
EDZL scheduling analysis

Michele Cirinei
Scuola Superiore Sant’Anna

Pisa, Italy
e-mail: cirinei@gandalf.sssup.it

Theodore P. Baker∗

Department of Computer Science
Florida State University

Tallahassee, FL 32306-4530
e-mail: baker@cs.fsu.edu

Abstract

A schedulability test is derived for the global Earliest
Deadline Zero Laxity (EDZL) scheduling algorithm on a
platform with multiple identical processors. The test is suffi-
cient, but not necessary, to guarantee that a system of inde-
pendent sporadic tasks with arbitrary deadlines will be suc-
cessfully scheduled, with no missed deadlines, by the multi-
processor EDZL algorithm. Global EDZL is known to be at
least as effective as global Earliest-Deadline-First (EDF) in
scheduling task sets to meet deadlines. It is shown, by test-
ing on large numbers of pseudo-randomly generated task
sets, that the combination of EDZL and the new schedula-
bility test is able to guarantee that far more task sets meet
deadlines than the combination of EDF and known EDF
schedulability tests.

1 Introduction

EDZL is a hybrid preemptive priority scheduling scheme
in which jobs with zero laxity are given highest priority and
other jobs are ranked by deadline. In this report we apply
demand analysis to Earliest Deadline Zero Laxity (EDZL)
scheduling, and derive a test that is sufficient to guarantee
that a system of independent sporadic tasks with arbitrary
deadlines will not miss any deadlines if scheduled by global
EDZL on a platform with m identical processors. We also
show through experiments how the new EDZL schedula-
bility test compares to known schedulability tests for global
Earliest-Deadline-First (EDF) scheduling, on large numbers
of pseudo-randomly generated task sets.

EDZL has been studied by Cho et al. [8], who showed
that when EDZL is applied as a global scheduling algorithm
for a platform with m identical processors its ability to meet
deadlines is never worse than pure global EDF scheduling,

∗This material is based upon work supported in part by the National
Science Foundation under Grant No. 0509131, and a DURIP grant from
the Army Research Office.

and that it is “suboptimal” for the two processor case, mean-
ing that “every feasible set of ready tasks is schedulable”
by the algorithm. They propose this weak definition of op-
timality as being appropriate for on-line scheduling algo-
rithms, which cannot take into account future task arrivals.
Cho et al. also provide experimental data, showing that
even though EDZL is not “suboptimal” for m > 2, it still
performs very well, and out-performs global EDF in partic-
ular, while not incurring significantly more context switches
compared to global EDF.

The latter property, of incurring few context switches,
makes EDZL an attractive alternative to known optimal
global algorithms that require fine-grained time slicing,
such as the Pfair[5] family. The ability to operate on-line,
without exact knowledge of future job arrival times, also
makes it more attractive than algorithms that are restricted
to strictly periodic task sets, such as the optimal LLREF
algorithm[7].

However, for systems with hard deadlines, good or even
optimal scheduling performance is not enough, if there is
no practical way to verify that a particular task set will be
scheduled to meet all its deadlines. In this paper, we ad-
dress that need, by deriving a sufficient test of schedulabil-
ity for sporadic task sets under global EDZL scheduling on
m identical processors.

2 Task system model

A sporadic task τi = (ei, di, pi) is an abstraction of
a process that generates a potentially infinite sequence of
jobs. Each job has a release time, an execution time, and
an absolute deadline. The execution time of every job of
a task τi is bounded by the maximum (worst case) execu-
tion time requirement ei. The release times of successive
jobs of each task τi are separated by the minimum inter-
release time (period) pi. The absolute deadline for the com-
pletion of each job of τi is r + di, where r is the release
time and di is the relative deadline of τi. It is required that
ei ≤ min(di, pi), since otherwise a job would never be able

1

to complete within its deadline. The scheduling window
of a job is the interval between its release time and abso-
lute deadline. A task system τ has constrained deadlines
if di ≤ pi for every τi ∈ τ . Otherwise, the task deadlines
are unconstrained , and for every task di can be indiffer-
ently greater or lesser than pi. In order to generalize the
description, it is useful to define ∆i

def= min(di, pi), noting
that for constrained deadlines ∆i = di. In this paper we
always consider unconstrained deadlines task systems. The
utilization of a task is defined as ui

def= ei

pi
and the density as

λi
def= ei

∆i
.

An m-processor schedule for a set of jobs is a partial
mapping of time instants and processors to jobs. It specifies
the job, if any, that is scheduled on each processor at each
time instant. For consistency, a schedule is required not to
assign more than one processor to a job, not to assign more
than one job to a processor in the same time instant, and not
to assign a processor to a job before the job’s release time
or after the job completes. For a job released at time a, the
accumulated execution time at time b is the number of time
units in the interval [a, b) for which the job is assigned to
a processor, and the remaining execution time is the differ-
ence between the total execution time and the accumulated
execution time. A job is backlogged if it has nonzero re-
maining execution time. The completion time is the first
instant at which the remaining execution time reaches zero.
The response time is the elapsed time between the job’s re-
lease time and its completion time. A job misses its absolute
deadline if the response time exceeds its relative deadline.

The laxity (sometimes also known as slack time) of a
job at any instant in time is the amount of time that the job
can wait, not executing, and still be able to complete by its
deadline. At any time t, if job J has remaining execution
time e and absolute deadline d, its laxity is d− e.

