
A necessary and sometimes sufficient condition for the feasibility of
sets of sporadic hard-deadline tasks

TR-060501

Theodore P. Baker∗

Department of Computer Science
Florida State University

Tallahassee, FL 32306-4530
e-mail: baker@cs.fsu.edu

Michele Cirinei†

Scuola Superiore Sant’Anna
Pisa, Italy

e-mail: cirinei@gandalf.sssup.it

Abstract

This report describes a necessary condition for feasibility of scheduling a set of sporadic hard-deadline tasks on
identical multiprocessor platforms, which is also a sufficient condition if there is only a single processor. The key
contribution is the characterization of the maximum, over all time intervals of a given length, of the amount of
computation that must be completed to meet all deadlines, and a method of computing this function efficiently to
any desired degree of accuracy. Empirical data are provided to verify that the new infeasibility test can be computed
efficiently and is an improvement over previously known checks for infeasibility.

1 Introduction

This report describes a necessary condition for feasibility of scheduling a set of independent sporadic hard-
deadline tasks. The key contribution is the characterization of the maximum, over all time intervals of a given
length, of the amount of computation that must be completed to meet all deadlines, and a method of computing
this function efficiently.

A sporadic task set τ is a collection of sporadic tasks {τ1, τ2, . . . , τn}. Each sporadic task τi = (ei, di, pi) generates
a potentially infinite sequence of jobs, characterized by a maximum (worst case) execution time requirement ei, a
maximum response time (relative deadline) di, and a minimum release time separation (period) pi.

A release time sequence ri for a sporadic task τi is a finite or infinite sequence of times ri,1 < ri,2 < · · · such
that ri,j+1 − ri,j ≥ pi, for j = 1, 2, A release time assignment r for a task set is a mapping of release time
sequences ri to tasks τi, one for each of the tasks in τ .

A sporadic task set is feasible on m processors if, for each release time assignment r there is a schedule for
m processors that meets all the task deadlines, i.e., such that τi executes for ei units of time in each interval
[ri,j , ri,j +di), for i = 1, . . . , n and j = 1, 2, It is assumed that ei ≤ min(di, pi) for every task τi, since otherwise
a task system would be trivially infeasible.

A task system is schedulable according to a given scheduling policy if the policy produces a schedule that meets
all the task deadlines.

Several sufficient tests have been derived for the schedulability of a sporadic task set on a multiprocessor using
a given scheduling policy, such as global preemptive scheduling based on fixed task priorities (FTP) or deadlines

∗This material is based upon work supported in part by the National Science Foundation under Grant No. 0509131, and a DURIP
grant from the Army Research Office.

†Visiting at the Florida State University, supported by PARADES.

(EDF) [2, 3, 4, 6, 10, 11, 13, 15]. For example, it can be shown that a set of independent periodic tasks with
deadline equal to period will not miss any deadlines if it is scheduled by a global EDF policy on m processors,
provided the sum of the processor utilizations does not exceed m(1− umax) + umax, where umax is the maximum
single-task processor utilization.

One difficulty in evaluating and comparing the efficacy of such schedulability tests has been distinguishing the
causes of failure. That is, when one of these schedulability tests is unable to verify that a particular task set is
schedulable there are three possible explanations:

1. The problem is with the task set, which is not feasible, i.e., not able to be scheduled by any policy.

2. The problem is with the scheduling policy. The task set is not schedulable by the given policy, even though
the task set is feasible.

3. The problem is with the test, which is not able to verify the fact that the task set is schedulable by the given
policy.

To the best of our knowledge, there are no known algorithms other than “brute force” enumeration that can
distiguish the above three cases.1

The following facts are fairly well known:

1. A sporadic task set τ = {τ1, . . . , τn} is feasible on m processors (with ideal processor sharing) if λsum(τ) ≤ m,
where

λsum(τ) def=
n∑

i=1

λi =
n∑

i=1

ei

min(pi, di)

2. A sporadic task set is not feasible on m processors if usum(τ) > m, where

usum(τ) def=
n∑

i=1

ui =
n∑

i=1

ei

pi

Baruah and Fisher[7] showed that δsum(τ) ≤ m is a necessary condition for the feasibility of the task set τ on
a platform with m unit-capacity processors, where

δsum(τ) def= lub
t>0

∑n
i=1 DBF(τi, t)

t

and
DBF(τi, t)

def= max(0, (b t− di

pi
c+ 1)ei)

Fisher, Baker, and Baruah[6, 12] showed how to approximate the load bound function δsum(τ) efficiently, in
polynomial time, and that the criterion δsum > m was significantly more effective than the criterion usum > m as
a test of infeasibility when tested on several large collections of pseudo-randomly generated task sets.

The present paper derives an improvement on the above load bound function, which allows the detection of a
strictly larger range of infeasible task sets, including the example below.

Example 1. Consider the task system below.

i pi ei di DBF(τi, 1)
1 4 2 2 0
2 2 1 1 1
3 2 1 1 1

2

1For example, [5] takes exponential time and only distinguishes (2) from (3).

2

This task set is infeasible on m = 2 processors, but δsum(τ) = 2. The problem is that DBF(τ1, 1) = 0 under-
estimates the real demand of task τ1 in the interval [0, 1). Task τ1 must execute for one unit of time in the
interval[0, 1) in order to meet its deadline at 2. The effective combined demand of the three tasks over this interval
should be 3, not 2. The phenomenon observed above was recognized previously by Johnson and Maddison [14]),
who used the term “throwforward” to describe the amount of execution time that a task with later deadline, like
τ1, must complete before an earlier deadline of another task, like τ2 and τ3.

