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Foreword to this version of the Ada Reference Manual

The International Standard for the programming language Adais | SO/IEC 8652:1995(E).

The Ada Working Group ISO/IEC JTCL/SC 22/WG 9 is tasked by |SO with the work item to interpret and
maintain the International Standard and to produce Technical Corrigenda, as appropriate. The technical
work on the International Standard is performed by the Ada Rapporteur Group (ARG) of WG 9. In
September 2000, WG 9 approved and forwarded Technical Corrigendum 1 to SC 22 for 1SO approval,
which was granted in February 2001.

The Technical Corrigendum lists the individual changes that need to be made to the text of the
International Standard to correct errors, omissions or inconsistencies. Once approved, the corrections
specified in Technical Corrigendum 1 will be part of the International Standard | SO/IEC 8652:1995(E).

When 1SO publishes Technical Corrigendum 1, it is unlikely that 1SO will also publish a document that
merges the Technical Corrigendum changes into the text of the International Standard. However, 1SO rules
require that the project editor for the Technical Corrigendum be able to produce such a document on
demand.

This version of the Ada Reference Manual is what the project editor would provide to 1SO in response to
such arequest. It incorporates the changes specified in the Technical Corrigendum into the text of ISO/IEC
8652:1995(E). It should be understood that the publication of any 1SO document involves changes in
general format, boilerplate, headers, etc., as well as a review by professional editors that may introduce
editorial changes to the text. This version of the Ada Reference Manua is therefore neither an officia 1SO
document, nor a version guaranteed to be identical to an official 1SO document, should ISO decide to
reprint the International Standard incorporating an approved Technical Corrigendum. It is nevertheless a
best effort to be as close as possible to the technical content of such an updated document. In the case of a
conflict between this document and a Technica Corrigendum 1 approved by ISO (or between this
document and the original 8652:1995 in the case of paragraphs not changed by Technical Corrigendum 1),
the other documents contain the official text of the International Standard | SO/IEC 8652:1995(E).

As it is very inconvenient to have the Reference Manua for Ada specified in two documents, this
consolidated version of the Ada Reference Manual is made available to the public.

Using this version of the Ada Reference Manual

This document has been revised with the corrections specified in Technical Corrigendum 1 (ISO/IEC
8652:1995/COR1:2000). In addition, a variety of editoria errors have been corrected.

Changes to the original 8652:1995 can be identified by the version number /1 following the paragraph
number. Paragraphs not so marked are unchanged by Technical Corrigendum 1 or editorial corrections.
Paragraph numbers of unchanged paragraphs are the same as in the original Ada Reference Manua. In
addition, some versions of this document include revision bars near the paragraph numbers. Where
paragraphs are inserted, the paragraph numbers are of the form pp.nn, where pp is the number of the
preceding paragraph, and nn is an insertion number. For instance, the first paragraph inserted after
paragraph 8 is numbered 8.1, the second paragraph inserted is numbered 8.2, and so on. Deleted
paragraphs are indicated by the text This paragraph was deleted. Deleted paragraphs include empty
paragraphs that were numbered in the original Ada Reference Manual.
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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members
of 1SO or |IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technica activity. 1SO and IEC
technica committees collaborate in fields of mutua interest. Other international organizations,
governmental and non-governmental, in liaison with 1SO and |1EC, aso take part in the work.

In the field of information technology, 1SO and IEC have established ajoint technical committee, ISO/IEC
JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national
bodies for voting. Publication as an International Standard requires approva by at least 75 % of the
national bodies casting avote.

International Standard 1SO/IEC 8652 was prepared by Joint Technica Committee ISO/IEC JTC 1,
Information Technology.

This second edition cancels and replaces the first edition (ISO 8652:1987), of which it constitutes a
technical revision.

Annexes A to Jform an integral part of this International Standard. Annexes K to P are for information
only.
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Introduction

Thisisthe Ada Reference Manual.