The jobs of each task are required to be executed sequen-
tially. That is, the start time of a job (the instant in which
the job starts its execution) cannot be before the comple-
tion time of the preceding job of the same task. If a job has
been released but is not able to start executing because the
preceding job of the same task has not yet completed, we
say that the job is precedence-blocked. If a job has been re-
leased and its predecessor in the same task has completed,
the job is ready. If a job is ready, but m jobs of other tasks
are scheduled to execute, we say that the job is priority-
blocked.

Let J be any job, and let τk be the corresponding task.
The competing work W J

i (a, b) contributed by any task τi 6=
τk in an interval [a, b) is the sum of the lengths of all the
subintervals of [a, b) during which a job of τi is scheduled to
execute while job J is priority-blocked. The total compet-
ing work W J(a, b) in the interval [a, b) is defined to be the
sum of W J

i (a, b) over all the tasks, and the competing load
is defined to be the ratio W J(a, b)/(b − a). For notational
simplicity, the superscript will be omitted if the identity of

the job J is clear from context.

Feasibility and schedulability A given schedule is feasi-
ble for a given task system if it assigns each job sufficient
processor time to complete execution within its scheduling
window; that is, if the response time of each job is less than
or equal to its relative deadline. A given job set is feasible if
there exists a feasible schedule for it. In practice, feasibility
does not mean much unless there is an algorithm to com-
pute a feasible schedule. A job set is schedulable by a given
algorithm if the algorithm produces a feasible schedule.

A sporadic task system is feasible if there is a feasible
schedule for every set of jobs that is consistent with the min-
imum inter-release time, deadline, and worst-case execution
time constraints of the task system, and it is schedulable by
a given algorithm if the algorithm finds a feasible schedule
for every such set of jobs.

A schedulability test for a given scheduling algorithm is
an algorithm that takes as input a description of a task sys-
tem and provides as output an answer to whether the sys-
tem is schedulable by the given scheduling algorithm. A
schedulability test is tight if it always provides a simple an-
swer of “yes” or “no”. It is sufficient if the algorithm an-
swers “maybe” in some cases.

For any scheduling algorithm to be useful for hard-
deadline real-time applications it must have at least a suf-
ficient schedulability test, that can verify that a given job
system is schedulable. The quality of the scheduling algo-
rithm and the schedulability test are inseparable, since there
is no practical difference between a job system that is not
schedulable and one that cannot be proven to be schedula-
ble.

EDZL VS EDF EDZL scheduling is a variant of the well-
known preemptive Earliest-Deadline-First (EDF) schedul-
ing algorithm. The difference is the zero laxity rule: jobs
with zero laxity are given the highest priority. Other jobs are
ranked as in EDF. Ties between jobs with equal priority are
assumed to be broken arbitrarily 1. The priority scheduling
policy is applied globally, so that if there are m processors
and m or more ready jobs then m of the jobs with highest
priority will be executing. Like EDF, EDZL is work con-
serving, meaning that a processor is never idle if there is a
ready job that is not executing.

Simulation studies have shown that EDZL scheduling
performs well [8]. Moreover, it is quite easy to show that
EDZL strictly dominates EDF (see Theorem 2 in [12]), with
the meaning that if a task set is schedulable by EDF on a
platform composed of m processors, it is also schedulable
by EDZL on the same platform, and there exist task sets
schedulable by EDZL and not by EDF. In fact, intuitively,

1This is a worst-case assumption. In practice one would have a specific
tie breaking rule, such as to give priority to a job that is already executing
on a given processor, to avoid wasteful task switches.

2

as noted by Cho and al. [8], EDZL is actually the EDF algo-
rithm with a “safety rule” (the zero laxity rule) to be applied
in critical situations. It means that the scheduling of the two
algorithm differs only in cases in which EDF fails schedul-
ing some tasks.

It follows that all the sufficient EDF schedulability tests
are also sufficient for EDZL, including the EDF density
bound test, which was proposed for implicit-deadline sys-
tems by Goossens, Funk and Baruah [9] and subsequently
shown to extend to constrained and unconstrained deadline
systems. However, one would expect that the addition of the
safety rule might permit a stronger schedulability test, that
is able to verify the schedulability of task sets that are not
schedulable by global EDF. To the best of our knowledge,
no such schedulability test for EDZL has been published.
Our objective is to find such a test.

3 Predictability

An important subtlety in schedulability testing is that the
so-called “worst-case” execution time ei of each task is just
an upper bound; the execution times of different jobs of a
task can vary. This leaves open the possibility that the upper
bound, or even the actual maximum execution time of task,
may not actually be the worst situation with respect to total
system schedulability. For multiprocessor scheduling, there
are well known anomalies, where a job set is schedulable by
a given algorithm, but if the execution time of one or more
jobs is shortened, the job set becomes unschedulable.

Ha and Liu [11, 10] studied this problem, and were able
to identify certain families of scheduling algorithms that
are predictable with respect to variations in job execution
time. A scheduling algorithm is defined to be completion-
time predictable if, for every pair of sets J and J ′ of jobs
that differ only in the execution times of the jobs, and such
that the execution times of jobs in J ′ are less than or equal
to the execution times of the corresponding jobs in J , then
the completion time of each job in J ′ is no later than the
completion time of the corresponding job in J . That is,
with a completion-time predictable scheduling algorithm it
is sufficient, for the purpose of bounding the worst-case re-
sponse time of a task or proving schedulability of a task set,
to look just at the jobs of each task whose actual execution
times are equal to the task’s worst-case execution time.

