
 i

THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

A COMPARATIVE PERFORMANCE

ANALYSIS OF REAL-TIME PRIORITY QUEUES

By

Nikhil Mhatre

Major Professor: Dr. T.P. Baker

In partial fulfillment of the

Master of Science degree, Fall 2001

 ii

Acknowledgements

I would like to express my deep appreciation to my advisor, Dr. Baker without whose constant

support and encouragement, this project would not have seen completion. His original ideas,

comments and suggestions were invaluable to me at all times. I also wish to thank my committee

members, Dr. Lacher and Dr. Van Engelen for spending their time and effort reviewing this

report. I am grateful to Mr. Gaitros, who has been very helpful to me by lending me the resources

needed to complete this work.

My sincerest gratitude goes to my friends, peers and colleagues, Bharath Allam, Nikhil Iyer, and

Nikhil Patel, who were constantly with me with their suggestions and support.

I wish to thank Smita Bhatia for her immense patience and inexhaustible support, and my parents,

Shaila and Jayprakash for bearing with me through this considerable length of time

Last but not the least, a special thanks goes to Douglas Adams for helping me understand the

concept of the Babel fish.

 iii

TABLE OF CONTENTS

CHAPTER PAGE

ABSTRACT.. 1
1. INTRODUCTION... 2

1.1 Definition ...2
1.2 Objective ..2
1.3 Requirements for Real-Time Systems..3
1.4 Terminology...3

2. BACKGROUND... 5
2.1 Rings ..5
2.2 Implicit Heaps ..6
2.3 Leftist Trees..6
2.4 B-Trees ...7
2.5 AVL Trees..7
2.6 D-Trees...8
2.7 Binomial Queues ..8
2.8 Pagodas ..9
2.9 Fishspear...10
2.10 Splay Trees...10
2.11 Skew Heaps ..11
2.12 Pairing Heaps ...11
2.13 Bit Vectors..12
2.14 Lazy Queue ..13
2.15 Calendar Queue ..14

3. IMPLEMENTATION ... 15
3.1 Programming Conventions...15
3.2 Measurement Environment ..15
3.3 Measurement Overheads ..16
3.4 Average case ..17
3.5 Worst case ..19

4. MEASUREMENTS .. 21
4.1 Average Case..21
4.2 Worst Case ...32

5. CONCLUSIONS... 36
5.1 Recommendations ..36
5.2 Incomparable features ..37
5.3 Future Work ...37

APPENDIX A ... 39
APPENDIX B ... 48
BIT VECTOR PACKAGE IMPLEMENTATION... 50
REFERENCES.. 54

 iv

LIST OF TABLES

TABLE PAGE

Table 1. Rings (Assembly) – Average case Insert performance 39

Table 2. Rings (Assembly) – Average case Delete performance 40

Table 3. Rings – Average case Insert performance 40

Table 4. Rings – Average case Delete performance 41

Table 5. Bit Vector – Average case Insert performance 41

Table 6. Bit Vector – Average case Delete performance 42

Table 7. B-Trees – Average case Insert performance 42

Table 8. B-Trees – Average case Delete performance 43

Table 9. Heaps – Average case Insert performance 43

Table 10. Heaps – Average case Delete performance 44

Table 11. D-Trees – Average case Insert performance 44

Table 12. D-Trees – Average case Delete performance 45

Table 13. Overall average case Insert performance 45

Table 14. Overall average case Delete performance 46

Table 15. Worst case Insert performance 46

Table 16. Worst case Delete performance 47

 v

LIST OF FIGURES

FIGURE PAGE

Figure 1. Real-Time Linux 16

Figure 2. Rings (Assembly) – Average case Insert Performance 25

Figure 3. Rings (Assembly) – Average case Delete performance 25

Figure 4. Rings – Average case Insert performance 26

Figure 5. Rings – Average case Delete performance 26

Figure 6. Bit Vector – Average case Insert performance 27

Figure 7. Bit Vector – Average case Delete performance 27

Figure 8. B-Trees – Average case Insert performance 28

Figure 9. B-Trees – Average case Delete performance 28

Figure 10. Heaps – Average case Insert performance 29

Figure 11. Heaps – Average case Delete performance 29

Figure 12. D-Trees – Average case Insert performance 30

Figure 13. D-Trees – Average case Delete performance 30

Figure 14. Overall – Average case Insert performance 31

Figure 15. Overall – Average case Insert performance 31

Figure 16. Worst case Insert performance 34

Figure 17. Worst case Delete performance 34

Figure 18. Worst case results for D-Trees and Heaps (Insert) 35

Figure 19. Worst case results for D-Trees and Heaps (Delete) 35

 1

Abstract

Many real-time applications require the use of priority queues, for priority dispatching or for

timed events. The stringent performance requirements of real-time systems stipulate that

randomness and unpredictability in all software components be avoided. This suggests that

priority queue algorithms used in real-time software be well understood and have bounded worst-

case execution time.

A survey of existing priority queue algorithms is conducted to select ones that are suitable for

real-time applications. Empirical average and worst-case performance evaluation of selected ones

is performed and the results analyzed. This survey is improved by the availability of a higher

resolution, reliable clock function that enabled point-to-point measurement of execution times as

compared to the restrictive method of averaging the execution times over a large number of runs.

 2

1. Introduction

1.1 Definition

A priority queue is a set of items each of which has a priority drawn from a totally ordered set.

Elements of a priority queue can be thought of as awaiting service, where the item with the

smallest priority is always to be served next. Ordinary stacks and queues are special cases of

priority queues [2].

Typically, applications require the primitive operations: Make_Empty, Insert, Delete, Min,

Member and Empty. The primitive operation Make_Empty (Q) returns an empty queue Q. Insert

(Q, item) inserts the specified item in the queue Q. The operation Delete (Q, item) removes the

specified item from Q. Min (Q) returns an item in Q having the least priority and Member (Q,

item) returns true if an item having that name is in Q, else it returns false. Finally, Empty (Q)

returns true if there are no items in the queue Q and false otherwise.

Priority queues find applications in job scheduling, discrete event simulation, and various sorting

problems. Priority queues have also been used for optimal code construction, shortest path

computations and computational geometry.

1.2 Objective

This study addresses the problem of choosing an appropriate priority queue algorithm for an

application. There are many different priority queue algorithms and many applications; no

priority queue algorithm is best for all applications. The applications that we are primarily

interested in here are real-time systems. This analysis is based on a prior study by Maheshwari [1]

and is aimed at bringing it up to date. We were aided in this exercise by the availability of a

 3

higher resolution clock function provided by RT-Linux [17], which has enabled us to gather more

accurate results.

1.3 Requirements for Real-Time Systems

Typical use of priority queues in real-time systems is in job scheduling and in timed-event or

“wakeup” queues. In the former, jobs waiting to be dispatched are ordered by priority in a queue

and the dispatcher serves the job with the highest priority. The latter consists of jobs that are

currently suspended but which need to be activated at some future time. These jobs are arranged

in the queue in order of increasing wakeup times. When the first job’s wakeup time equals the

system time, it is removed from the queue and appropriate actions are performed.

The fact that distinguishes the use of priority queues for real-time applications from other

applications is that in real-time systems we are usually interested in the worst-case performance

rather than the average-case performance. The criticality of “hard” real-time systems requires that

unpredictability and randomness be avoided. Moreover, in real-time systems, queue sizes are

small or moderate. This eliminates priority queue algorithms that perform well only for very large

queue sizes. Finally, the algorithms must efficiently support all the operations that may be

required in real-time applications (e.g. arbitrary deletion).

1.4 Terminology

The time taken by an algorithm can vary considerably between two different executions of the

same size. In the worst–case analysis of an algorithm we only consider those instances of that size

on which the algorithm requires the most time. However, on the average, the required time is

appreciably shorter. This analysis of the average execution time on instances of size n is called

average-case analysis. The analysis depends on the distribution of test cases.