Other available Ada documents include:

« Rationale for the Ada Programming Language — 1995 edition, which gives an introduction to
the new features of Ada, and explains the rationale behind them. Programmers should read this
first.

* Thisparagraph was deleted.

e The Annotated Ada Reference Manua (AARM). The AARM contains al of the text in the
RM95, plus various annotations. It is intended primarily for compiler writers, validation test
writers, and others who wish to study the fine details. The annotations include detailed rationale
for individual rules and explanations of some of the more arcane interactions among the rules.

Design Goals

Ada was originally designed with three overriding concerns: program reliability and maintenance,
programming as a human activity, and efficiency. This revision to the language was designed to provide
greater flexibility and extensibility, additional control over storage management and synchronization, and
standardized packages oriented toward supporting important application areas, while at the same time
retaining the original emphasis on reliability, maintainability, and efficiency.

The need for languages that promote reliability and simplify maintenance is well established. Hence
emphasis was placed on program readability over ease of writing. For example, the rules of the language
require that program variables be explicitly declared and that their type be specified. Since the type of a
variable is invariant, compilers can ensure that operations on variables are compatible with the properties
intended for objects of the type. Furthermore, error-prone notations have been avoided, and the syntax of
the language avoids the use of encoded forms in favor of more English-like constructs. Finaly, the
language offers support for separate compilation of program units in a way that facilitates program
development and maintenance, and which provides the same degree of checking between units as within a
unit.

Concern for the human programmer was also stressed during the design. Above all, an attempt was made
to keep to a relatively small number of underlying concepts integrated in a consistent and systematic way
while continuing to avoid the pitfalls of excessive involution. The design especially aims to provide
language constructs that correspond intuitively to the normal expectations of users.

Like many other human activities, the development of programs is becoming ever more decentralized and
distributed. Consequently, the ability to assemble a program from independently produced software
components continues to be a central ideain the design. The concepts of packages, of private types, and of
generic units are directly related to this idea, which has ramifications in many other aspects of the
language. An allied concern is the maintenance of programs to match changing requirements; type
extension and the hierarchical library enable a program to be modified while minimizing disturbance to
existing tested and trusted components.

No language can avoid the problem of efficiency. Languages that require over-elaborate compilers, or that
lead to the inefficient use of storage or execution time, force these inefficiencies on all machines and on all
programs. Every construct of the language was examined in the light of present implementation
techniques. Any proposed construct whose implementation was unclear or that required excessive machine
resources was rejected.

| Introduction 15June 2001  xii
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Language Summary

An Ada program is composed of one or more program units. Program units may be subprograms (which
define executable algorithms), packages (which define collections of entities), task units (which define
concurrent computations), protected units (which define operations for the coordinated sharing of data
between tasks), or generic units (which define parameterized forms of packages and subprograms). Each
program unit normally consists of two parts. a specification, containing the information that must be
visible to other units, and a body, containing the implementation details, which need not be visible to other
units. Most program units can be compiled separately.

This distinction of the specification and body, and the ability to compile units separately, allows a program
to be designed, written, and tested as a set of largely independent software components.

An Ada program will normally make use of a library of program units of genera utility. The language
provides means whereby individual organizations can construct their own libraries. All libraries are
structured in a hierarchical manner; this enables the logical decomposition of a subsystem into individual
components. The text of a separately compiled program unit must name the library unitsit requires.

Program Units

A subprogram is the basic unit for expressing an agorithm. There are two kinds of subprograms:
procedures and functions. A procedure is the means of invoking a series of actions. For example, it may
read data, update variables, or produce some output. It may have parameters, to provide a controlled means
of passing information between the procedure and the point of call. A function is the means of invoking
the computation of avalue. It issimilar to a procedure, but in addition will return aresult.

A package is the basic unit for defining a collection of logicaly related entities. For example, a package
can be used to define a set of type declarations and associated operations. Portions of a package can be
hidden from the user, thus alowing access only to the logica properties expressed by the package
specification.