An important class of scheduling algorithms for which
Ha and Liu were able to prove completion-time predictabil-
ity is the preemptive migratable fixed job-priority schedul-
ing algorithms. One such algorithm is global preemptive
EDF scheduling. Unfortunately, while EDZL is preemp-
tive and migratable, it does not have fixed job priorities.
Therefore, while one might suspect that EDZL could be
predictable with respect to execution time variations, a nec-
essary first step in looking for a EDZL schedulability test
is to verify that. Piao et al. [13] addressed this question

and showed that EDZL is completion-time predictable on
the domain of integer time values. The result clearly also
applies to any other discrete time domain. We give a some-
what more self-contained and direct proof below.

Theorem 1 (Predictability of EDZL) The EDZL schedul-
ing algorithm is completion-time predictable, with respect
to variations in execution time.

Proof.
We actually prove a stronger hypothesis; that is, if the

only difference between J and J ′ is that some of the actual
job execution times are shorter in J ′ than in J , then the
accumulated execution time of every uncompleted job in
the EDZL schedule for J ′ is greater than or equal to the
accumulated execution time of the same job in the EDZL
schedule for J at every instant in time. It will follow that
no job can have an earlier completion time in J than in J ′,
since the actual execution times in J are at least as long as
in J ′.

Suppose the above hypothesis is false. That is, there exist
job sets J and J ′ whose only difference is that some of the
actual job execution times are shorter in J ′ than in J , and
such that at some time t the accumulated execution time of
some uncompleted job is less with J ′ than with J . We will
show that this leads to a contradiction, and the theorem will
follow.

Without loss of generality, we can restrict attention to
the case where J and J ′ differ only in the actual execution
time of one job. To see this, observe that between J and
J ′ there is a finite sequence of sets of jobs such that the
only difference between one set and the next is that the ac-
tual execution time of one job is decreased. Let J and J ′

be the first pair of successive jobs in such a sequence such
that at some time t the accumulated execution time of some
uncompleted job J is less with J ′ than with J .

Let t be the earliest instant in time after which the ac-
cumulated execution time of some uncompleted job is less
with J ′ than with J , and let J be such a job. That is, up
through t the accumulated execution time of each uncom-
pleted job in the schedule for J is less than or equal to the
accumulated execution time of the same job in the schedule
for J ′, and after time t the accumulated execution time of
job J is greater with J than with J ′.

Job J must be scheduled to execute starting at time t with
J and not with J ′. This means some other job J ′ is sched-
uled to execute in place of J with J ′. That choice cannot
be based on deadline, since the deadlines of corresponding
jobs are the same with J and J ′, so it must be based on the
zero-laxity rule. That is, J ′ has zero laxity at time t with
J ′ but not with J . However, that would require that J ′ has
greater accumulated execution time at time t with J than
it does with J ′. This is a contradiction of the choice of t.
Therefore, the theorem must be true.

2

3

4 Sketch of the test

The schedulability test we propose is based on the same
core idea as [1, 6]: with a work-conserving scheduling algo-
rithm a job can miss its deadline only if competing jobs of
other tasks priority-block it for a sufficient amount of time.

In order to analyze the conditions that are necessary for
a job to miss its deadline, we focus on the earliest point in
a given schedule where any job misses a deadline, on a spe-
cific job that misses its deadline at that point, and on the
time interval between the release of that job and its missed
deadline. We call the job the problem job, its task the prob-
lem task, and the interval between its release time and dead-
line the problem window. Let τk always denote the prob-
lem task. Moreover, t denotes the missed deadline (i.e. the
deadline of the problem job), and [t − dk, t) the problem
window.

The analysis is done in the following steps:

1. Determine a lower bound on the total competing work
that is needed in the problem window to cause the
problem job to miss its deadline.

2. Determine an upper bound on the competing work that
can be contributed by each individual task.

3. Combine the per-task bounds to obtain an upper bound
on the total competing work in the problem window.

The schedulability test amounts to a comparison of the re-
sults of steps (1) and (3). If the the upper bound of (3) is less
than the lower bound of (1), that would be a contraction, so
there can be no problem job; that is, the task is schedulable.

The main difference between the EDZL test we propose,
and the EDF tests explained in [1, 6], is that with EDF it is
sufficient to find a possibly unschedulable task to conclude
that the task set could be unschedulable, while for EDZL it
is necessary to find at least m + 1 possibly unschedulable
tasks, since EDZL would give maximum priority to the first
m tasks which reach zero laxity, and only the (m+1)th task
that reaches zero laxity can force a deadline miss.

5 Lower bound

Recall that the laxity of a job, if positive, represents the
amount of time that the job can wait, without executing,
and still have enough real time left that it could complete
execution within its deadline, if the schedule allowed it to
execute for all of that remaining time.

Whenever a job is blocked and does not execute, its lax-
ity decreases, and whenever the job executes, the laxity re-
mains constant. When a job is released, its initial laxity
is equal to its relative deadline minus its execution time,
di − ei, which is non-negative. With both EDF and EDZL
scheduling, the laxity of the problem job must become neg-
ative at or before the missed deadline. That is, other jobs

must block the problem job for enough time within the
problem window to consume all of its initial laxity, plus at
least one more unit of time. This is a necessary and suffi-
cient condition for a deadline miss, and is the sole basis of
the analysis of EDF scheduling failures in [1, 6]. However,
in the case of EDZL a scheduling failure provides additional
information.