 4

In most applications of data structures, we wish to perform not just a single operation but also a

sequence of operations, possibly having correlated behavior. By averaging the running time per

operation over a worst-case sequence of operations, one can sometimes obtain an overall time

bound much smaller than the worst-case time per operation multiplied by the number of

operations. This kind of averaging is called amortization [3].

A priority queue algorithm is said to be stable if it maintains first-in, first-out (FIFO) order within

elements of the same priority.

Finally, “little-oh” is defined as: f(n) ~ o(g(n)) iff there exists a positive constant no such that for

n > no

1)(/)(lim =
∞→

ngnf
n

 5

2. Background

As with all abstract data types, there are many ways to implement priority queues; each

implementation involves a data structure used to represent the queue, and an algorithm that

implements each abstract operation in terms of this structure.

What follows is a brief overview of the algorithms surveyed and justification as to why they were

selected, or eliminated from testing here. The selection is in accordance with the requirements

given in the first chapter.

2.1 Rings

Rings are ordered linear lists that are connected in a circular fashion. For an n item ring, an O (n)

search is required when an item is inserted or deleted. Min can be implemented in constant time

and Delete_Min also requires constant time. There are many versions of rings including singly

linked rings and doubly linked rings. Both forms were tested empirically and singly linked rings

were retained for further analysis as they are simpler to implement and the results obtained can be

extrapolated to doubly linked lists. They also have the advantage of requiring less storage. The

biggest disadvantage of Rings is that they have an O(n) worst case execution time. It is possible

to implement rings using linked lists or arrays. The disadvantage of the former is that it requires

dynamic storage allocation, which may be undesirable in some real time systems. The latter has

the disadvantage of placing an upper bound on the number of elements that can be

accommodated. The implemented test here uses linked lists.

Rings were selected because we expected good performance for small sized queued. They also

have the advantage of placing no restriction on the number of items that can be accommodated

and are easy to implement. Finally, rings are stable. A version of rings was also implemented in

 6

assembly language and tested to measure the performance improvement in going from a high

level language to assembly language.

2.2 Implicit Heaps

Implicit Heaps, or simply heaps [4] are the oldest priority queue algorithm with O(log n)

performance. The heap data structure is based on binary trees in which each item always has a

higher priority than its children. In an implicit heap, the tree is embedded in an array. The rule is

that location 1 is the root of the tree, and that locations 2i and 2i+1 are the children of location i.

Since the smallest item resides at the root of the heap, Min can be implemented in constant time.

The Insert operation appends the item at the last (i.e. rightmost) leaf and lets it rise towards the

root so as to restore heap order. Delete replaces the item by the last item and then lets this item

rise or fall so as to restore heap order.

Heaps were a natural choice for measurements as they have good performance, are well

understood and are a basis of comparison in the literature. A drawback of using implicit heaps is

that storage for the data structure must be statically allocated. This places an upper bound on the

number of items that can be accommodated. Finally, heaps are not stable.

2.3 Leftist Trees

Leftist trees [5], which were invented by C.A. Crane, use the heap structure, but here the heap is

explicitly represented with pointers from parents to their children. The two children are sorted so

that the right path is the shortest path from the root to an external node. The fundamental

operation on leftist trees is melding, i.e. joining two trees. To insert an item into a leftist tree, we

make the item into a one-node tree and meld it with the existing tree. To delete a minimum item,

we remove the root and meld its left and right sub-trees. Both these operations take O(log n) time.

Arbitrary deletion is more difficult and requires adding information to the tree representation or

 7

using a more intricate algorithm in which an item to be deleted is merely marked as deleted, the

actual deletion is carried out during subsequent Min operations.

Leftist trees were eliminated from this analysis because it has been shown by Jones [6] that they

are consistently about 30 percent slower than implicit heaps.

2.4 B-Trees

B-Trees, introduced by Bayer and McCreight [7], are a generalization of the binary search tree.

They maintain the linear left-right order condition on the node that binary search trees possess,

while maintaining the balance of the tree. This linear left-right ordering is what sets them apart

from heaps. The price of these improvements is added complexity in the programming. B-trees

have insertion and deletion defined so that the number of children of each node always lies within

fixed lower and upper limits (a and b respectively). B-trees are widely used to provide fast access

to externally stored files [4].

B-trees were selected for analysis because we believed that they would perform well for large

queue sizes if the number of items per node were large. However, after we finished implementing

them, it was apparent that they would be inefficient. The measurements presented here are just for

the 2, 4 version. Other a, b versions did not produce significantly different results and hence were

left out. Their dismal average-case performance ruled them out from the worst-case

measurements.

2.5 AVL Trees

AVL trees, also called height-balanced trees, were developed by G.M. Adel’son-Vel’skii and

E.M. Landis [8]. An AVL tree is a binary search tree in which the heights of the left and right

sub-trees of any node differ by at most one. Insertion and deletion in AVL trees is the same as for

 8

any binary search tree. However, to restore balance, single and double rotations are performed

[9]. Insertion and deletion take O(log n) time.

Like B-trees, AVL trees are not simple to implement They were eliminated from the tests here as

they have been shown to be inferior by Jonassen and Dahl [10].

2.6 D-Trees

D-trees are due to T.P. Baker and were first described in [1]. D-trees are a special form of heaps

implemented as binary decision trees. As in heaps, the tree is embedded in an array with the root

at location 1 and for each node i, the left child of i is at 2i and the right child at 2i + 1. They differ

from heaps in that all items are stored at leaves. Any node that is a parent of a node to which an

item is assigned is always an interior node. The value stored at an interior node is the one with the

higher priority of its two children. Thus the root has the item with the highest priority and Min

can be computed in O(1) time. Inserting a sentinel value at all the nodes initializes the D-Tree.

This sentinel has a priority that is lower than the lowest possible priority. For a real item Insert

simply inserts the item in its designated place at one of the leaves and propagates the change in

priority of parent nodes up to the root. Replacing the item with the sentinel value and propagating

this change up the tree performs deletion.

D-trees were included in these tests as it is a new algorithm that had never been tested, and

promised good performance. The disadvantages of D-Trees are that it requires almost twice the

storage of heaps, and like heaps, are not stable

2.7 Binomial Queues

Developed by Jean Vuillemin [2], the binomial queues are a very interesting and conceptually

simple data structure. A binomial queue is represented as a forest of heap-ordered trees where the

number of elements in each tree is an exact power of two. The times taken by operations on a

 9

binomial queue are bounded by O(log n). Empirical and theoretical evidence gathered by Brown

suggests that binomial trees give the fastest implementation of meldable heaps when constant

factors are taken into account. Binomial queues use less storage than leftist or AVL trees but are

complex to code.

Binomial queues were left out from the experiments here because Brown [11] has shown that

heaps are slightly faster than binomial queues on the average and considerably faster in the worst

case. These results were reopened and questioned in [6], where it was claimed that binomial

queues are nearly optimal.

2.8 Pagodas

Pagodas [12], like leftist trees, are based on heap ordered binary trees. However, unlike leftist

trees, in a Pagoda the primary pointers lead from the leaves of the tree towards the root. A

secondary pointer in each item of the tree points downwards from that item to its otherwise

unreachable leftmost or rightmost descendant. The root, having no upward pointer, has pointers to

both its leftmost and rightmost descendants. As a result, all items in a pagoda are reachable from

the root by somewhat complex paths, and all branches of the structure are circularly linked. The

insert operation is based on merging the right branch of one pagoda with the left branch of

another. Deletion requires finding the two pointers to the item, which can be done because all

branches are circularly linked.

Unlike leftist trees and binomial queues, no effort is made to maintain the balance of a pagoda.

Therefore, although the average time for operations on pagodas is O(log n), there are infinite

sequences of operations that take O(n) time per operation [6]. This was the reason pagodas were

not included in the tests here.