The new load bound function m`(τ) defined here is similar to δsum(τ), but differs by using DBF(τi, t)+max(0, t−
(jpi +di−ei)) instead of DBF(τi, t). The additional term corrects for cases of under-estimation of the actual worst-
case computational load of an interval like the example above, by taking into account the throwforward of jobs
whose deadlines may occur past the end of the interval.

This paper makes the following contributions:

1. It shows how to recognize a significant number of infeasible task sets, by computing a new load-bound function
and determining whether the load bound exceeds the available number of processors.

2. It shows that the new load bound retains the property of the δsum(τ) load bound of Baruah, Mok, and
Rosier[9] that m`(τ) ≤ 1 is a necessary and sufficient condition for single-processor feasibility, and a necessary
and sufficient test of single-processor EDF schedulability.

3. It provides empirical evidence of the degree of improvement in ability to detect infeasible task sets using the
new load-bound function, as compared to the previously-defined load bound function δsum(τ).

4. It provides an algorithm for computing the new load bound function to any specified degree of accuracy
within polynomial time.

5. It provides empirical evidence that the new algorithm can be computed at least as efficiently as the best
previously known algorithm for computing δsum(τ).

2 Time Model

For mathematical convenience, points and durations in real time are modeled by real numbers. However, in an
actual system time is not infinitely divisible. The times of event occurrences and durations between them cannot
be determined more precisely than one tick of the system’s most precise clock. Therefore, any time value t involved
in scheduling is assumed to be a non-negative integer value and is viewed as representing the entire interval

[t, t + 1) def= {x ∈ R|t ≤ x < t + 1}

The notation [a, b) is used for time intervals as a reminder that the interval includes all of the clock tick starting
at a but does not include the clock tick starting at b.

These conventions allow the use of mathematical induction on clock ticks for proofs, avoid potential confusion
around end-points, and prevent impractical schedulability results that rely on being able to slice time at arbitrary
points.

3 The maxmin load

Given a sporadic task τi and a possibly infinite sequence ri,1, ri,2, . . . of release times that are compatible with
the sporadic arrival constraint pi, the minimum demand of τi in any specific time interval is defined to be the
minimum amount of time that τi must execute within that interval in order to meet all its deadlines.

Note that this definition of the minimum demand of a task does not presume any specific scheduling policy, and
it takes into account release times and deadlines both inside and outside the interval. In the latter respect this
definition of minimum demand is different from the definition of demand on which the definition of δsum above is
based; in δsum only tasks with deadlines and release times inside the interval are considered.

Example 2. Consider a task τi = (2, 3, 7) (with ei = 2, di = 3, pi = 7) and the sequence of release times 0, 7, 14.
Figure 1 shows the minimum demand of τi for several intervals. The diagonally shaded areas show the most
favorable position of τi’s execution in the schedule for minimizing the work done in the given interval while still
meeting deadlines. The cross-hatched areas indicate the portion of that work that cannot be moved outside the
given interval without missing a deadline.

3

���
���
���
���

t

3 70
���
���
���
���
�
�
�
�

3 70

t

(a) (b)

���
���
���
���

���
���
���
���

���
���
���
���

3 7 100

t

(c)

��
��
��
��

��
��
��
��

30

1

7

2

(d)

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���

3 100

1

7 14 17

16

��
��
��
��

(e)

Figure 1. minimum demand examples

(a) The minimum demand of the interval [0, t) is zero for t ≤ 1, since it is possible to meet all deadlines and not
start any jobs of τi before time 1.

(b) The minimum demand of the interval [0, t) is 2 − (3 − t) for 1 < t ≤ 3, since the first job of τi can execute
for at most 3− t time between t and the deadline 3.

(c) The minimum demand of the interval [0, t) is 2 for 3 < t ≤ 8, since execution of the second job does not need
to start until time 8 in order to meet the deadline at time 10.

(c) The minimum demand of the interval [1, 2) is zero, since half the execution of the first job can be done before
the start of the interval and the other half can be postponed until after the interval.

(e) The minimum demand of the interval [1, 16) is 4, since the first job cannot do more than one unit of execution
before time 1, the second job cannot be postponed past 10, and the third job cannot postpone more than
one unit of execution past 16.

2

Given a sporadic task τi and a time duration t, the maxmin-demand md(τi, t) of τi for intervals of length t is
defined to be the maximum of the minimum demand of [a, a + t), taken over all release time assignments and all
interval start times a ≥ 0.

The maxmin load of a set τ of n sporadic tasks is

m`(τ) def= lub
t≥0

n∑
i=1

md(τi, t)/t

From the requirement that ei ≤ min(di, pi), it is clear that md(τi, t)/t ≤ 1, and so the above least upper bound
is well defined.

For purposes of analysis, it is helpful to think in terms of intervals that start at time zero.
Given a sporadic task τi and a time duration t, the canonical demand cd(τi, t) of τi for intervals of length t is

defined to be the minimum demand of the interval [0, t) with periodic releases starting at time zero, i.e., ri,j = jpi,
j = 0, 1, 2,

Theorem 1 (Critical zone). For any set τ of sporadic tasks and any t > 0, md(τi, t) = cd(τi, t).

proof: Let r′ be any release time sequence and [a, a + t) be any interval of length t. Consider any single task
τi. It is enough to show that the minimum demand of τi in [a, a + t) under r′ is no greater than the minimum

4

demand of τi in [0, t) under the canonical release time sequence ri,j = jpi, j = 0, 1, 2, This is done by a series
of modifications to the release-time sequence r′, each of which does not reduce the minimum demand.

