still arrive at the time of S′; therefore
nat(S′

i) = 0. Otherwise, nat(Si) > 0 and the time to next arrival in S′ should be one time unit sooner
than in S, so nat(S′

i) = nat(Si)− 1.
(ii) If rct(Si) > 0 then there is a job J of τi contending for processor time in S, and if di > pi, there may
be one or more other backlogged jobs of τi that have arrived but are waiting for J to complete. Let J ′ be
the next job of τi to arrive after J . The earliest time that J ′ could arrive is nat(Si) (positive or negative)
time units from the time of S . Since S′ represents a state one time unit later than S, the adjustment
for the passage of one unit of time is nat(S′

i) = nat(S′
i)− 1.

At first it might seem that the value of nat(S′
i) could decrease without bound in case (ii) if di > pi.

That is not possible, so long as we stop as soon as we find a failure state. The deadline constraint
provides a lower bound on how far negative nat(S′

i) can go without a job missing a deadline. That is, if
S is a non-failure state and J has non-zero remaining compute time then the current time is certainly
before J ’s deadline, the deadline of J ′ is at least pi units in the future, and J ′ cannot arrive earlier than
min(di − pi, 0) + 1 time units before S′. Therefore, the number of reachable non-failure states is finite.

5 Ready Transitions

The event of a new job becoming ready is modeled by a ready state transition. A job of a sporadic
task may become ready any time that the preceding job of τi has completed execution and at least pi

time has elapsed since the preceding job arrived. In other words, a ready transition from state S for task
τi is possible if-and-only-if rct(Si) = 0 and nat(Si) ≤ 0.

For each task τi and each state S such that rct(Si) = 0 and nat(Si) ≤ 0, the states S′ to which a
τi-ready transition is possible are all those that differ from S only in the values of rct(S′

i) and nat(S′
i)

and satisfy the following:
rct(S′

i) = ei, nat(Si) + pi ≤ nat(S′
i) ≤ pi

The reasoning is that a new job J ′ of τi does not become ready until the current job J of τi has been
completed (indicated by rct(Si) = 0), and the exact arrival time of J ′ does not matter until that instant.
Then, the arrival time of J ′ can be chosen (non-deterministically) to be any instant from the present
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back to nat(S′
i) clock ticks into the past. It follows that the earliest arrival time of the next job of τi

after J ′, relative to the present, can be any value between nat(Si) + pi and pi.
Ready transitions are non-deterministic, and are viewed as taking no time. Therefore, several of them

may take place between one time instant and the next. Ready(S) is the set of all states that can be
reached by a sequence of one or more ready transitions from state S.

6 Specific Scheduling Policies

The basic abstract state model described above contains enough information to support the computa-
tion of the run(S) for several scheduling policies, including the following global multiprocessor scheduling
policies:

Fixed task priority: Assuming the tasks are ordered by decreasing priority, choose the lowest-
numbered tasks.

Shortest remaining-processing first: Choose tasks with the smallest nonzero values of rct(Si).
Earliest deadline first (EDF): Choose tasks with the shortest time to next deadline. The time to

next deadline of each task can be computed using equation (1).
Least laxity first (LLF): Choose tasks with the smallest laxities. The laxity of each task can be

computed using equation (2).
Throwforward:[12]: Choose up to m tasks by following algorithm: (i) Choose the task with shortest

ttd(Si). Let t
def= ttd(Si) for this task. (ii) Choose the tasks with positive throwforward on the above task,

where the throwforward TF(Si) of task τi in state S is defined as follows:

TF(Si)
def= t− (ttd(Si)− rct(Si))

It is clear that some hybrids of the above including earliest-deadline zero-laxity (EDZL) [9], and LLREF
[8]1, can also be accommodated. Some more algorithms can also be supported, by adding information to
the state; for example, to resolve priority ties in favor of the task that last executed on a given processor,
it is sufficient to add one bit per task, indicating whether the task executed in the preceding time instant.

7 Generic Algorithm

It is clear that the set of all states reachable from the start state can be enumerated by breadth-first or
depth-first search. Suppose the state set Known starts out containing just the start state. The objective
of the algorithm is to compute the closure of this set under all legal clock-tick and ready transitions, by
iteratively visiting each member of the set, where visiting a state S involves: (a) determining the unique
clock-tick successor, if there is one; (b) determining the set of states Ready(S), including one state for
each possible combination of new ready jobs. Each new state encountered in step (a) or step (b) is then
added to the set of reachable states, Known. Thus, at any point in time the set Known includes both
all the states that have been visited and some unvisited states whose predecessors have been visited.

To keep track of which states have been visited, the set Unvisited is introduced, which initially is
the same as Known. When a new state is found, it is added to both Known and Unvisited . States
to visit are chosen from Unvisited , and they are removed once they have been visited. Depending on
whether Unvisited is organized as a stack or a queue, this results in either a depth-first or a breadth-first
enumeration of reachable states. The algorithm terminates when either a failure state is found or there
are no remaining states left in Unvisited .