Under EDZL, once the problem job reaches zero laxity
its priority will be raised to the top and will stay at that level
continuously up to the job’s finish time, which coincides
with its deadline. In this situation, only other jobs with zero
laxity are able to force the problem job to wait (and so miss
its deadline). This means that in order for the problem job to
miss its deadline (that is, reach negative laxity) there must
be at least m+1 jobs (including the problem job itself) with
zero laxity at the same moment.

The problem job can reach zero laxity only if it is
blocked for at least dk − ek in the problem interval. Since
EDZL is work-conserving, a released job can be blocked
for only two reasons:

• precedence, by an older job of the same task;

• priority, by jobs of equal or higher priority belonging
to other tasks.

If dk ≤ pk, only one job of τk can be active at a time,
so precedence never blocks the problem job. In this case the
problem job can reach zero laxity only if jobs of other tasks,
with higher or equal priority, can occupy all m processors
for at least dk − ek time units in the problem window. If
[t− dk, t) is the problem window, it follows that∑

i 6=k

Wi(t− dk, t) > m(dk − ek)

∑
i 6=k

Wi(t− dk, t)/dk > m(1− λk)

In the other case, if dk > pk, the precedence constraint
could contribute to the blocking. However, we can still
find a lower bound for the competing work and load. The
only job of τk that can execute in the interval [t − pk, t) is
the problem job, since the preceding job of τk would have
missed its deadline at t−pk. In the worst case scenario that
we are considering all the m processors must be working on
jobs other than the problem job for pk− ek time units in the
interval [t− pk, t)2. From this upper bound we obtain∑

i 6=k

Wi(t− pk, t) > m(pk − ek)

∑
i 6=k

Wi(t− pk, t)/pk > m(1− λk)

2Of course this is a worst case upper bound, and a more exact estimate
would be pk − e where e is the remaining time execution time of the
problem job at time t − pk . Unfortunately, it is difficult to estimate the
remaining computation time of a job without simulating the system.

4

The intervals and the bounds on competing work differ
between the two cases above, but because load is normal-
ized by the interval length and because the definition of λk

differs for the two cases, the expression for the load bound
is the same. Therefore, both bounds can be unified in one
lemma.

Lemma 1 If EDZL is used to schedule a sporadic task sys-
tem τ = {τ1, ..., τn} on m identical processors then a prob-
lem job J of task τk with deadline t can reach zero laxity
only if ∑

i 6=k

Wi(t−∆k, t)/∆k ≥ m(1− λk) (1)

and can reach negative laxity only if the > strictly holds.

Proof. The lemma follows from the above discussion. 2

From now on we define the overload window of the
problem job to be the interval under analysis above, i.e.,
[t−∆k, t), noting that the length of this interval is always
equal to ∆k.

Note again that with EDZL scheduling, considering the
zero laxity rule, a job can miss its deadline only if in a cer-
tain time instant both of the two following conditions hold:

• the laxity of the job is zero;

• the laxity of at least m other jobs is zero.

So, for a deadline to be missed there must exist at least
m + 1 different tasks whose jobs can be blocked by the
others for a sufficient amount of time for each of them to
reach zero laxity, and at least one to reach negative laxity.
By Lemma 1, there must be at least m + 1 jobs for which
the condition (1) above holds, and for at least one of them
the equation must hold strictly (>).

6 Upper bound

In this section we derive an upper bound for the contri-
bution of a task τi to the competing work of the problem job
in the overload window. We first determine the worst case
release times of the jobs of τi in the overload window, and
then compute an upper bound on the amount of competing
work that τi can contribute with that set of release times.

6.1 Worst case release times

It is clear that the competing work W J
i (a, b) contributed

by a task τi for any problem job J in any interval [a, b) can-
not be larger than when the release times of τi are exactly
periodic. That is, moving the release times of τi farther
apart cannot decrease the competing work.

As contributors to the competing work, we do not need
to consider jobs that have a deadline before the overload

window. Since there are no missed deadlines before the end
of the overload window, such jobs must complete before it.

We do need to consider as contributors to the competing
work every job of τi that has its deadline in the overload
window. In order to maximize the competing work of these
jobs we can assume without loss of generality that they each
execute as late as possible, that is, exactly in the interval of
length ei just before their deadline. Jobs with both release
time and deadline in the overload window are not influenced
by this assumption, while it can only increase (and cannot
decrease) the contribution of jobs with release time before
the window.

We also need to consider jobs released in or before the
overlead window and with deadline after the overload win-
dow. Such a job can compete with the problem job only
when its laxity is zero, which can happen no earlier than
di − ei after its release time. Note that this is equivalent to
considering the job to execute as late as possible.

In all cases, whether a job has a deadline in the overload
window or after, the worst case competing work contributed
by that job cannot be greater than the amount of time that
the job would execute if it were scheduled to run for ex-
actly the ei time units before its deadline. So, the competing
work contributed by a task τi in the problem interval cannot
be greater than the amount of time the task could execute
if it were released periodically, at intervals of exactly pi,
and each job were scheduled to run in the last ei time units
before its deadline.

We will next argue that the competing work contributed
by τi cannot be greater than if a deadline of τi is aligned
with the deadline t of the problem job, as shown in Figure 1.