Without loss of generality, delete from r′ all the release times that do not contribute to the minimum demand of
τi in [a, a + t), and let b

def= r′i,1 be the release time of the first job of τi that contributes to that minimum demand.
The next step is to show that the minimum demand of τi in [a, a + t) under r′ is no greater than the minimum

demand with strictly periodic releases starting at b. If there are any release times in r′ that are farther apart than
pi, shifting those releases closer to the start of the interval [a, a + t) cannot decrease the minimum demand in the
interval. The sporadic minimum separation constraint does not allow releases to be any closer together than pi.
Therefore, it is sufficient to limit consideration to cases where r′i,j = b + jpi.

The next step is to show that the minimum demand in [a, a + t) will not be decreased by shifting all the release
times so that the first release occurs at a. If b ≥ a, it is clear that the minimum demand in [a, a + t) will not be
decreased by next shifting all the release times down by b− a. Therefore, it only remains to show that if b < a the
minimum demand in [a, a + t) will not be decreased by shifting all the release times up by a− b, so that the first
release occurs at a.

Note that the shift has different effects near the beginning and the end of the interval, and in particular the
minimum demand of the task

• near a tends to be increased by the shift;

• near a + t tends to be decreased by the shift.

In order to show that the overall minimum demand in [a, a + t) is not decreased, we consider separately the
consequences of the shift at the beginning and at the end of the interval [a, a+ t), and we compare the two results.

Since the job of τi released at b contributes to the minimum demand of τi in [a, a + t), b + ei > a. The next
release of τi is at b + pi ≥ b + ei > a. Moreover, due to the sporadic constraint, there is no release in [b− pi, b), so
no job released before b can be impacted by the shift. As a consequence, only the job released at b changes (due
to the shift) its contribution to the minimum demand, which means that the minimum demand near a is increased
by exactly the shift amount, a− b.

Consider now what happens near the end of the interval, where the overall minimum demand tends to be
decreased. The minimum demand of jobs near a + t is the amount of execution that cannot be postponed until
after a+ t. The latest that each job can be postponed is the interval of length ei immediatly preceding its deadline.
These intervals are non overlapping, since the job deadlines are all separated by pi, and ei < pi. Due to this fact,
the shift cannot decrease the minimum demand near the end of the interval more than the shift amount, a− b.

So, any decrease in minimum demand near a+ t is offset by the increase near a. As a further note, consider that
in the particular case that the same job is influenced by both the increase near a and the decrease near a + t, the
overall reasoning remains valid, and so even in this case shifting all the release times up by a− b does not decrease
the minimum demand of τi in [a, a + t).

The last step is to observe that the minimum demand in [a, a + t) by periodic releases starting at a is the same
as the minimum demand in [0, t) with periodic releases starting at zero.

2

A more detailed version of the proof above may be found in Appendix A.
The following necessary condition for feasibility of a sporadic task set follows very directly from the above

definitions and theorem.

Theorem 2 (Infeasibility test). If a set τ of sporadic tasks is feasible on m processors for every release time
assignment then m`(τ) ≤ m.

proof: Suppose m`(τ) > m. By the definition of m`, there is some time duration t for which
∑n

i=1 md(τi, t)/t > m.
By the definition of m`(τ) and the theorem above, given the canonical release sequence of each task, the total
execution time in [0, t) must exceed mt, which is a contradiction. 2

By Theorem 2, the condition m`(τ) ≤ m is necessary for m-processor feasibility of a sporadic task set τ . While
this condition is not sufficient for feasibility in general it is sufficient as well as necessary for the case m = 1.

Corollary 1 (Feasibility test for one processor). If m`(τ) ≤ 1 then τ is schedulable on a single processor.

proof: The proof follows directly from the fact that m`(τ) ≥ δsum(τ) (shown in Lemma 2 below) and the well-
known fact that τ is schedulable by EDF on one processor if δsum(τ) ≤ 1 [8]. 2

5

Example 3. The task set described by the table below illustrates why the above result does not generalize to
multiple processors. For this task set, m`(τ) = 2. The task set is clearly not feasible on m = 2 processors. The
problem is that τ3 needs to execute for two time units in the interval [0, 3) and there are two time units of execution
time available, but the only two units of execution time available run in parallel on two different processors.

i pi ei di

1 2 1 1
2 2 1 1
3 3 2 3

2

4 How to compute maxmin-demand

In order to be able to use Theorem 2 as a test of infeasibility, one needs to compute the function m`(τ). The
first step is to compute md(τi, t).

The value of md(τi, t) can be computed for any t as follows:

Theorem 3. For any sporadic task τi and time duration t,

md(τi, t) = jtei + max(0, t− (jtpi + di − ei)) (1)

where
jt

def= max(0, b t− di

pi
c+ 1)

proof: By Theorem 1, computing md(τi, t) is the same as computing cd(τi, t). Let jt be the number of jobs of τi

that must execute to completion entirely within [0, t). It follows that jt = 0 if-and-only-if t < di. For jt ≥ 1 the
deadline of the jtth job falls on or before t and the deadline of the next job falls after t, i.e.,

(jt − 1)pi + di ≤ t < jtpi + di (2)
t− di

pi
< jt ≤

t− di

pi
+ 1 (3)

Since jt is an integer,

jt = b t− di

pi
c+ 1

Whether some portion of the execution of the jt+1th job must complete in [0, t) depends on whether t− (jtpi +
di − ei) > 0 (i.e., whether the jt+1th job has “throwforward” on t[14]).
Case 1: If t − (jtpi + di − ei) ≤ 0 then the jt+1th job can complete by the deadline without executing at all in
the interval [0, t).
Case 2: If t − (jtpi + di − ei) > 0 then the jt+1th job cannot complete by the deadline jtpi + di unless it has
already completed at least t − (jtpi + di − ei) execution by time t. This is shown by the cross-hatched region in
Figure 2.

i i
 p + d

i
p j

t
j
t

p + d
i i

0 pd
i i

...
���
���
���
���

���
���
���
���

���
���
���
���

t

��
��
��
��

Figure 2. Case 2 of the proof of Theorem 3.