 10

2.9 Fishspear

The Fishspear [13] algorithm is one of the recent priority queue algorithms. Fishspear is an

instance of a general class of (non-deterministic) algorithms, which operate on a data structure

called a Fishspear. Fishspear can be implemented with sequential storage and is more efficient

than heaps in two senses. First, both have the same amortized O(log n) worst-case comparison per

queue operation, but in Fishspear the coefficient of log n is smaller. Secondly, the number of

comparisons is “little-oh” of the number made by heaps for many classes of input sequences that

are likely to occur in practice. However, it is more complicated to implement than heaps and the

overhead per comparison is greater.

Fishspear is similar to self-adjusting heaps in that the behavior depends dynamically on the data

and the cost per operation is low only in the amortized sense – individual operations can take time

Ω(n). Clearly, Fishspear was not suitable for our purposes and was not treated.

2.10 Splay Trees

Splay trees, developed by Sleator and Tarjan [14] are a form of binary search tree based on the

concept of self-adjustment and amortized execution time. The restructuring heuristic used in splay

trees is splaying which moves a specified node to the root of the tree by performing a sequence of

rotations along the (original) path from the node to the root. Splay trees avoid the costs associated

with tree balancing by blindly performing pointer rotations to shorten each path followed in the

tree. This avoids the necessity of maintaining or testing records of the balance of the tree but it

also increases the number of rotations performed. Splay trees are stable.

We see that in splay trees, individual operations within a sequence can be expensive making them

unsuitable for real time applications. Hence they were rejected.

 11

2.11 Skew Heaps

Skew heaps are also due to Sleator and Tarjan [3] and they too do not rely on any mechanism that

limits the cost of individual operations As a result, individual inserts or deletes may take O(n)

time However skew heaps guarantee that the cost per operation will never exceed log(n) if the

cost is amortized over a sufficiently long sequence of operations. The basic operations on a skew

heap are very similar to those on a leftist tree, except that no record of the path length to the

nearest leaf is maintained with each item; instead, the children of each item visited on the merge

path are simply exchanged, thereby effectively randomizing the tree structure.

Skew heaps were left out from our tests for the same reason as splay trees.

2.12 Pairing Heaps

Pairing heaps correspond to binomial queues in the same way that skew heaps correspond to

leftist trees. A pairing heap is represented as a heap ordered tree where the insert operation can be

executed in constant time either by making the new item the root of the tree, or by adding the new

item as an additional child of the root. The Delete operation removes the sub-tree headed by the

item from the heap and links it to the root after deleting the item from the sub-tree. The key to the

efficiency of pairing heaps is the way in which the new root is found and the heap reorganized as

the result of a delete operation. This is done by linking successive children of the old root in pairs

and then linking each of the pairs to the last pair produced.

Pairing heaps have an O(log n) amortized performance bound, but as can be seen from the above

description, they are not suitable for real time applications.

 12

2.13 Bit Vectors

Most modern microprocessors now provide bit scan instructions or floating point normalization

instructions. Bit vectors can be implemented in assembly language on any processor that has

either of these facilities. Our implementation used bit scan instructions.

The data structure used by this algorithm in its simplest form is an array of n, where n is the

number of jobs to be accommodated. Thus every job has a bit associated with it. The bit

corresponding to a job can be calculated based on its job number, priority level or time-stamp. An

Insert is performed by calculating the bit corresponding to that job and setting it. Similarly,

Delete is performed by resetting the bit associated with that job. In this form of implementation,

Min can be determined only by scanning through the entire array and determining the first bit that

is set. This overhead can be avoided by implementing a hierarchical structure of bit vectors as

shown below.

Here, the bits in the first two levels of bit vectors correspond to intervals of priority. Thus, if the

first bit in the top level is set, it means that there is at least one job with priority from 0 through

255 present in the queue. The first bit in the second level being set indicates that there is at least

one job with priority from 0 through 15 is present in the queue and so on. For example, if a job

with priority 17 is the highest priority job in the queue, then Min can be determined as follows:

1. Scan the first level to determine that the first bit is set.

2. Scan the cell of the second level corresponding to the first bit of level one (the first element).

3. Scan the cell of the third level corresponding to the first bit of level two (the second element).

The third scan instruction will determine that a job with priority 17 exists which is the current

Min. Hence, with this implementation, it can be guaranteed that Min can be determined by three

bit scan instructions i.e. in constant time.

 13

Bit-Vectors were included in these tests as they promised good performance because of the speed

of the scan instructions and other bit-manipulation instructions. However, Bit-Vectors have the

disadvantage of requiring disproportionately large amounts of memory if a large number of items

and priorities are to be accommodated. For example a 512 * 512 bit-vector requires over

32Kbytes of memory. Bit-vectors are unstable and they also dictate that the number of priority

levels be fixed. Finally, some machines do not have bit-scan instructions.

2.14 Lazy Queue

The lazy queue [15] is based on conventional multi-list structures with some distinct differences.

It is divided into three parts: 1) the near future (NF) where most of the events are known, 2) the

far future (FF) where most of the yet unknown events are expected to occur, and 3) the very far

future (VFF), which is an overflow list. The hypothesis here is that a lot of work can be saved by

postponing the scheduling of events until they are needed. As time advances, the boundaries of

the NF, FF, and the VFF are advanced. If the NF is found to be empty, then the next interval in

the FF is sorted and placed into the NF. In this way, the sorting process can be delayed until it is

necessary. An Insert operation is carried out by determining into which part of the queue the

element falls and inserting the element into it. A Delete-Min operation is carried out by removing

the smallest elements in the NF.

As mentioned before, real-time systems usually have small queue size and it is obvious that Lazy

queues are designed for long queues. Also, arbitrary deletion from a lazy queue can be expensive

since the FF and the VFF are not sorted. Hence, we conclude that Lazy queues are not suitable for

real-time applications.

 14

2.15 Calendar Queue

 The calendar queue [11] is a simple algorithm based on the concept of a day-to-day calendar. It

assumes that the future event set is divided into a pre-determined number of intervals, and each

interval has a list of all events scheduled for that time interval. Thus it can be said to resemble the

concept of a hash structure. An Insert operation is carried out by determining the time interval it

belongs to and inserting that element into the list of that interval. The Delete-Min operation

simply removes the first element from the earliest time interval.

The calendar queue, however is not suitable for real-time systems because of two reasons:

1. The maximum size of the queue needs to be estimated before-hand which is difficult in the

applications that we are interested in, and

2. Brown [11] hypothesis that if the queue is sparsely filled, the algorithm will perform poorly.

Hence, the queue size will have to be determined to a very accurate degree in order for this

algorithm to perform efficiently.

 15

3. Implementation

3.1 Programming Conventions

The GNAT Ada [16] compiler was used to develop all of the algorithms being measured for

performance. Each algorithm was implemented as a package using the following specification:

package < algorithm > is

subtype Item_Type is Integer range 1 .. < last_item >;

type Queue_Type is limited private;

procedure Make_Empty (Queue : in out Queue_Type);

procedure Delete (Queue : Queue_Type; Item : Item_Type);

procedure Insert (Queue : Queue_Type; Item : Item_Type);

function Min (Queue : Queue_Type);

end < algorithm >;

3.2 Measurement Environment

The test environment used for the measurement was Real-Time Linux (RT-Linux) [17]. RT-

Linux is an extension to the regular Linux operating system. Its basic design is illustrated in

Figure 1. Instead of changing the Linux kernel itself to make it suitable for real-time tasks, a

simple and efficient real-time kernel was introduced underneath the Linux kernel. The real-time

kernel only schedules the Linux kernel (and therefore all the normal Linux processes under its

control) when there are no real-time tasks to be executed.

 16

Figure 1. Real-Time Linux

It will preempt the Linux kernel whenever there is a real-time task ready to run, so that the time

constraints of real-time tasks can be satisfied. In other words, the original Linux kernel is running

as a task of the real-time kernel with the lowest priority.