��
��
��
��

...

pipi pi pi

eiei ei

t−∆k t

nipi

carry-in

pi − ei

Figure 1. Upper bound on carry-in

The argument will consider what happens to the demand
if we simultaneously shift all the release times and deadlines
of τi either forward or backward from that alignment. The
maximum shift we need to consider in either direction is pi,
since for longer shifts the effect is periodic.

• Forward movement: if we shift forward (meaning later
in time) all the release times by a quantity x ≤ pi, the
maximum contribution of τi to the competing work in
the interval is decreased by min(x, ei), which is the
amount of its work shifted out of the problem win-
dow. The shift may increase the contribution of a job

5

at the start of the interval, but by at most min(x, ei).
Therefore, a forward shift of the release times cannot
increase the maximum contribution of τi to the com-
peting work, though it can decrease it.

• Backward movement: if we shift backward all the re-
lease times by x ≤ pi, the first job of τi after the
overload window cannot achieve higher priority than
the problem job until it has reached zero laxity, so the
maximum contribution of τi to the competing work in
the interval does not increase for x < pi−ei, while for
greater values of shift the increase is x− (pi− ei) (see
Figure 1). We obtain an increase of max(0, x− (pi −
ei)). However, the shift also decreases the contribu-
tion to the competing work by the first job of τi by at
least max(0, x − (pi − ei)) (which happens when the
carried-in job of τi has its release time exactly before
t −∆k). Again, the net change in the maximum con-
tribution of τi to the competing work cannot increase,
though it can decrease.

Taking the two cases together, it is clear that an upper
bound on the contribution of τi to the competing work of
the problem interval is achieved when the jobs of τi are re-
leased periodically and one deadline of τi coincides with
the deadline of the problem job.

6.2 Worst case competing work

It is now easy to compute an upper bound for the compet-
ing work of a task τi in the overload window. For each job,
if its deadline is at time t, we consider the interval [t−pi, t),
(i.e., the interval in which the job cannot suffer precedence-
blocking, because all the preceding jobs of the task must
have been completed). In the worst-case scenario, all the
jobs are released periodically and execute exactly before
their deadline, as depicted in Figure 1. The competing work
of task τi is then composed of two different contributions:

1. The contributions of the ni = b∆k/pic jobs of τi for
which the interval [t− pi, t) is completely in the over-
load window. Each of these contributes exactly ei.

2. The contribution of one job, called the carried-in job,
for which the start of the interval [t− pi, t) occurs be-
fore the start of the window [t − ∆k, t). This contri-
bution, called the carry-in, is clearly less than or equal
to the worst-case execution time ei. The carry-in also
cannot be greater than the length of the interval be-
tween the start of the overload window and the com-
pletion time of the carried-in job. If [t − ∆k, t) is
the overload window, the deadline of the last of the
ni jobs is at time t and the deadline of the first is at
time t−nipi (and they coincide if ni = 0). The length
of the interval during which the carried-in job can exe-
cute is ∆k − nipi, so the size of the carry-in cannot be
greater than min(ei,∆k − nipi).

Lemma 2 If EDZL is used to schedule a sporadic task sys-
tem τ = {τ1, ..., τn} on m identical processors, the com-
peting work contributed by task τi in the overload window
[t−∆k, t) of a job J of task τk is subject to the bound

Wi(t−∆k, t) ≤ niei + min(ei,∆k − nipi)

Proof. The proof follows from the preceding discussion.
2

Note that the upper bound depends only on the length
of the overload window, and not on the specific start and
end points of the interval. Moreover, once the task τk under
analysis is selected, the length of the overload window is
fixed. So, we can define an upper bound for the load of τi

in the overload window of τk as

βi
k =

niei + min(ei,∆k − nipi)
∆k

(2)

7 First schedulability test

Based on the above lemmas, and considering that m + 1
tasks must have zero laxity at the same time in order for
a task to miss a deadline, one derives the following first
schedulability test for EDZL on a multiprocessor.

Theorem 2 (First EDZL test) A sporadic task system τ =
{τ1...τn} is schedulable by EDZL on m identical proces-
sors unless the following condition holds for at least m + 1
different tasks τk, and it holds strictly (>) for at least one of
them: ∑

i 6=k

βi
k ≥ m(1− λk) (3)

where βi
k is defined as in Equation 2.

Proof. According to Lemma 1, a job J can reach zero
laxity only if the competing work of the other tasks in its
overload window is greater or equal to m(1 − λk). Once
J has reached zero laxity, as we say above, it can miss its
deadline only if at least m other tasks reach zero laxity. This
can happen only if at least m + 1 tasks satisfy (3). 2

8 Second schedulability test

To improve the precision of Theorem 2, we now recon-
sider the above definitions and lemmas, verifying and adapt-
ing them to deal with interference, a concept introduced by
Bertogna, Cirinei and Lipari in [6]. Some of the following
results can be found, only with a sligthly different notation,
in [6], but we repeat them here in order to help the reader.

The interference IJ(a, b) on a job J of task τk over an
interval [a, b) is the cumulative length of all the intervals in

6

which J is priority-blocked. The interference IJ
i (a, b) of a

task τi on a job J over an interval [a, b) is the cumulative
length of all the intervals in which J is priority-blocked and
a job of τi is one of the m jobs blocking the problem job J .