Taking the maximum of these two cases, and adding jtei for the execution times of the first jt jobs, one obtains
(1).

2

6

Note that the function md(τi, t) defined here is similar to DBF(τi, t). It differs only in being larger by the
throwforward term, max(0, t − (jpi + di − ei)). Therefore, prior techniques for computing rapid approximations
to DBF(τi, t) [1, 6, 12] can be modified to fit md(τi, t). In particular, the function md(τi, t) can be approximated
within a tolerance of ui(pi − ei) for sufficiently large t, as follows.

Lemma 1. For any sporadic task τi, if t ≥ di then

ui(t− di + ei) ≤ md(τi, t) < ui(t− di + pi) (4)

proof: Since t ≥ di, by Theorem 3, jt = b t−di

pi
c+ 1 ≥ 1 and md(τi, t) is the maximum of two functions, given by

jtei and jtei + t− jtpi − di + ei, which coincide at all the points t such that t = jtpi + di − ei for some integer jt.
The value of md(τi, t) is constant with respect to t and has the value jtei when

(jt − 1)pi + di ≤ t < jtpi + di − ei

It increases linearly with t and has the value t− di − jt(pi − ei) + ei when

jtpi + di − ei ≤ t < jtpi + di

Therefore, md(τi, t) is bounded above by the linear interpolation of the points where md(τi, t) changes from
increasing to constant and bounded below by the linear interpolation of the points where md(τi, t) changes from
constant to increasing. The upper bound can be obtained by interpolating the values of md(τi, t) at the points
t = (jt − 1)pi + di.

md(τi, t) = jtei =
t− di + pi

pi
ei = ui(t− di + pi)

and the lower bound can be obtained by interpolating the values of md(τi, t) at the points t = jtpi + di − ei.

md(τi, t) = jtei =
t− di + ei

pi
ei = ui(t− di + ei)

2

Note that the upper bound for DBF(τi, t) (see [6, 12]) is the same as for md(τi, t), but the lower bound for
DBF(τi, t) is smaller by uiei.

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30

upper bound
md(τ1,t)

lower bound

Figure 3. md(τ2, t) with lower and upper bounds

Example 4. Consider the task system below.

i pi ei di

1 7 2 3
2 5 2 6

The zig-zag dotted line in Figure 3 shows the function md(τi, t) for τ2. The stright diagonal lines are the upper
and lower bounds of (4). 2

7

5 How to approximate maxmin load

Calculating m`(τ) requires finding the maximum of the function
∑n

i=1 md(τi, t)/t over an unbounded range of
real numbers t. This can be done efficiently because one can show that there is a finite range of values of t at
which the maximum of

∑n
i=1 md(τi, t)/t can occur.

Observe that md(τi, t) alternates between constant intervals and intervals of linear increase. The changes from
increasing to constant occur at the points jpi + di, for j = 1, 2,

Example 5. Consider the task set given in Example 4. Figure 4 shows md(τ1, t) (thin solid line), md(τ2, t) (dotted
line), and md(τ1, t) + md(τ2, t) (dashed line). 2

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20

md(τ1,t)
md(τ2,t)

md(τ1,t)+md(τ2,t)

Figure 4. md(τ1, t), md(τ2, t), and their sum

The function
∑n

i=1 md(τi, t) is made up of constant segments and linearly increasing segments. Each constant
segment begins at one of the points jpi + di, for j = 1, 2, . . . and i = 1, 2, . . . , n. After the sum is divided by t,
there are peaks at those same points, as shown in Figure 5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100

md(τ1,t)/t
md(τ2,t)/t

md(τ1,t)/t+md(τ2,t)/t

Figure 5. md(τ1, t)/t, md(τ2, t)/t, and their sum

Lemma 1 provides the following bounds for md(τi, t)/t, for t ≥ di, within a tolerance of ui(pi − ei)/t:

ui(1 +
ei − di

t
) ≤ md(τi, t)

t
≤ ui(1 +

pi − di

t
) (5)

8

Since the value of the upper bound expression (on the right above) tends to ui for sufficiently large t, the global
maximum is at one of the early peaks. The question is how far to look.

By computing md(τi, t) exactly for small values of t and using the above linear approximations for large values
of t, the search space for the maximum can be limited to a size that is polynomial in the length of the task set.
The technique is analogous to that used to compute δsum in [12], which is based on earlier work by Albers and
Slomka [1] for uniprocessor feasibility analysis.

For an approximation to md(τi, t)/t from below, the function gε(τi, t) be defined as follows

gε(τi, t)
def=

{
md(τi, t)/t, if t < max(di, n

ui(pi−ei)
ε)

ui(1 + ei−di

t) otherwise

Note that the approximation can be done from either above or below, depending on whether one is interested
in proving infeasibility (for m processors) or feasibility (for a single processor). However, the latter is not very
interesting, since the δsum test is already sufficient for the single-processor case. Therefore, and because of space
limitations, we only describe in full the approximation from below. For the approximation to md(τi, t) from above
one just needs to replace ui(1 + ei−di

t) by ui(1 + pi−di

t).
If t < max(di, n

ui(pi−ei)
ε), md(τi, t)/t− gε(τi, t) = 0 ≤ ε

n . Otherwise, from (5) it follows that, for every t ≥ 0,

0 ≤ md(τi, t)/t− gε(τi, t)

≤ ui(pi − ei)
t

≤ ε

n

Summing, we obtain

0 ≤
n∑

i=1

md(τi, t)/t−
n∑

i=1

gε(τi, t) ≤ ε (6)