RT-Linux provides a clock function that was used for our performance measurements. This

function has a resolution of one nanosecond. This enables us to measure the execution times

point-to-point within code, as compared to [1] which relied on averaging the execution times

because the clock was too coarse.

3.3 Measurement Overheads

In all cases of performance measurements, there were two overheads that were taken into

account:

3.3.1 Clock function overhead

The overhead associated with calling the clock function was not determined by taking the average

of a large number of calls. Instead, the clock was called and timed a thousand times. The

execution times were examined manually and it was found that it executes in 448ns more than

90% of the time, 416ns ~10% of the times and has a random value only once. This random value

occurs the first time the clock function is called. Thus, it can be assumed that once the clock

 17

function is called in rapid succession multiple numbers of times, it begins taking advantage of the

cache and can execute in the same amount of time consistently. In multiple runs of this test, the

values given above did not change. Hence, the overhead of the clock function was assumed to be

448ns.

3.3.2 Random number generator overhead

The random number generator provided by the GNAT [16] compiler was used for our

measurements. The overhead for a single call to the random number generating routine was

5583ns. This overhead of a generating a single random number was found by making a large

number of calls, timing them individually and taking the average of all the calls. In multiple runs

of this test the maximum variation from the average was less than 0.8%.

3.4 Average case

Average case measurements were carried out on the Insert and the Delete-Min operations. The

Delete-Min is a combination of the Delete and the Min operations, which calculates and deletes

the element with the smallest numerical value of priority on the queue. The smallest numerical

value is assumed to be the highest priority in all cases.

3.4.1 Test methodology

The test case for the average case measurements was based on the “Hold Model” [18]. This

model is based on the Simula “hold” operation, and has been used often for research on event sets

and priority queues. A hold operation is defined as “An operation which determines and removes

the record with the minimum time value from the event set being considered, increases the time

value of that record by T, where T is a random variant distributed according to some distribution

F(t), and inserts it back into the event set” [18]. To suit the current measurements, this definition

was adapted as An operation that determines and removes the job with the smallest value of

 18

priority from the priority queue being considered, generates a new job whose priority is

determined at random and inserts this new job into the priority queue This model has three steps.

The steps and how they were adapted for the current measurements are as follows:

1. INITIALIZATION: Insert N event records into the future event set with the time value

determined from the random distribution F(t). Insert N jobs into the priority queue. The

priorities of these jobs are determined at random.

2. TRANSIENT: Execute N1 hold operations to permit the event set to reach steady state. In

analytical work, N1 is assumed to be infinity. In practice, N1 is some small multiple of the

size of the event set. Execute N1 hold operations to permit the queue to grow to a steady state.

In practice, N1 is assumed to be the size of the queue that was being tested.

3. STEADY STATE: Execute N2 hold operations and measure the performance of the event set

algorithm to do this. Execute N2 hold operations and measure the performance of the

algorithm that is being tested.

For the tests being carried out F(t) is the random number generator provided by the GNAT Ada

compiler, N is 0, N1 is the queue size being tested and N2 is 1000.

3.4.2 Tested algorithms

Average case measurements were performed on the following algorithms:

• Rings

• Rings (assembly version)

• Implicit heaps

• D-Trees

• B-Trees

 19

• Bit-vectors.

The results obtained from these measurements are presented in the next chapter.

3.5 Worst case

Worst-case analysis was performed on the Rings (Ada and Assembly versions), Heaps and D-

Trees algorithms. The Insert and Delete operations of each algorithm were tested for

performance. The Min operation in all three algorithms can be carried out in O(1) time and hence

was omitted from the measurements.

The test method for the worst-case analysis was different for each data structure. A brief

description of each method follows.

3.5.1 Rings

The Rings algorithm maintains a linked list in a sorted order. The worst-case for such a data

structure is when the largest element is inserted and deleted for the Insert and Delete operations

respectively. Thus, inserting a thousand consecutive elements into the list, and then timing the

insert and delete operations successively for the largest element tested the worst-case

performance for a queue size of one thousand.

3.5.2 Heaps

The worst case for the Heaps algorithm is when the smallest element is inserted or deleted, for the

Insert and Delete operations, respectively. This case leads to maximum sifting, that is, movement

of elements towards or away from the root to restore the heap order. When an item is deleted

from the heap, its two children are compared to determine which will replace the element deleted.

If it can be ensured that this comparison always fails, that is, the element that is assumed to be the

greater is always the smaller, there will be two additional assignments at each node. This brings

out the worst case in Heaps.

 20

The worst case occurs when an insert is done for queue sizes of 2n–1 for n = 3, 4, … The case

when n = 2, is not very interesting. Hence, the queue size of 3 was chosen to be the first

measurement length.

3.5.3 D-Trees

D-Trees have a data structure that is very similar to Heaps, and hence have similar worst-case

scenarios. Thus, the worst case for D-Trees is also when the smallest element is inserted or

deleted. This is the case when a new min has to be propagated to the root.

 21

4. Measurements

4.1 Average Case

Average case measurements were performed on the following algorithms:

• Rings

• Rings (assembly version)

• B-Trees

• Bit Vector

• D-Trees

• Heaps

Each algorithm was tested with four different random seeds. The resulting graphs are shown on

the following pages. The graphs have been shown in a logarithmic scale since the behavior at

smaller sizes is emphasized. In the context of real-time systems, the behavior for small queue

sizes is more interesting since the queue size in such systems is usually small. The variation of

execution time as seen from the graph is not significant for different random seeds used. A brief

explanation of the performance of each algorithm also follows.

4.1.1 Rings

Rings have O(n) performance for the Insert operation as can be seen from Figure 4. The

performance is impressive for small sizes of the queue, but as the queue size increases, the

performance degrades linearly.

 22

The measurements for the Delete-Min operation of the Rings algorithm are not significant

because it always deletes the first element from the list. This can be done in constant time

regardless of the size of the queue. The chart for the delete operation proves this (Figure 5). The

slight increase in execution time for longer queue sizes can be attributed to the fact that more

system resources are needed as the length of the queue increases.

4.1.2 Rings (Assembly version)

The assembly version of the Rings algorithm was implemented to record the performance

improvement that could be gained by such an exercise. As seen from Figure 2 and Figure

3 which are Insert and Delete-Min operation measurements for this algorithm, the

assembly version of the Rings algorithm performs significantly better than the version

implemented in an high level language. However, it does behave in a similar manner to

the version implemented in a high level language.

4.1.3 B-Trees

The Insert and Delete operations for the B-Trees algorithm exhibit approximately the

same behavior. The charts are shown in Figure 8 and Figure 9. As seen, this algorithm

behaves erratically. This erratic performance is due to re-arranging of the nodes when the

Insert or Delete operation is carried out. For some queue sizes, this needs to be done very

often resulting in larger than average execution times.

4.1.4 Bit Vector

The results of the bit vector algorithm are shown in Figure 6 and Figure 7. The Insert

operation executes in near constant time regardless of the queue size, and hence performs

as expected.

 23

The Delete-Min operation of this algorithm is interesting. As seen, the execution time

drops as the queue size increases. This is due to the implementation of the data structure

as a three-level hierarchy. The place where the element is expected to be present is

checked first and if the element exists, it is deleted. Once that particular element is

deleted, the algorithm checks if there are any more elements present in that interval of

priority. If none exist, then it traverses up the hierarchy clearing the bits until it reaches

the top-most level. Hence, if the queue has a large number of elements present, the

probability of the interval under consideration being empty is lesser and the traversal up

the hierarchy might not be needed. Thus, the Delete operation performs slightly more

efficiently at longer queue sizes.