The above definition, like that of competing load,
does not include in the interference cases of precedence-
blocking. If job J belongs to a task τk with dk ≤ pk,
precedence-blocking cannot occur, but that is not true if
τk has dk > pk. However, if we focalize on the over-
load window [t − ∆k, t) of task τk, in no case there can
be precedence-blocking, so we can avoid to distinguish the
two cases. For this reason, from now on we always consider
the overload window (this is the main difference with the
analysis in [6], where no particular interval was selected).

By the definition, it is clear that in the overload window
of every job J of τk we have

IJ
i (t−∆k, t) ≤ IJ(t−∆k, t) ∀i.

and

IJ
i (t−∆k, t) ≤ Wi(t−∆k, t) ≤ βi

k∆k ≤ ∆k ∀i.

Moreover, in every time instant in which job J of τk is
priority-blocked, the m processors must be occupied by ex-
actly m jobs of tasks other than the task τk of job J . Con-
sequently, the respective m values of interference are in-
creased. From this descends that

IJ(t−∆k, t) def=

∑
i 6=k IJ

i (t−∆k, t)
m

.

The above results can be used to prove the following

Lemma 3 (Lemma 4 in [6]) IJ(t − ∆, t) ≥ x ⇐⇒∑
i 6=k min(IJ

i (t−∆k, t), x) ≥ mx.

Proof.
Only If. Let τ

′ ⊆ τ be the set of tasks τi for which
IJ
i (t−∆k, t) ≥ x, and ξ the cardinality of τ′ . If ξ ≥ m the

Lemma directly follows, so we consider only ξ < m.∑
i 6=k

min(IJ
i (t−∆k, t), x) = ξx +

∑
τi /∈τ ′

IJ
i (t−∆k, t) =

= ξx + mIJ(t−∆k, t)−
∑

τi∈τ ′

IJ
i (t−∆k, t) ≥

≥ ξx + mIJ(t−∆k, t)− ξIJ(t−∆k, t) =

= ξx + (m− ξ)IJ(t−∆k, t) ≥ ξx + (m− ξ)x = mx.

If. Note that if
∑

i 6=k min(IJ
i (t − ∆k, t), x) ≥ mx, it

follows that

IJ(t−∆k, t) =
∑
i 6=k

IJ
i (t−∆k, t)

m
≥

≥
∑
i 6=k

min
(
IJ
i (t−∆k, t), x

)
m

≥ mx

m
= x.

2

Considering the definition of interference, it is clear that
a job of τk (i.e., the problem job) can reach zero laxity only
if IJ(t−∆k, t) ≥ (∆k−ek). Note that this is again a worst-
case assumption which introduces some pessimism in the
analysis. Applying Lemma 3, we have that the problem job
can reach zero laxity only if

∑
i

min(IJ
i (t−∆k, t),∆k − ek) ≥ m(∆k − ek)

and so∑
i

min(IJ
i (t−∆k, t)/∆k, 1− λk) ≥ m(1− λk). (4)

It is very difficult to correctly compute the interference
IJ
i (t−∆k, t). However, we can use the above upper bounds,

and in particular introduce βi
k in Equation 4. We obtain the

following Lemma (compare with Lemma1).

Lemma 4 If EDZL is used to schedule a sporadic task sys-
tem τ = {τ1, ..., τn} on m identical processors then a prob-
lem job J of task τk with deadline t can reach zero laxity
only if ∑

i

min(βi
k, 1− λk) ≥ m(1− λk) (5)

and can reach negative laxity only if the > strictly holds.

Proof. The lemma follows from the above discussion. 2

Thanks to this result we can now formulate the following
refined version of Theorem 2. The proof remains identical,
with the only difference that Lemma 4 is used instead of
Lemma 4.

Theorem 3 (Refined EDZL test) A sporadic task system
τ = {τ1, ..., τn} is schedulable by EDZL on m identical
processors unless the following inequality holds for least
m+1 different tasks τk, and it holds strictly (>) for at least
one of them:∑

i 6=k

min(βi
k, 1− λk) ≥ m(1− λk) (6)

where βi
k is defined as in Equation 2.

9 Experimental Evaluation

In order to see how well the EDZL algorithm and the
above schedulability test perform, a series of experiments
were conducted. In the first set of experiments the EDZL
test of Theorem 3 was applied to pseudo-randomly chosen
task systems. For comparison, the following four combina-
tions of a global multiprocessor scheduling algorithm and
schedulability test were tested:

7

• EDF – pure global earliest-deadline-first scheduling,
using the generalization of the utilization-based test of
Goossens, Funk and Baruah [9] to density (called GFB
in [6]) and the test of Bertogna, Cirinei and Lipari
(called BCL in [6]). Since each of these tests is able
to recognize some cases of schedulable task sets that
the other cannot, the combination was chosen to repre-
sent the currently most accurate sufficient schedulabil-
ity test for pure global EDF scheduling.

• EDF-UM – a hybrid between EDF and utilization-
monotonic scheduling. It assigns top priority to jobs
of the k−1 tasks that have the highest utilizations, and
assigns priorities according to deadline to jobs gener-
ated by all the other tasks, where k is the minimum
value in the range 1, . . . ,m for which the remaining
n− k tasks can be shown to be schedulable on m− k
processors using either the GFB or BCL test. A sim-
ilar algorithm was found to be top performer among
several global scheduling algorithms studied in [2].

• EDZL – pure EDZL scheduling, with the schedulabil-
ity test of Theorem 3.