Let

ĝε(τ) def= lub
t≥0

n∑
i=1

gε(τi, t)

It follows from (6) that
ĝε(τ) ≤ m`(τ) ≤ ĝε(τ) + ε

Figure 6 shows the approximation functions, gε(τ1, t) and gε(τ2, t), and their sum for the task set given in
Example 4. Compare this with the exact functions and their sums in Figure 5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20 40 60 80 100

g0.05(τ1,t)
g0.05(τ2,t)

g0.05(τ1,t)+g0.05(τ2,t)

Figure 6. gε(τ1, t), gε(τ2, t), and their sum

9

Observe that gε(τi, t) is monotonic with respect to t except at the points where b t−di

pi
c makes a jump, i.e., only

at values t = kpi + di such that t < nui(pi−ei)
ε , for k = 0, 1, 2, . . . and i = 1, . . . , n. Therefore, local maxima of∑n

i=1 gε(τi, t) can occur only at such points. The set S(τ, ε) of such points can be described as follows:

{kpi + di | 0 < k <
nui(pi − ei)

εpi
− di

pi
, 1 ≤ i ≤ n} (7)

Therefore,

ĝε(τ) = max
t∈S(τ,ε)

n∑
i=1

gε(τi, t)

and since gε(τi, t) ≤ md(τi, t)/t,

ĝε(τ) ≤ max
t∈S(τ,ε)

n∑
i=1

md(τi, t)/t ≤ m`(τ) (8)

It follows that the value of the expression in the center of (8), which can be computed by evaluating
∑n

i=1 md(τi, t)
at teach of the points in S(τ, ε), is an ε approximation of m`(τ) from below.

Given any fixed tolerance ε > 0, and assuming that each ui ≤ 1, (7) provides the following bound on the number
of points t ∈ S(τ, ε).

n∑
i=1

nui(pi − ei)
εpi

− di

pi
=

n∑
i=1

nui

ε
−

n∑
i=1

(
nu2

i

ε
+

di

pi
)

≤ n

ε
usum

A straightforward implementation of
∑n

i=1 gε(τi, t) has O(n) complexity, so the total complexity is O(n2usum/ε).
Note that since usum ≤ n, O(n2usum/ε) ∈ O(n3/ε). That is, the runtime of the algorithm Approximate-m` is
polynomial in the number n of tasks in τ and 1/ε, and is independent of the task parameters.

Note further that in an application the number of processors m is known and one can assume that usum ≤ m,
so O(n2usum/ε) ∈ O(n2m/ε).

Additional heuristics, based on the following two lemmas, can often reduce the actual running time below the
O(n2m/ε) worst-case bound.

Lemma 2. For any sporadic task set τ ,

usum(τ) ≤ δsum(τ) ≤ m`(τ) ≤ λsum(τ)

proof: It was shown in [12] that usum(τ) ≤ δsum(τ) ≤ λsum(τ). The function m`(τ) defined here is similar to
δsum(τ), but differs by using md(τi, t) = DBF(τi, t) + max(0, t− (jpi + di − ei)) instead of DBF(τi, t). Therefore,
it is clear that δsum(τ) ≤ m`(τ), and so only the upper bound needs to be proved.

If t < di then, from the definition of md(τi, t),

md(τi, t) = max(0, t− di + ei)

This is non-decreasing with respect to t, and so the maximum value of md(τi, t)/t for t ≤ di is ei/di ≤ λi.
If t ≥ di, then, from (5),

md(τi, t)
t

≤ ui(1 +
pi − di

t
)

If pi ≥ di the term pi−di

t is non-increasing with respect to t, and so for t ≥ di,

md(τi, t)
t

≤ ui(1 +
pi − di

di
) =

ei

di
= λi

If pi < di the term pi−di

t is increasing with respect to t, so the least upper bound is the limit for large t.

md(τi, t)
t

≤ lim
t→∞

md(τi, t)
t

= ui = λi

10

It follows that the least upper bound of
∑n

i=1 md(τi, t)/t is bounded by λsum. 2

Another condition for early termination of the search for m`(τ) is based on the fact that md(τi, t)/t tends to ui

for sufficiently large t (cfr. (5)), and so the difference between usum(τ) and
∑n

i=1 md(τi, t)/t gives an upper bound
on t. This is expressed in Lemma 3 below.

Lemma 3. If

usum(τ) + γ ≤
n∑

i=1

md(τi, t)
t

(9)

for some γ > 0, then

t ≤
n∑

i=1

ui max(0, pi − di)
γ

(10)

proof: It follows from (5) above that if t ≥ di then

md(τi, t)
t

≤ ui(1 +
pi − di

t
) ≤ ui(1 +

max(0, pi − di)
t

)

There are two other cases:

1. If t < di − ei then
md(τi, t)

t
= 0 ≤ ui(1 +

max(0, pi − di)
t

)

2. If di − ei ≤ t < di then, since ui ≤ 1, ui(t− di) ≥ ti − di, and so

md(τi, t)
t

=
t− di + ei

t

≤ ui(t− di) + ei

t
=

ui(t− di) + uipi

t

= ui(1 +
pi − di

t
)

≤ ui(1 +
max(0, pi − di)

t
)

Therefore,
n∑

i=1

md(τi, t)
t

≤ usum(τ) +
∑n

i=1 ui max(0, pi − di)
t

(11)

Composing (9) and (11) yields

usum(τ) + γ ≤ usum(τ) +
∑n

i=1 ui max(0, pi − di)
t

from which (10) follows. 2

Pseudo-code for the algorithm Approximate-m` is given in Figure 7. The initial value given to m` in line 1 is
based on the relation m`(τ) ≥ usum(τ) from Lemma 2. The algorithm incorporates two heuristics that permit the
computation of m`(τ) to terminate without looking at all the elements of S(τ, ε). One of these is the relationship
m`(τ) ≤ λsum(τ), from Lemma 2, which is applied in line 8 to return immediately if the maximum of md(τi, t) over
the range of values examined exceeds λsum(τ) − ε. The other heuristic is applied in line 8 to return immediately
if the range of values examined so far exceeds the value of limit computed at line 7, based on Lemma 3.