1These algorithms are known to be predictable in the sense of Ha and Liu[11].
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Brute(τ)
1 S ← ((0, 0), . . . , (0, 0))
2 Unvisited ← {S} ∪ Ready(S)
3 Known ← Unvisited
4 while Unvisited 6= ∅ do {
5 choose S ∈ Unvisited
6 Unvisited ← Unvisited −{S}
7 repeat
8 if ∃i laxity(S, τi) < 0 then return 0 � failure
9 S ← Next(S)

10 if S /∈ Known then {
11 Known ← Known ∪ {S}
12 for S′ ∈ Ready(S) do
13 if S′ /∈ Known then {
14 Known ← Known ∪ {S′}
15 Unvisited ← Unvisited ∪ {S′}
16 }
17 } else S ← undefined
18 until S = undefined
19 }
20 return 1 � success

Figure 1. Pseudo-code for brute-force schedulability test.

The algorithm Brute, whose pseudo-code is given in Figure 1, differs from the above abstract de-
scription by taking the following two shortcuts.
(i) Since there is a most one state that can be reached by clock-tick transition from any given state, the
step of inserting clock-tick successors into Unvisited is skipped, and the clock-tick successor is visited
immediately after its clock-tick predecessor. In this way, the algorithm proceeds depth-first along the
(deterministic) clock-tick transitions, and queues up in Unvisited all the unknown states that can be
entered via (non-deterministic) ready transitions from states encountered along the depth-first path.
When the algorithm reaches a state from which no further clock-tick transitions are possible, it backtracks
to the next unvisited state.
(ii) Since the set Ready(S) is closed under ready transitions, there is no need to enumerate further ready
transitions from states in Ready(S). Therefore, step (2) of visitation is skipped for states that are added
via step (2).

Note that the chain of states S′ enumerated by the depth-first repeat-until loop (7) is completely
determined by the state S chosen at (5). There is a possibility that the chains of states for two different
values of S may converge to a common state, after which the two chains will be the same. Such repetition
of states entered on a scheduling transition will be detected at line (14), terminating the repeat-until
loop early via (17) if S′ is found in Known. This avoids re-traversal of convergent chains, and limits the
aggregate number of iterations of the repeat-until loop (summed over all iterations of the while-loop) to
one per state reachable by a scheduling transition.

This algorithm is just one of several state enumeration algorithms that would work. The combination
of depth-first search for clock-tick transitions and breadth-first search for ready transitions was chosen
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because it seemed to result in failures being detected earlier, on the average, than with pure breadth-first
or depth-first search.

8 Computational Complexity

It is clear that algorithm Brute visits each node and edge of the state graph at most once, so the
worst-case computation complexity can be bounded by counting the number of possible states.

Theorem 1 The worst-case complexity of deciding schedulability on an abstract system-state graph for
a task system τ of n tasks is O(N · (1 + 2n)), and N is an upper bound on the number of system states,
where

N =
n∏

i=1

((ei + 1)(min(0, di − pi) + pi + 1)) (3)

proof:
Clearly, the range of values for rct(Si) is in the range 0 . . . ei. From the definition of nat(Si) and the

reasoning in the last paragraph of Section 4, it is clear that the range of values for nat(Si) is in the range
min(0, di− pi) + 1 . . . pi. Therefore, an upper bound on the number of nodes in the state graph bounded
by the value N given in (3).

The number of edges per node is at most 1 + 2n; that is, one for the clock-tick transition and at most
2n for the various combinations of possible ready transitions. Therefore, the number of edges is grossly
bounded by

E ≤ N × (1 + 2n) (4)

The theorem follows. 2

Theorem 1 gives an upper bound on the number of iterations of the innermost loop of algorithm
Brute. The primitive operations on the set Known can be implemented in average-case O(n) time (to
compare the n elements of a state) using a hash table, and the primitive operations on the set Unvisited
can be implemented in time O(n) (to copy new states) using a stack. It follows that the worst-case
complexity of the algorithm is at most O(n ·N · (1 + 2n)), where N is the upper bound on the number
of states derived in Theorem 1.

Assuming that ei and pi fit into a standard-sized word, the storage size of one state is O(n) words,
and so an upper bound on the storage complexity of the algorithm is O(n ·N),

These bounds grows very quickly, both with the number of tasks and the sizes of the task periods and
deadlines. On the other hand, the bound is based on counting the entire domain of all possible states,
and over-bounding the number of state transitions, whereas the algorithm considers only reachable states
and terminates soon as it finds a failure state. Therefore, the actual numbers of states and transitions
considered by the algorithm will be less than the upper bound.