4.1.5 Heaps

Figure 10 shows the results for the measurements on the Insert operation for the Heaps

algorithm. The execution time for the Insert operation initially increases as the queue size

increases. But at a certain size of the queue, the Heap is populated to the point where very

little iteration is needed to insert a new element. At this stage the execution time for

inserting an element begins dropping. Thus, this algorithm behaves exceptionally well for

insertion when the queue sizes are large.

The Delete-Min operation for Heaps is the same as the worst-case behavior. The

following section describes the worst-case behavior for Heaps.

4.1.6 D-Trees

The D-Trees algorithm, being similar to the Heaps algorithm behaves in a similar

manner. As the queue size increases, the time needed for the insertion drops, since fewer

 24

numbers of iterations need to be carried out when a new element is inserted. The plot is

slightly different here. The execution time for delete begins dropping immediately as the

queue size increases.

D-Trees like Heaps also exhibit worst-case behavior for the Delete-Min algorithm. The

results are shown in Figure 13.

 25

Figure 2. Rings (Assembly) – Average case Insert Performance

Figure 3. Rings (Assembly) – Average case Delete performance

 26

Figure 4. Rings – Average case Insert performance

Figure 5. Rings – Average case Delete performance

 27

Figure 6. Bit Vector – Average case Insert performance

Figure 7. Bit Vector – Average case Delete performance

 28

Figure 8. B-Trees – Average case Insert performance

Figure 9. B-Trees – Average case Delete performance

 29

Figure 10. Heaps – Average case Insert performance

Figure 11. Heaps – Average case Delete performance

 30

Figure 12. D-Trees – Average case Insert performance

Figure 13. D-Trees – Average case Delete performance

 31

Figure 14. Overall – Average case Insert performance

Figure 15. Overall – Average case Insert performance

 32

4.2 Worst Case

Worst-case results are shown as charts in the following pages. The first two plots (Figure 16 and

Figure 17) compare the performance of all the algorithms for the insert and delete operations

respectively. The next two (Figure 18 and Figure 19) show the comparison between Heaps and D-

Trees for the same operations. As mentioned previously, the algorithm for the worst-case analysis

in each case is different depending on the algorithm being tested. All the four algorithms tested

here show similar results for both the Insert and Delete operations. A brief commentary on their

behavior follows.

4.2.1 Rings

Both the Ada and Assembly versions of the Rings algorithms were tested under the worst case.

As seen in the case of average case analysis, the plots for both algorithms are similar but the

assembly version performs much more efficiently than the Ada version.

Rings do not perform well under worst-case conditions. Figure 16 and Figure 17 show the

behavior of these algorithms as compared to the other algorithms. The performance declines

linearly as the queue size increases

4.2.2 Heaps

Heaps have a logarithmic degradation of performance as the queue size increases for both the

Insert and Delete operations under the worst case. They behave exceptionally well for small

queue sizes, but efficiency drops as the length of the queue increases.

4.2.3 D-Trees

D-Trees exhibit a consistent behavior for all queue sizes for both the queue operations tested. In

the case of the Insert operation, they show a very slight decline in performance for large queue

sizes.

 33

It must be noted here that the consistent and almost constant performance of D-Trees is

dependant on the maximum number of elements that can be inserted into the queue. In our

experiments, this limit was 2000 items. If this limit were increased or decreased, the value of the

seemingly constant function would increase or decrease accordingly. The is due to the fact that as

the number of items that can be accommodated increases, the height of the tree structure

increases, and hence more amount of time is required for traversal from the leaf nodes to the root

whenever an item is inserted or deleted.

4.2.4 Comparison of worst case results

Comparison of the results obtained from worst-case analysis shows that Rings are not suitable as

priority queue data structures. Heaps behave very well when the queue size is small, but their

performance declines as the queue size is increased. This indicates that they can be used as

priority queue structures where the queue size is guaranteed to be small. However, the overall

worst-case behavior of D-Trees is much more consistent. They perform very well at large queue

sizes and the difference between Heaps and D-Trees for small queue sizes is not very great

indicating that D-Trees could be used as priority queue structures for all queue sizes.

 34

Figure 16. Worst case Insert performance

Figure 17. Worst case Delete performance

 35

Figure 18. Worst case results for D-Trees and Heaps (Insert)

Figure 19. Worst case results for D-Trees and Heaps (Delete)

 36

5. Conclusions

5.1 Recommendations

The algorithms tested here have been distinguished and compared based on their average-case

and worst-case performance. Here we present a brief summary of our observations for each of the

algorithms.

The Rings algorithm is stable and simple to implement. It has good average-case performance for

small queue sizes, but extremely poor worst-case performance. However, implementing this

algorithm in assembly language improves performance and increases the threshold of the queue

size until which it can be used efficiently. The B-Trees algorithm is not stable and not a simple

algorithm to implement and maintain. It has erratic average-case and poor worst-case

performance. It is not recommended for use in a real-time environment. Both the Rings and B-

Trees algorithms have the advantage that the queue size is not pre-determined by a certain limit.

The Heaps and D-Trees algorithms are both not stable, and have a pre-determined limit on the

queue size. Heaps has fair average-case performance and good worst-case performance. D-Trees

always perform better than Heaps for the average-case test, but were not as efficient as Rings for

small queue sizes. They have extremely good worst-case performance that is as good as Heaps

and more consistent as can be seen from the smooth graphs for its worst-case graphs. They

however, use almost twice the memory required by Heaps.

The Bit Vector algorithm has the same disadvantages that Heaps and D-Trees posses. It is not

stable, needs a lot of memory, and the maximum queue size has to be pre-determined. It shows

constant time for Inserts, which is highly desirable. For the Delete operation, however, they

 37

perform better at longer queue sizes than for smaller queue sizes. In real-time systems, efficient

performance at smaller queue sizes is more desirable.

5.2 Incomparable features

For some applications, features other performance may be the decisive factor in choosing a

priority queue algorithm. Of all the algorithms tested here, only rings are stable. Bit-Vectors is the

only one that must be implemented in assembly language. Finally, all algorithms except Rings

and B-Trees require that the maximum number of elements that need to be accommodated in the

queue be known a priori.

5.3 Future Work

We have analyzed some promising algorithms that can be used for priority queue implementation

in real time systems. This work can be extended in the following areas:

• Two types of queues are usually needed for implementing a scheduling system, an active

queue, and a timed queue. The active queue contains the currently active jobs sorted by

priority, and the timed queue contains sleeping jobs sorted by wakeup times. At the end of a

given time interval, usually more than one job wakes up, and thus we need to delete a set of

jobs from the timed queue, and insert them in the active queue. The algorithms studied can be

analyzed with respect to this requirement, i.e. insertion of a set of elements into the queue

instead of one job at a time.

• The analysis can be performed with respect to multiprocessor systems. Performance

measurements with respect to single queue and multiple queue multiprocessor systems can be

carried out.

 38

• Multiprocessor systems with a single queue have concurrency issues that can be studied.

Resolution of these issues can be done using techniques like semaphores, mutexes, etc. These

techniques can also be analyzed and measured empirically.

• The algorithms studied here were implemented using static priorities only. The

implementation can be extended to use dynamic priorities. This has applications in hard real-

time systems where the priorities might need to be adjusted at run-time to enable jobs to

complete within their deadlines.

• Among the algorithms measured for worst-case performance, the algorithms showing better

performance i.e. Heaps and D-Trees did not use linked allocation. This means that the

number of jobs that can be accommodated has to be pre-determined. There is possibly an

algorithm that can be evaluated that uses linked allocation (and thus dos have a bound on the

number of jobs that it can accommodate) that has a performance comparable to these.

Appendix A

Measurement Data

The following tables contain all the measurement data obtained from the experiments. The

average-case analysis data consists of four sets, corresponding to the four random number

generator seeds used. The time measurements for average-case performance shown in the table

are for 1000 Inserts or 1000 Deletes and are in terms of nanoseconds. The worst-case

performance measurements are also in terms of nanoseconds. The data contained here was used

for plotting the graphs presented earlier.