Note again that the above computation approximates m`(τ) from below, for use in proving a task set is not
feasible on m processors. Similar reasoning can be used to approximate m`(τ) from above, with similar runtime
complexity. The technique of approximation from above is explained in more detail, in the context of computing
δsum(τ), by [12].

11

Approximate-m`(τ, ε)
1 m`← usum(τ)
2 dmax ← maxn

i=1 di

3 limit ← max(S(τ, ε))
4 for each t ∈ S(τ, ε), in increasing order do
5 m`← max(m`,

∑n
i=1 md(τi, t)/t)

6 if t > dmax then
7 limit ← min(limit ,∑n

i=1 ui max(0, pi − di)/(m`−usum))
8 if t ≥ limit or m`(τ) > λsum(τ)− ε then
9 return m`

10 return m`;

Figure 7. Pseudo-code for approximate computation of m`(τ) from below.

6 Empirical performance

It is clear that the new load-bound function m`(τ) is an improvement over δsum(τ) for screening out infeasible
task sets, since we have shown in Lemma 2 that δsum(τ) ≤ m`(τ) and we have shown by Example 1 that in some
cases δsum(τ) ≤ m while m`(τ) > m.

To get a sense of how often the difference between these two functions is enough to matter, we ran experiments
on a large number of pseudo-randomly chosen sets of tasks. The experiments compared the number of task sets
eliminated by the new load-bound function against the number eliminated by the old load-bound function δsum.
Because of the page limit, the results of only a few such experiments are reported here.

Figures 8, 9, and 10 show the result of experiments on 1,000,000 pseudo-randomly generated task sets with
uniformly distributed utilizations and uniformly distributed constrained deadlines, with total utilizations limited
to usum ≤ m for m = 2 and 8. Each graph is a histogram in which the X axis corresponds to values of usum

and the Y axis corresponds to the number of task sets with usum in the range [X, X + 0.01) that satisfy a given
criterion.

• For the top line, which is unadorned, there is no additional criterion. That is, the Y value is simply the
number of task sets with X ≤ usum < X + 0.01. The experiments did not include any task sets with
usum > m, since they are clearly not feasible.

• For the second line, decorated with large boxes, the criterion is δsum ≤ m. The Y value is the number of
task sets that might be feasible according to this criterion. The space between this line and the first indicates
how many task sets are detected as infeasible.

• The third line, decorated with small solid squares, corresponds to the criterion m`(τ) ≤ m. The Y value is
the number of task sets that might be feasible according to this criterion. The region between this line and
the one above it indicates the improvement in recognition of infeasible task sets due to using m`, as compared
to δsum. It can be seen that the condition m`(τ) ≤ m identifies significantly more infeasible task sets than
the condition δsum(τ) ≤ m, especially for systems with a large number of tasks and processors.

• The bottom line, decorated with small circles, corresponds to the criterion λsum ≤ m. This indicates how
many task sets at each utilization level are definitely feasible according to this criterion. The region between
this line and the one above it indicates the number of task sets whose feasibility remains indeterminate using
the simple tests described in this paper.

Figure 11 shows the number of iterations taken by algorithm Approximate-m` to compute m`(τ) and the
number of iterations taken to compute δsum. For fairness in comparison, δsum was approximated from below,
using an algorithm similar to Approximate-m`. Note that this is distinct from the algorithms for approximating
δsum reported in [12] because the primary subject of interest there was feasibility, and we are approximating from
below because the current subject of interest is infeasibility.

12

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

usum/m (%)

λsum ≤ m
ml ≤ m

δsum ≤ m
total cases

Figure 8. Histograms for usum ≤ m, m = 2

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

usum/m (%)

λsum ≤ m
ml ≤ m

δsum ≤ m
total cases

Figure 9. Histograms for usum ≤ 4, m = 4

Observe that the computation of m`(τ) converges faster than the computation of δsum(τ). Since the algorithms
are virtually the same, the reason for the faster convergence is that the linear function used to estimate the error
for md(τi, t) is larger than that for DBF(τi, t). This is illustrated for the task τ1 of Example 4 in Figure 12,
with ε = 0.05. Note how the diagonal linear lower bound for md(τ2, t) is higher than the diagonal linear lower
bound for DBF((, τ)2, t). Figure 13 compares the values of g0.05(τ2, t)/t and the corresponding approximation to
DBF((, τ)2, t)/t. The point where the transition from the exact function to the linear approximation occurs earlier
for md(τ2, t) than for DBF((, τ)2, t).

7 Conclusion

The new load bound function m`(τ) provides a more accurate and more rapidly computable method than has
been known before for detecting that a sporadic task set is infeasible. The value of this result is in narrowing the
area of uncertainty, between the task sets that can be verified as feasible (e.g., by showing they are schedulable
according to some specific algorithms such as EDF, Pfair, etc.) and those that are not schedulable.