• EDZL or EDF – pure EDZL scheduling, using the
schedulability test of Theorem 3, and also the two EDF
schedulability tests, using the fact that every task set
that is schedulable by global EDF is also schedulable
by EDZL.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 50 100 150 200 250 300 350 400

Percent Utilization

total cases

TF-load ≤ m

EDF

EDF-UM

EDZL

EDZL or EDF

Figure 2. Comparison of EDZL and EDF schedulability
tests on 4 processors

Figures 2-4 show the result of experiments on 1,000,000
pseudo-randomly generated task sets with periods uni-
formly distributed in the range 1..1000, utilization exponen-
tially distributed with mean 0.25, and deadlines uniformly
distributed in the range [uipi, pi], for m = 4, 8, 16 proces-
sors. Task systems that were trivially schedulable (n ≤ m

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500 600 700 800

Percent Utilization

total cases

TF-load ≤ m

EDF

EDF-UM

EDZL

EDZL or EDF

Figure 3. Comparison of EDZL and EDF schedulability
tests on 8 processors

or total density ≤ 1) were thrown out, as were task systems
with total utilization greater than m. Task sets that were
duplicates of those previously tested, regardless of task or-
der, were also thrown out. All tasks with 100% utilization,
regardless of period, were considered identical.

Each graph is a histogram in which the X axis corre-
sponds to the total processor utilization Usum and the Y
axis corresponds to the number of task sets with Usum in
the range [X, X + 0.01) that satisfy a given criterion.

For the top line, which is unadorned, there is no addi-
tional criterion. That is, the Y value is simply the number
of task sets with X ≤ Usum < X + 0.01. For the sec-
ond line, which is dashed, the additional criterion is that the
task set was not found to be entirely infeasible by the test
throw-forward load ≤ m[3]). For the other lines, the crite-
ria are the EDF, EDZL, EDF-UM, and the combined EDF
and EDZL criteria as described above.

Global EDZL with our schedulability test is able to ver-
ifiably schedule more task sets than the pure global EDF
or hybrid EDF-UM scheduling policies with the available
schedulability tests. Since the EDF-UM criteria were able
to verify schedulability for many more task sets than the
pure EDF criteria, we also experimented with a hybrid of
EDZL and utilization-monotonic (EDZL-UM). The results
are not shown here because there was virtually no differ-
ence between pure EDZL and EDZL-UM. We believe this
is a property of the zero-laxity scheduling rule, which is al-
ready a hybrid with EDF of a different kind; EDZL gives
top priority to tasks that are in danger of missing their dead-
lines; this cannot be improved upon by giving top priority
to any other tasks.

Many additional tests were run, with the individual task
utilizations generated according to an exponential distribu-
tion with mean 0.15, a uniform distribution, and a bimodal

8

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 200 400 600 800 1000 1200 1400 1600

Percent Utilization

total cases

TF-load ≤ m

EDF

EDF-UM

EDZL

EDZL or EDF

Figure 4. Comparison of EDZL and EDF schedulability
tests on 16 processors

distribution, and with unconstrained as well as constrained
deadlines. The results were very similar. One example with
unconstrained deadlines is shown in Figure 5. The task sets
were generated as for Figure 4, except that the deadlines
were uniformly distributed in the range [uipi, 4pi].

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 200 400 600 800 1000 1200 1400

Percent Utilization

total cases

EDF

EDF-UM

EDZL

EDZL or EDF

Figure 5. Comparison of EDZL and EDF schedulability
tests on 16 processors with some post-period deadlines.

Note that the above experiments do not distinguish per-
formance differences due to differences in accuracy of
the schedulability tests from differences in ability of the
scheduling algorithms. That is, there is no distinction be-
tween (1) a task set that is schedulable by the given algo-
rithm but cannot be verified as schedulable by the given test,
and (2) a task set that is not schedulable by the given algo-
rithm.

To the best of our knowledge, there are no known al-
gorithms other than “brute force” exhaustive state enumer-
ation that can distinguish the above two cases. However,
it is practical to perform an exhaustive verification of pure
EDF and pure EDZL schedulability for tasks sets with very
short periods. Figure 6 shows the result of experiments us-
ing such a necessary-and-sufficient test of schedulability for
pure EDF and pure EDZL schedulability for 4 processors on
a collection of 1,000,000 sets, without repetitions, of tasks
with periods in the range 1..5. All tasks with 100% utiliza-
tion were considered equivalent to the task with unit period,
deadline, and execution time. Task sets that differed only in
the order of tasks were considered repetitions. So were task
sets that were only “scaled up” by a constant factor from a
prior task in the enumeration. Tests on larger task systems
were not practical, due to the exponential growth in time
and storage requirements of the necessary-and-sufficient al-
gorithm.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 100 150 200 250 300 350 400

Percent Utilization

total cases

EDF

ZLED

Exhaustive EDF

Exhaustive ZLED

Figure 6. Comparison of EDZL and EDF algorithms on
2 processors, using exhaustive schedulability tests.

The lines labeled “Exhaustive EDZL” and “Exhaustive
EDF” show the number of task sets that were schedulable
using the necessary-and-sufficient (brute force, exhaustive)
tests of sporadic schedulability according to global EDF and
global EDZL algorithms, respectively. The lines labeled
“EDZL”, “EDF”, and “TF-load ≤ m” have the same mean-
ing as in Figures Figures 2-4.