Table 1.
39

Rings (Assembly) – Average case Insert performance

Queue Size Set A Set B Set C Set D
1 6541 6588 6554 6572
2 6519 6474 6481 6500
5 6439 6488 6550 6459
10 6493 6544 6787 6472
20 6477 6535 6489 6500
50 6587 6567 6571 6644
100 6700 6818 6736 6660
200 7443 7638 8138 7794
400 11339 12065 11470 11473
500 13971 14836 14572 14412
1000 28183 27655 30744 27953

Table 2. R

Table 3.

ings (Assembly) – Average case Delete performance

Queue Size Set A Set B Set C Set D
1 5730 5599 5643 5622
2 5600 5620 5614 5595
5 5689 5620 5608 5631
10 5590 5642 5634 5623
20 5644 5628 5665 5650
50 5636 5611 5618 5603
100 5625 5624 5660 5653
200 5709 5714 5797 5776
400 5863 5887 5861 5955
500 5958 5981 6008 6012
1000 6247 6385 6251 6200
40

Rings – Average case Insert performance

Queue Size Set A Set B Set C Set D
1 6681 6706 6759 6747
2 6580 6674 6600 6624
5 6720 6644 6725 6612
10 6670 6712 6634 6664
20 6776 6789 6696 6725
50 7116 7201 6993 7121
100 8135 8092 7945 7992
200 10961 10736 11307 10775
400 18627 19689 19446 19253
500 23383 24313 24653 24516
1000 47986 45976 52489 48186

Table 4.

Table 5.

Rings – Average case Delete performance

Queue Size Set A Set B Set C Set D
1 6165 6249 6149 6171
2 6224 6174 6260 6158
5 6143 6154 6160 6304
10 6208 6135 6161 6218
20 6205 6153 6143 6144
50 6264 6179 6196 6149
100 6287 6303 6249 6221
200 6338 6269 6292 6291
400 6466 6487 6540 6483
500 6551 6586 6583 6640
1000 6808 6835 6910 6863
41

Bit Vector – Average case Insert performance

Queue Size Set A Set B Set C Set D
1 717 764 699 700
2 721 764 710 697
5 718 694 762 735
10 734 695 716 726
20 763 742 729 700
50 719 712 765 767
100 754 700 744 765
200 714 719 763 701
400 694 696 759 775
500 716 695 719 710
1000 724 761 763 741

Table 6. Bit Vector – Average case Delete performance

Table 7.

Queue Size Set A Set B Set C Set D
1 1767 1772 1778 1761
2 1759 1759 1759 1806
5 1758 1782 1761 1803
10 1774 1764 1761 1774
20 1767 1776 1769 1769
50 1746 1760 1740 1738
100 1737 1723 1717 1721
200 1713 1752 1690 1711
400 1687 1665 1647 1655
500 1633 1676 1644 1676
1000 1593 1604 1600 1616
42

B-Trees – Average case Insert performance

Queue Size Set A Set B Set C Set D
1 2574 2614 2570 2624
2 2696 3247 3148 3221
5 18997 22425 19313 4070
10 8479 9344 5968 6265
20 12586 14014 10696 9899
50 11694 11007 13379 11390
100 10741 11204 11184 11501
200 11251 12844 10001 10432
400 11219 10876 11181 11054
500 10401 10485 10820 11955
1000 9972 10182 10132 11200

 43

Table 8. B-Trees – Average case Delete performance

Table 9. Heaps – Average case Insert performance

Queue Size Set A Set B Set C Set C
1 5688 5730 5705 5660
2 5831 6302 6279 6242
5 11135 12013 11444 6881
10 8935 8992 7757 7958
20 10684 9829 9698 9373
50 10623 9939 11237 10468
100 10665 10701 10781 10731
200 11055 11692 10541 10642
400 11357 11230 11349 11219
500 11198 11274 11545 11839
1000 11564 11519 11526 11873

Queue Size Set A Set B Set C Set D
1 929 887 949 953
2 924 932 907 869
5 1306 1314 1272 1220
10 1583 1597 1371 1530
20 1721 1776 1712 1685
50 1983 2042 2046 1882
100 2207 2090 2064 2093
200 2222 2101 2076 2012
400 2003 1994 1985 2062
500 2009 2008 1988 2085
1000 1750 1747 1694 1752

 44

Table 10. Heaps – Average case Delete performance

Table 11. D-Trees – Average case Insert performance

Queue Size Set A Set B Set C Set D
1 841 805 806 809
2 838 935 949 997
5 1465 1440 1446 1326
10 1868 1910 1635 1833
20 2163 2353 2080 2192
50 2844 2765 2690 2608
100 3212 3157 3270 3089
200 3640 3581 3678 3494
400 4110 4041 3977 4036
500 4162 4156 4171 4144
1000 4601 4570 4574 4572

Queue Size Set A Set B Set C Set D
1 3136 3068 3096 3146
2 3092 3172 3164 3106
5 3098 3070 3149 3145
10 3069 3021 3017 3113
20 2989 2982 3102 3024
50 2904 2902 2911 2950
100 2758 2744 2679 2768
200 2534 2416 2424 2478
400 2092 2165 2197 2139
500 2034 2046 2058 2011
1000 1660 1687 1698 1641

 45

Table 12. D-Trees – Average case Delete performance

Table 13. Overall average case Insert performance

Queue Size Set A Set B Set C Set D
1 5115 5054 5050 5033
2 5016 5014 5031 5116
5 5095 5117 5032 5073
10 5085 5118 5117 5017
20 5014 5139 5031 5051
50 5006 5085 5026 5061
100 4998 5084 5073 5009
200 4991 5043 5074 5049
400 4982 4983 5008 5020
500 5066 4985 4979 5053
1000 5009 4991 4964 4973

Queue Size Rings (ASM) Bit Vector B-Trees Rings (ADA) D-Trees Heaps
1 6541 717 2574 6681 3136 929
2 6519 721 2696 6580 3092 924
5 6439 718 18997 6720 3098 1306
10 6493 734 8479 6670 3069 1583
20 6477 763 12586 6776 2989 1721
50 6587 719 11694 7116 2904 1983
100 6700 754 10741 8135 2758 2207
200 7443 714 11251 10961 2534 2222
400 11339 694 11219 18627 2092 2003
500 13971 716 10401 23383 2034 2009
1000 28183 724 9972 47986 1660 1750

Table 14. Overall average case Delete performance

Queue Size Rings (ASM) Bit Vector B-Trees Rings (ADA) D-Trees Heaps
1 5730 1767 5688 6165 5115 841
2 5600 1759 5831 6224 5016 838
5 5689 1758 11135 6143 5095 1465
10 5590 1774 8935 6208 5085 1868
20 5644 1767 10684 6205 5014 2163
50 5636 1746 10623 6264 5006 2844
100 5625 1737 10665 6287 4998 3212
200 5709 1713 11055 6338 4991 3640
400 5863 1687 11357 6466 4982 4110
500 5958 1633 11198 6551 5066 4162
1000 6247 1593 11564 6808 5009 4601
46

Table 15. Worst case Insert performance

Queue Size Rings (ASM) Rings (ADA) D-Trees Heaps
1 5973 5643 2882 879
2 6045 5810 2903 1187
5 6123 6472 2890 1214
10 6273 7226 2890 1510
20 6709 8706 2914 1811
50 7918 13522 2892 2092
100 11710 21339 2956 2472
200 23153 45145 2954 2757
400 58166 99986 3064 3172
500 74883 128242 3089 3196
1000 150437 279998 3114 3497

47

Table 16. Worst case Delete performance

Queue Size Rings (ASM) Rings (ADA) D-Trees Heaps
1 5528 5692 4209 831
2 5586 5769 4195 1173
5 5736 6261 4215 1444
10 5868 6849 4195 1693
20 6545 8064 4219 2194
50 7193 11705 4221 2554
100 10560 17295 4204 3073
200 22734 35496 4232 3379
400 57076 77017 4326 3874
500 74002 98169 4326 4277
1000 149335 220003 4353 4691

 48

Appendix B

This section contains three parts of the code that was developed for illustration purposes. The first

part is the Ada specification that was used for implementing all the algorithms. The second

contains the implementation of the D-Trees package body while the third contains the code for

the Bit-Vector algorithm. D-Trees was chosen because it is as yet unpublished and was written in

a high level language, while Bit Vector was chosen because it was implemented using assembly

language.