Although the method for computing m`(τ) is only approximate, an approximation is adequate for all practical
purposes. In any real application of a schedulability test one needs to allow a margin of safety, to account for such
factors as errors in predicting the worst-case task execution times, inaccuracy of the timer used to schedule the

13

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

usum/m (%)

λsum ≤ m
ml ≤ m

δsum ≤ m
total cases

Figure 10. Histograms for usum ≤ m, m = 8

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 5 10 15 20

log2 (iterations)

δsum computation
ml computation

Figure 11. Iterations to compute load-bound for usum ≤ 4

tasks, and preemption delays due to critical sections.
Incidental to the main objective of this research, it turned out that m`(τ) ≤ 1 is also a necessary and sufficient

test for feasibility and EDF schedulability of sporadic task sets on multiprocessor systems. This confirms that
m`(τ) is a consistent and natural refinement of δsum. Moreover, since the approximate computation of m`(τ)
(from below) converges faster than δsum, it would seem to have a practical advantage.

The problem of finding an efficient feasibility test that is both necessary and sufficient for multiprocessor systems,
or to show that this problem is NP-hard, appears to remain open.

Acknowledgments

The authors are thankful to Sanjoy Baruah and Nathan Fisher for their collaboration with one author on the
computation of δsum, reported in [12], which laid the essential groundwork for the developments reported in this
paper and stimulated further thought about this interesting problem. We are also thankful to the anonymous
RTSS reviewers for their constructive suggestions, which helped us to improve the paper.

14

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30

md(τ2,t)
lower bound for md(τ2,t)

DBF(τ2,t)
lower bound for DBF(τ2,t)

Figure 12. Relation of linear lower bounds for DBF(τi, t) and md(τi, t) for τ2 of Example 4.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 20 40 60 80 100 120 140

sum of md(τ,t)/t
approximation

sum of DBF(τ,t)/t
approximation

Figure 13. Why convergence is more rapid for the approximation of m`(τ) than the approximation of δsum(τ).

References

[1] K. Albers and F. Slomka. An event stream driven approximation for the analysis of real-time systems. In Proc.
EuroMicro Conference on Real-Time Systems, pages 187–195, Catania, Sicily, July 2004. IEEE Computer Society
Press.

[2] B. Andersson, S. Baruah, and J. Jonsson. Static-priority scheduling on multiprocessors. In Proc. 22nd IEEE Real-Time
Systems Symposium, pages 193–202, London, UK, Dec. 2001.

[3] T. P. Baker. An analysis of EDF scheduling on a multiprocessor. IEEE Trans. on Parallel and Distributed Systems,
15(8):760–768, Aug. 2005.

[4] T. P. Baker. An analysis of fixed-priority scheduling on a multiprocessor. Real Time Systems, 2005.
[5] T. P. Baker. Brute-force determination of mulitprocessor schedulability for sets of sporadic hard-deadline tasks.

Technical Report TR-061001, Florida State University Department of Computer Science, Tallahassee, FL, Nov. 2006.
[6] T. P. Baker, N. Fisher, and S. Baruah. Algorithms for determining the load of a sporadic task system. Technical

Report TR-051201, Department of Computer Science, Florida State University, Tallahassee, FL, Dec. 2005.
[7] S. Baruah and N. Fisher. Partitioned multiprocessor scheduling of sporadic task systems. In Proc. of the 26th IEEE

Real-Time Systems Symposium, Miami, Florida, Dec. 2005. IEEE Computer Society Press.
[8] S. K. Baruah, R. R. Howell, and L. E. Rosier. Algorithms and complexity concerning the preemptive scheduling of

periodic real-time tasks on one processor. Real-Time Systems, 2, 1990.

15

[9] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling hard-real-time sporadic tasks on one processor.
Proc. 11th IEE Real-Time Systems Symposium, pages 182–190, 1990.

[10] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedulability analysis of EDF on multiprocessor platforms. In Proc.
17th Euromicro Conference on Real-Time Systems, pages 209–218, Palma de Mallorca, Spain, July 2005.

[11] M. Bertogna, M. Cirinei, and G. Lipari. New schedulability tests for real-time task sets scheduled by deadline monotonic
on multiprocessors. In Proc. of the 9th International Conf. on Principles of Distributed Systems, Pisa, Italy, Dec. 2005.

[12] N. Fisher, T. P. Baker, and S. K. Baruah. Algorithms for determining the demand-based load of a sporadic task
system. In 12th IEEE International Conf. on Embedded and Real-Time Computing Systems and Applications, Sydney,
Australia, Dec. 2006.

[13] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of periodic task systems on multiprocessors. Real
Time Systems, 25(2–3):187–205, Sept. 2003.

[14] H. H. Johnson and M. S. Maddison. Deadline scheduling for a real-time multiprocessor. In Proc. Eurocomp Conference,
pages 139–153, 1974.

[15] A. Srinivasan and S. Baruah. Deadline-based scheduling of periodic task systems on multiprocessors. Information
Processing Letters, 84:93–98, 2002.

A Formal proof of Theorem 1

In this appendix we give a different, more formal, proof of Theorem 1. The theorem states that the maxmin-
demand md(τi, t) of a generic task τi cannot be more than the canonical demand cd(τi, t) of the task, and so that
in order to compute md(τi, t) it is sufficient to consider cd(τi, t). As above, the proof is composed of several steps
which transform a generic release time sequence r′ in the release time sequence that generates cd(τi, t) (i.e. periodic
releases starting at 0), with the property that each step cannot decrease the minimum demand. The first steps are
the same as in the proof above, but are reported here for completeness.

Theorem (Critical zone). For any set τ of sporadic tasks and any t > 0, md(τi, t) = cd(τi, t).

proof: Let r′ be any release time sequence and [a, a + t) be any interval of length t. Consider any single task
τi. It is enough to show that the minimum demand of τi in [a, a + t) under r′ is no greater than the minimum
demand of τi in [0, t) under the canonical release time sequence ri,j = jpi, j = 0, 1, 2, This is done by a series
of modifications to the release-time sequence r′, each of which does not reduce the minimum demand.