9 Performance

We have implemented and tested algorithm Brute for all the specific scheduling policies mentioned as
examples in Section 6. Because of the large storage and execution time requirements (especially storage),
we have only been able to test it on small task sets. Nevertheless, the results are interesting. Due to the
page limit of this conference, only the results of one experiment are provided here.

The experiments whose results are shown in Figures 2 through 5 are for global EDF scheduling of
pseudo-randomly generated task sets, on two processors. The periods (pi) are uniformly distributed in
the range 1 . . . pmax, for pmax in the range 3 . . . 6. (We ran out of memory for pmax = 6.) The utilizations
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(ui = ei/pi) are exponentially distributed with mean 0.35. The deadlines (di) are uniformly distributed
in the range [uipi, pi] (constrained deadlines), or the range [uipi, 4 ∗ pi].

Duplicate task sets were discarded, as were task sets that could be obtained from other task sets
by re-ordering the tasks or scaling all the task parameters by an integer factor. In addition, task sets
that were trivially schedulable by global EDF because n ≤ m or

∑n
i=1 ei/ min(di, pi) ≤ 1, or obviously

unschedulable by any algorithm because maxmin load > m [4] were also discarded. The experiment was
run on 100,000 task sets that passed this initial screening.

The following tests were applied to each task set:

• Quick EDF: The sufficient schedulability test for global EDF scheduling of Bertogna, Cirinei, and
Lipari[6] and the density test

∑N
i=1

ci
min{di,Ti} ≤ m, (also described in [6]) were computed. Since

task sets that passed either of these quick tests are schedulable, they were not subjected to the
brute force test.

• Brute EDF: Algorithm Brute for global EDF scheduling was applied.

 0
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 30  40  50  60  70  80  90  100

utilization

brute EDF
quick EDF

Figure 2. Success of quick versus brute-force tests for global EDF scheduling, for task sets with integer periods
in the range 1 . . . 5 and unconstrained deadlines.

Figure 2 is a normalized histogram in which the X axis corresponds to a total processor utilization
value and the Y axis corresponds to the ratio of the number of task sets that could be shown to be
schedulable to the number of task sets tested, for the utilization range [X, X + 0.01). A Y-value of
1.0 indicates that all task sets were verified as being schedulable. The jaggedness of the graph is due
primarily to the small range of integer values (0 . . . 5) permitted for periods and execution times, which
produces only a small number of possible utilization values and makes some values more probable than
others. The jaggedness is further exaggerated by the small sample size.

It can be seen that the quick EDF tests are rather pessimistic, especially at higher utilization levels.
The EDF performance, according to the brute force test, appears to be near 100 percent. That may
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seem suspiciously good, considering that some of the task sets tested might be infeasible (not schedulable
by EDF of any other algorithm. Part of the explanation is that rule for choosing deadlines is strongly
biased toward post-period deadlines. Such task sets tend to be feasible, and to be EDF-schedulable. The
performance of global EDF was much worse on other experiments, shown in Figure 3, where the task
deadlines were constrained to be less than or equal to the periods.

 0

 0.2

 0.4

 0.6

 0.8

 1

 30  40  50  60  70  80  90  100

utilization

brute EDF
quick EDF

Figure 3. Success of quick versus brute-force tests for global EDF scheduling, for task sets with integer periods
in the range 1 . . . 5 and constrained deadlines.

Part of the explanation also is that task sets with smaller integer periods tend to be more readily
schedulable at high utilization levels than task sets with a larger range of periods. This is apparent in
Figure 4, which shows the distribution of the number of states explored by the brute-force EDF algorithm
for several values of pmax.

Figure 5 shows the distribution of the number of states explored by the brute-force EDF algorithm
This makes it clear why the experiments were limited to task sets with very small integer values for
periods, deadlines, and execution times.

10 Conclusion

Schedulability of sporadic task systems on a set of identical processors can be decided in finite time
for several global preemptive priority-based scheduling policies, using a generic brute-force enumerative
algorithm. Gross upper bounds have been derived for the time and storage complexity of this approach.

Several prior publications have incorrectly asserted that schedulability of sporadic task systems under
global EDF scheduling can be decided using a simpler algorithm, based on simulating execution when
all tasks have jobs that arrive periodically, starting at time zero. To the best of our knowledge, ours is
the first proposal of a correct algorithm for this problem. Moreover, it also applies to a variety of other
priority-based global scheduling policies.
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Figure 4. Success of brute-force test for global EDF scheduling with respect to time granularity

The algorithm has been implemented and tested on a variety of task sets, for several different scheduling
policies. Exponential growth in the running time and storage, especially storage, limit the algorithm’s
application to small task sets.

Nevertheless, it has proven to be useful as a research tool, for finding examples of task sets that are
schedulable by one method and not by another, and in providing insight into the degree to which more
efficient but only sufficient tests of schedulability err in the direction of conservatism.

We hope that, by publishing this simple brute-force algorithm, we may establish a base-line and
stimulate research into faster algorithms for this important class of scheduling problems.
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