Ada Package Specification

with Unchecked_Deallocation;

package Algorithm is
 subtype Item_Type is Integer range 1 .. 2000;
 type Queue_Record;
 type Queue_Type is access Queue_Record;
 type Queue_Record is
 record
 Item : Item_Type;
 Next : Queue_Type;
 Prev : Queue_Type;
 end record;

 function Empty (Queue : Queue_Type) return Boolean;

 function Member (Queue : Queue_Type; Item : Item_Type) return Boolean;

 function Min (Queue : Queue_Type) return Item_Type;
 pragma Inline (Min);

 procedure Delete (Queue : Queue_Type; Item : Item_Type);

 procedure Insert (Queue : Queue_Type; Item : Item_Type);

 procedure Make_Empty (Queue : out Queue_Type);

 function Allocate return Queue_Type;

 procedure Deallocate is new
 Unchecked_Deallocation (Queue_Record, Queue_Type);

end Algorithm;

 49

D-Trees Package Implementation

package body Dtrees is

 function Min (Queue : Queue_Type) return Item_Type is
 begin
 return Queue (1);
 end Min;

 function Empty (Queue : Queue_Type) return Boolean is
 begin
 return Queue (1) = Non_Item;
 end Empty;

 procedure Make_Empty (Queue : in out Queue_Type) is
 begin
 if Queue = null then
 Queue := new Queue_Record;
 end if;
 for I in Tree_Position loop
 Queue (I) := Non_Item;
 end loop;
 end Make_Empty;

 procedure Apply (Queue : Queue_Type) is
 begin
 for I in Item_Type loop
 if Member (Queue, I) then
 P (I);
 end if;
 end loop;
 end Apply;

 function Member (Queue : Queue_Type; Item : Item_Type) return Boolean is
 begin
 return Queue (Item_Type'Pos (Item) + Off) = Item;
 end Member;

 procedure Insert (Queue : Queue_Type; Item : Item_Type) is
 L : Tree_Position := Item_Type'Pos (Item) + Off;
 begin
 loop
 Queue (L) := Item;
 exit when L = 1; -- Stop when root position is reached.
 L := L / 2; -- Move up to the parent.
 exit when Item >= Queue (L);
 -- Stop when there is no change.
 end loop;
 end Insert;

 procedure Delete (Queue : Queue_Type; Item : Item_Type) is
 L : Tree_Position := Item_Type'Pos (Item) + Off;
 P : Position;
 M : Possible_Item_Type := Non_Item;
 N : Possible_Item_Type;
 begin
 loop
 exit when Queue (L) = M;
 Queue (L) := M;
 exit when L = 1;

 50

 P := L / 2; -- L's parent.
 N := Queue (4 * P - L + 1); -- L's sibling.
 if M >= N then
 M := N;
 end if;
 L := P;
 end loop;
 end Delete;
end Dtrees;

Bit Vector Package Implementation

with System.Machine_Code;

use System.Machine_Code;

package body Algorithm is

 HT : constant String := "" & ASCII.HT;
 LFHT : constant String := ASCII.LF & ASCII.HT;

 function Allocate return Queue_Type is
 N : Queue_Type := new Queue_Record;
 begin
 -- aren't we returning a local pointer? this works because
 -- the memory is freed until the process exits, but should it be
 -- done this way?
 return N;
 end Allocate;

 function Empty (Queue : Queue_Type) return Boolean is
 Asmret : Integer := 0;
 Retval : Boolean := True;
 begin
 Asm ("pushl %%eax" & LFHT &
 "pushl %%edx" & LFHT &
 "pushl %%edi" & LFHT &
 "movl $0,%%eax" & LFHT &
 "movl 4(%%edi),%%edx" & LFHT & -- edx := Queue.Next
 "cmpl %%edi,%%edx" & LFHT & -- Queue = Queue.Next ?
 "jnz endempty" & LFHT &
 "movl $1,%%eax" & LFHT &
 "endempty:" & HT &
 "movl %%eax,%0" & LFHT &
 "popl %%edi" & LFHT &
 "popl %%edx" & LFHT &
 "popl %%eax",
 Outputs => Integer'Asm_Output ("=m", Asmret),
 Inputs => Queue_Type'Asm_Input ("D", Queue),
 Clobber => "memory",
 Volatile => True);
 if Asmret /= 0 then
 Retval := True;
 else
 Retval := False;
 end if;
 return (Retval);
 end Empty;

 function Member (Queue : Queue_Type; Item : Item_Type) return Boolean is

 51

 Asmret : Integer := 0;
 Retval : Boolean := True;
 begin
 Asm ("pushl %%eax" & LFHT &
 "pushl %%ebx" & LFHT &
 "pushl %%ecx" & LFHT &
 "pushl %%edx" & LFHT &
 "pushl %%esi" & LFHT &
 "pushl %%edi" & LFHT &
 "movl %%edx,%%ebx" & LFHT & -- N(BX) := QUEUE
 "back2:" & HT &
 "movl 4(%%ebx),%%ebx" & LFHT & -- N := N.NEXT
 "cmpl %%edx,%%ebx" & LFHT & -- is N = QUEUE?
 "jz false2" & LFHT & -- end of queue?
 "movl (%%ebx),%%eax" & LFHT &
 "cmpl %%ecx,%%eax" & LFHT &
 "jl back2" & LFHT & -- is N.Item < Item?
 "je true2" & LFHT & -- is N.Item = Item?
 "false2:" & HT &
 "movl $0,%%eax" & LFHT &
 "jmp exit2" & LFHT &
 "true2:" & HT &
 "movl $1,%%eax" & LFHT &
 "exit2:" & HT &
 "movl %%eax,%0" & LFHT &
 "popl %%edi" & LFHT &
 "popl %%esi" & LFHT &
 "popl %%edx" & LFHT &
 "popl %%ecx" & LFHT &
 "popl %%ebx" & LFHT &
 "popl %%eax",
 Outputs => Integer'Asm_Output ("=m", Asmret),
 Inputs => (Queue_Type'Asm_Input ("d", Queue),
 Item_Type'Asm_Input ("c", Item)),
 Clobber => "memory",
 Volatile => True);
 if Asmret /= 0 then
 Retval := True;
 else
 Retval := False;
 end if;
 return (Retval);
 end Member;

 function Min (Queue : Queue_Type) return Item_Type is
 Item : Item_Type;
 begin
 Asm ("pushl %%eax" & LFHT &
 "movl 4(%%ebx),%%ebx" & LFHT & -- get first element
 "movl (%%ebx),%%eax" & LFHT &
 "movl %%eax,%0" & LFHT &
 "popl %%eax",
 Outputs => Item_Type'Asm_Output ("=m", Item),
 Inputs => Queue_Type'Asm_Input ("b", Queue),
 Clobber => "memory",
 Volatile => True);
 return (Item);
 end Min;