Without loss of generality, delete from r′ all the release times that do not contribute to the minimum demand of
τi in [a, a + t), and let b

def= r′i,1 be the release time of the first job of τi that contributes to that minimum demand.
The next step is to show that the minimum demand of τi in [a, a + t) under r′ is no greater than the minimum

demand with strictly periodic releases starting at b. If there are any release times in r′ that are farther apart than
pi, shifting those releases closer to the start of the interval [a, a + t) cannot decrease the minimum demand in the
interval. The sporadic minimum separation constraint does not allow releases to be any closer together than pi.
Therefore, it is sufficient to limit consideration to cases where r′i,j = b + jpi.

The next step is to show that the minimum demand in [a, a + t) will not be decreased by shifting all the release
times so that the first release occurs at a. If b ≥ a, it is clear that the minimum demand in [a, a + t) will not be
decreased by next shifting all the release times down by b− a. Therefore, it only remains to show that if b < a the
minimum demand in [a, a + t) will not be decreased by shifting all the release times up by a− b, so that the first
release occurs at a.

The first job released before a that makes a nonzero contribution to the minimum demand is released at b. It
follows that b+ ei > a. Since the deadline and period of a task cannot be shorter than its execution time, the next
release of τi cannot occur earlier than b + ei, so the one and only job of τi released before a that contributes to the
minimum demand is released at b. Note also that jobs released before b cannot increase their contribution to the
minimum demand due to the shift. In fact, after the shift, they are released earlier than a− pi, which means that
they can complete their execution before a (again, ei ≤ pi). So, the first step done above (the deletion of jobs that
do not contribute to the demand) is coherent even after the shift.

Consider now the following cases for the value of the relative deadline of τi:

1. di ≥ a− b + t: in this case, since b + di ≥ a + t, the deadline of the job of τi released at b is after the end of
the interval [a, a + t). This case is illustrated by Figure 1(d) . Every other job of τi, even if released inside
[a, a + t), can completely execute between b + di and its deadline (which, for the sporadic constraint, cannot

16

be before b + di + pi), so they do not contribute to the minimum demand. It means that the minimum
demand of task τi in [a, a+ t) before and after the shift is formed by only the contribution of the job released
at b. The minimum demand of the job before the shift is the execution time of the task, ei, minus what can
be completed before the interval, a − b, minus what can be completed between the end of the interval and
the deadline, (b + di)− (a + t). The total is ei − (a− b)− ((b + di)− (a + t)) = ei − di + t. After the shift,
the minimum demand is the execution time of the task ei, minus what can be completed after the interval,
((a + di)− (a + t)). The total is again ei − ((a + di)− (a + t)) = ei − di + t.

So in this case the shift does not decrease the minimum demand.

2. t ≤ di < a − b + t: before the shift, the job of τi released at b has its deadline inside [a, a + t) (since
b + di < a + t), so its contribution to the minimum demand is the execution time of the task, ei, minus what
can be completed before the interval, a− b, for a total of ei− (a− b). After the shift, the job is released at a
and has its deadline at a + di, after the end of the interval a + t. The contribution changes to its execution
time, ei, minus what can be executed after a + t, di − t, for a total of ei − (di − t). The net result is an
increase in the minimum demand equal to (a− b)− (di − t) (which is always positive, since di < a− b + t).

Consider now the contribution of the other jobs. Since, as said above, these jobs cannot be released before
a, their minimum demand is the amount of execution that cannot be postponed until after the end of the
interval. The latest that each job can be postponed is the interval of length ei immediately preceding its
deadline. These intervals are non-overlapping, since the job deadlines are all separated by pi, and ei ≤ pi. For
the same reason, they are surely after the deadline b + di of the job of τi released at b. So, their contribution
is at most equal to (a + t) − (b + di), the lenght of the interval [b + di, a + t). Note that for what we said
above, the interval is well-defined, and its lenght is a positive number. After the shift, the whole contribution
of these jobs is postponed after the interval [a, a + t), so their contribution goes to 0, for a maximum net
decrease of (a + t)− (b + di).

The decrease in the contribution of the jobs released after a, is offset by the increase computed above for the
job released at b. Note also that while the increase is sure, the decrease is only the worst case, so the shift
not only cannot decrease the whole contribution, but can potentially increase it. Again, in this case the shift
does not decrease the minimum demand.

3. di < t: before the shift, exactly as above, the contribution of the job of τi released at b is ei − (a− b). After
the shift, the job of τi released at b is completely executed inside the interval [a, a + t) (since its deadline is
at a + di < a + t) so its contribution to the minimum demand is incremented by exactly the shift amount
a− b.

Consider now the contribution of the other jobs. Exactly as we say above, the contribution of these jobs is
the amount of execution not postponed until after a + t, they are postponed up to the intervals of lenght ei

exactly before their deadlines, and these intervals are non-overlapping. After the shift, the above sequence
of ei-length intervals has been shifted by a− b, so the maximum amount of minimum demand that is shifted
from inside to outside the interval is a− b.

Again, after the shift, any decrease in minimum demand of the jobs released after a is offset by the increase
of the job released at b. So, the shift does not decrease the minimum demand. Even in this last case the shift
does not decrease the minimum demand.

Since in no case the shift can decrease the minimum demand, we can shift all the release times so that the first
job contributing to the minimum demand is released exactly at a.

The last step is to observe that the minimum demand in [a, a + t) by periodic releases starting at a is the same
as the minimum demand in [0, t) with periodic releases starting at zero, which is exactly the canonical demand
cd(τi, t).

2

17