The graph is more jagged in appearance than those in
Figures 2-4, because of the limitation of periods and execu-
tion times to 1..5 made some utilization values impossible
or very improbable.

For this collection of task sets, it is clear that there is
much room for improvement in the sufficient schedulabil-
ity tests for both EDF and EDZL, which fail to recognize
most of the schedulable task sets. It is also clear that EDZL
outperforms EDF by a significant margin, both in combi-

9

nation with the conservative sufficient schedulability tests
and with the necessary-and-sufficient schedulability test. In
fact, EDZL was able to schedule virtually all of the task sets.
Of course, it remains to be seen whether to which behavior
of the algorithms on such simple, small task sets generalizes
to larger task sets and other numbers of processors.

10 Conclusions and Future Work

Theorem 3 is the first known schedulability test for
EDZL on a multiprocessor platform. The empirical tests
indicate that EDZL with this sufficient schedulability test is
not only superior in performance to pure global EDF, but
also superior to an alternate EDF hybrid global scheduling
that is known to outperform pure EDF.

The approach followed in this analysis is very similar to
that followed for EDF in [1, 6]. Therefore, we hope to be
able to continue to extend the analysis of EDZL along simi-
lar lines. In particular, we plan to introduce a tighter bound
for the carry-in, using the technique proposed for EDF by
Baker in [1].

Another aspect that needs attention is the assumption
that if m+1 tasks can reach zero laxity, they can reach zero
laxity at the same time. This assumption clearly introduces
some pessimism in the analysis, and should be addressed in
future extensions.

We also hope to verify that our EDZL schedulability
tests are sustainable, as the term is defined by Baruah and
Burns [4].

A more ambitious, but for the moment very distant, goal
is the extension of the whole analysis, in order to find a
density bound for EDZL on a multiprocessor similar to the
EDF density bound for implicit deadline systems. However,
the proof of the density bound in [9] is based on a “resource
augmentation” argument, which relates how long it takes
to complete a set of jobs on m processors to how long it
takes to complete them on a single processor. Since EDF
is already optimal on one processor, it does not seem that
this technique can derive any tighter bound with EDZL, so
a new proof technique may be required.

References

[1] T. P. Baker. Multiprocessor EDF and deadline monotonic
schedulability analysis. In Proc. 24th IEEE Real-Time Sys-
tems Symposium, pages 120–129, Cancun, Mexico, 2003.

[2] T. P. Baker. A comparison of global and partitioned EDF
schedulability tests for multiprocessors. In International
Conf. on Real-Time and Network Systems, pages 119–127,
Poitiers, France, June 2006.

[3] T. P. Baker and M. Cirinei. A necessary and sometimes suf-
ficient condition for the feasibility of sets of sporadic hard-
deadline tasks. In Proc. 27th IEEE Real-Time Systems Sym-
posium, Rio de Janeiro, Brazil, Dec. 2006.

[4] S. Baruah and A. Burns. Sustainable scheduling analysis.
In Proceedings of the 27th IEEE Real-Time Systems Sympo-
sium, RTSS ’06, pages 159–168, Rio de Janeiro, Brasil, Dec.
2006.

[5] S. K. Baruah, N. Cohen, C. G. Plaxton, and D. Varvel. Pro-
portionate progress: a notion of fairness in resource alloca-
tion. In Proc. ACM Symposium on the Theory of Computing,
pages 345–354, May 1993.

[6] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedula-
bility analysis of EDF on multiprocessor platforms. In Proc.
17th Euromicro Conference on Real-Time Systems, pages
209–218, Palma de Mallorca, Spain, July 2005.

[7] H. Cho, B. Ravindran, and E. D. Jensen. An optimal real-
time scheduling algorithm for multiprocessors. In Proc. 27th
IEEE International Real-Time Systems Symposium, Rio de
Janeiro, Brazil, Dec. 2006.

[8] S. Cho, S.-K. Lee, A. Han, and K.-J. Lin. Efficient real-time
scheduling algorithms for multiprocessor systems. IEICE
Trans. Communications, E85-B(12):2859–2867, Dec. 2002.

[9] J. Goossens, S. Funk, and S. Baruah. Priority-driven
scheduling of periodic task systems on multiprocessors.
Real Time Systems, 25(2–3):187–205, Sept. 2003.

[10] R. Ha. Validating timing constraints in multiprocessor and
distributed systems. PhD thesis, University of Illinois, Dept.
of Computer Science, Urbana-Champaign, IL, 1995.

[11] R. Ha and J. W. S. Liu. Validating timing constraints in mul-
tiprocessor and distributed real-time systems. In Proc. 14th
IEEE International Conf. Distributed Computing Systems,
pages 162–171, Poznan, Poland, June 1994. IEEE Computer
Society.

[12] M. Park, S. Han, H. Kim, S. Cho, and Y. Cho. Comparison
of deadline-based scheduling algorithms for periodic real-
time tasks on multiprocessor. IEICE Trans. on Information
and Systems, E88-D(3):658–661, Mar. 2005.

[13] X. Piao, S. Han, H. Kim, M. Park, Y. Cho, and S. Cho. Pre-
dictability of earliest deadline zero laxity algorithm for mul-
tiprocessor real time systems. In Proc. 9th IEEE Interna-
tional Symposium on Object and Component-Oriented Real-
Time Distributed Computing, Gjeongju, Korea, Apr. 2006.

10