 procedure Delete (Queue : Queue_Type; Item : Item_Type) is

 52

 Deleted_Item : Queue_Type := null;
 begin
 Asm ("pushl %%eax" & LFHT &
 "pushl %%ebx" & LFHT &
 "pushl %%ecx" & LFHT &
 "pushl %%edx" & LFHT &
 "pushl %%esi" & LFHT &
 "pushl %%edi" & LFHT &
 "movl %%edx,%%ebx" & LFHT & -- n(bx) := queue
 "back3:" & HT &
 "movl 4(%%ebx),%%ebx" & LFHT & -- n := n.next
 "cmpl %%edx,%%ebx" & LFHT & -- is n = queue?
 "jz exit3" & LFHT &
 "movl (%%ebx),%%eax" & LFHT &
 "cmpl %%ecx,%%eax" & LFHT & -- n.item = item?
 "jl back3" & LFHT & -- less
 "jg exit3" & LFHT & -- greater, item absent
 "movl 4(%%ebx),%%eax" & LFHT & -- found
 "movl 8(%%ebx),%%ecx" & LFHT &
 "movl %%ebx,%%edx" & LFHT &
 "movl %%eax,%%ebx" & LFHT & -- memory leak?!!
 "movl %%ecx,8(%%ebx)" & LFHT &
 "movl %%ecx,%%ebx" & LFHT &
 "movl %%eax,4(%%ebx)" & LFHT &
 "movl %%edx,%%eax" & LFHT &
 "movl %%edx,%0" & LFHT &
 "exit3:" & HT &
 "popl %%edi" & LFHT &
 "popl %%esi" & LFHT &
 "popl %%edx" & LFHT &
 "popl %%ecx" & LFHT &
 "popl %%ebx" & LFHT &
 "popl %%eax",
 Outputs => Queue_Type'Asm_Output ("=m", Deleted_Item),
 Inputs => (Queue_Type'Asm_Input ("d", Queue),
 Item_Type'Asm_Input ("c", Item)),
 Clobber => "memory",
 Volatile => True);
 Deallocate (Deleted_Item);
 end Delete;

 procedure Make_Empty (Queue : out Queue_Type) is
 begin
 Asm ("pushl %%eax" & LFHT &
 "call algorithm__allocate" & LFHT & -- queue is in eax
 "movl %%eax,4(%%eax)" & LFHT & -- Q.Next := Q
 "movl %%eax,8(%%eax)" & LFHT & -- Q.Prev := Q
 "movl %%eax,%0" & LFHT &
 "popl %%eax",
 Outputs => Queue_Type'Asm_Output ("=m", Queue),
 Inputs => No_Input_Operands,
 Clobber => "memory",
 Volatile => True);
 end Make_Empty;

 procedure Insert (Queue : Queue_Type; Item : Item_Type) is
 begin
 Asm ("pushl %%eax" & LFHT &
 "pushl %%ebx" & LFHT &
 "pushl %%ecx" & LFHT &

 53

 "pushl %%edx" & LFHT &
 "pushl %%esi" & LFHT &
 "pushl %%edi" & LFHT &
 "movl %%edx,%%ebx" & LFHT & -- BX := QUEUE
 "back4:" & HT &
 "movl 4(%%ebx),%%ebx" & LFHT & -- N := N.Next
 "cmpl %%edx,%%ebx" & LFHT & -- is N = Queue ?
 "jz last4" & LFHT &
 "movl (%%ebx),%%eax" & LFHT &
 "cmpl %%ecx,%%eax" & LFHT & -- is N.Item = Item?
 "jl back4" & LFHT &
 "jz exit4" & LFHT &
 "last4:" & HT &
 "pushl %%ebx" & LFHT &
 "pushl %%ecx" & LFHT &
 "call algorithm__allocate" & LFHT & -- new node in eax
 "popl %%ecx" & LFHT &
 "popl %%ebx" & LFHT &
 "movl %%ebx,%%esi" & LFHT & -- N
 "movl %%eax,%%edi" & LFHT & -- T
 "movl %%ecx,(%%edi)" & LFHT & -- T.ITEM:=ITEM
 "movl %%ebx,4(%%edi)" & LFHT & -- T.NEXT:=N
 "movl 8(%%ebx),%%edx" & LFHT & -- K:=N.PREV
 "movl %%edx,8(%%edi)" & LFHT & -- T.PREV:=K (N.PREV)
 "movl %%edi,8(%%ebx)" & LFHT & -- N.PREV:=T
 "movl 8(%%edi),%%esi" & LFHT & -- L:=T.PREV
 "movl %%edi,4(%%esi)" & LFHT & -- L.NEXT (T.PREV.NEXT):=T
 "exit4:" & HT &
 "popl %%edi" & LFHT &
 "popl %%esi" & LFHT &
 "popl %%edx" & LFHT &
 "popl %%ecx" & LFHT &
 "popl %%ebx" & LFHT &
 "popl %%eax",
 Outputs => No_Output_Operands,
 Inputs => (Queue_Type'Asm_Input ("d", Queue),
 Item_Type'Asm_Input ("c", Item)),
 Clobber => "memory",
 Volatile => True);
 end Insert;

end Algorithm;

 54

References

1. Maheshwari, R., An empirical evaluation of priority queue algorithms for real-
time applications, in Department of Computer Science. 1990, Florida State
University.

2. Vuillemin, J., A Data Structure for Manipulating Priority Queues.
Communications of the ACM, 1978. 21(4): p. 309-315.

3. Sleator, D.D. and R.E. Tarjan, Self-Adjusting Heaps. SIAM Journal on
Computing, 1986. 15(1): p. 52-69.

4. Decker, R., Data Structures. 1989: Prentice Hall, Englewood Cliffs, New Jersey.

5. Knuth, D.E., Sorting and Searching, in The Art of Computer Programming. 1973,
Addison-Wesley Publishing Company, Reading, Massachusetts.

6. Jones, D.W., An Empirical Comparison of Priority-Queue and Event-Set
Implementations. Communications of the ACM, 1986. 29(4): p. 300-311.

7. Bayer, R. and E.M. McCreight, Organization and Maintainence of Large Ordered
Indices. Acta Informatica 1, 1972. 3: p. 173-189.

8. Adel'son-Velskii, G.M. and G.M. Landis, An Algorithm for the Organization of
Information. Soviet Math. Dokl., 1962. 3: p. 1259-1262.

9. Van Wyck, C.J., Data Structures and C Programs. 1988: Addison Wesley
Publishing Company, Reading, Massachusets.

10. Jonassen, A. and O.J. Dahl, Analysis of an Algorithm for Priority Queue
Administration. BIT, 1975. 15(4): p. 409-422.

11. Brown, M.R., Implementation and Analysis of Binomial Queue Algorithms. SIAM
Journal on Computing 7, 1978. 3: p. 298-319.

12. Francon, J., G. Vienot, and J. Vuillemin. Description and Analysis of an Efficient
Priority Queue Representation. in 19th Annual Symposium on Foundations of
Computer Science. 1978. Ann Arbor, Michigan: IEEE, Piscataway, New Jersey.

13. Fischer, M.J. and M.S. Paterson. Fishspear: A Priority Queue Algorithm. in 25th
Annual Symposium on Foundations of Computer Science. 1984.

14. Sleator, D.D. and R.E. Tarjan, Self-adjusting Binary Search Trees. Journal of the
ACM, 1985. 32(3): p. 652-686.

15. Ronngren, R., J. Riboe, and R. Ayani. Lazy Queue: An Efficient Implementation
of the Pending-event Set. in The 24th Annual Simulation Symposium. 1991. New
Orleans, Louisiana: IEEE.

16. Ada Core Technologies, I., GNAT web page: http://www.gnat.com.

http://www.gnat.com/

 55

17. Barabanov, M. and V. Yodaiken, Introducing Real-Time Linux. Linux Journal,
1997(34): p. http://www.ssc.com/lj/issue34/0232.html.

18. McCormack, W.M. and R.G. Sargent, Analysis of Future Event Set Algorithms for
Discrete Event Simulation. Communications of the ACM, 1981. 24(12): p. 801-
812.

http://www.ssc.com/lj/issue34/0232.html

	Bit Vector Package Implementation