Subprogram and package units may be compiled separately and arranged in hierarchies of parent and child
units giving fine control over visibility of the logical properties and their detailed implementation.

A task unit is the basic unit for defining a task whose sequence of actions may be executed concurrently
with those of other tasks. Such tasks may be implemented on multicomputers, multiprocessors, or with
interleaved execution on a single processor. A task unit may define either a single executing task or a task
type permitting the creation of any number of similar tasks.

A protected unit is the basic unit for defining protected operations for the coordinated use of data shared
between tasks. Simple mutual exclusion is provided automatically, and more elaborate sharing protocols
can be defined. A protected operation can either be a subprogram or an entry. A protected entry specifies a
Boolean expression (an entry barrier) that must be true before the body of the entry is executed. A
protected unit may define a single protected object or a protected type permitting the creation of several
similar objects.

Declarations and Statements

The body of a program unit generally contains two parts. a declarative part, which defines the logical
entities to be used in the program unit, and a sequence of statements, which defines the execution of the
program unit.
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The declarative part associates names with declared entities. For example, a name may denote a type, a
constant, avariable, or an exception. A declarative part also introduces the names and parameters of other
nested subprograms, packages, task units, protected units, and generic units to be used in the program unit.

The sequence of statements describes a sequence of actions that are to be performed. The statements are
executed in succession (unless atransfer of control causes execution to continue from another place).

An assignment statement changes the value of a variable. A procedure cal invokes execution of a
procedure after associating any actual parameters provided at the call with the corresponding formal
parameters.

Case statements and if statements allow the selection of an enclosed sequence of statements based on the
value of an expression or on the value of a condition.

The loop statement provides the basic iterative mechanism in the language. A loop statement specifies that
a sequence of statements is to be executed repeatedly as directed by an iteration scheme, or until an exit
statement is encountered.

A block statement comprises a sequence of statements preceded by the declaration of local entities used by
the statements.

Certain statements are associated with concurrent execution. A delay statement delays the execution of a
task for a specified duration or until a specified time. An entry call statement is written as a procedure call
statement; it requests an operation on atask or on a protected object, blocking the caller until the operation
can be performed. A called task may accept an entry call by executing a corresponding accept statement,
which specifies the actions then to be performed as part of the rendezvous with the calling task. An entry
call on a protected object is processed when the corresponding entry barrier evaluates to true, whereupon
the body of the entry is executed. The requeue statement permits the provision of a service as a number of
related activities with preference control. One form of the select statement allows a selective wait for one
of severa aternative rendezvous. Other forms of the select statement allow conditional or timed entry cals
and the asynchronous transfer of control in response to some triggering event.

Execution of a program unit may encounter error situations in which normal program execution cannot
continue. For example, an arithmetic computation may exceed the maximum allowed value of a number, or
an attempt may be made to access an array component by using an incorrect index value. To deal with such
error situations, the statements of a program unit can be textualy followed by exception handlers that
specify the actions to be taken when the error situation arises. Exceptions can be raised explicitly by araise
Statement.

Data Types

Every object in the language has a type, which characterizes a set of values and a set of applicable
operations. The main classes of types are elementary types (comprising enumeration, numeric, and access
types) and composite types (including array and record types).

An enumeration type defines an ordered set of distinct enumeration literals, for example alist of states or
an alphabet of characters. The enumeration types Boolean, Character, and Wide_Character are predefined.

Numeric types provide a means of performing exact or approximate numerical computations. Exact
computations use integer types, which denote sets of consecutive integers. Approximate computations use
either fixed point types, with absolute bounds on the error, or floating point types, with relative bounds on
the error. The numeric types Integer, Float, and Duration are predefined.

| Introduction 15June 2001  xiv
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Composite types allow definitions of structured objects with related components. The composite types in
the language include arrays and records. An array is an object with indexed components of the same type.
A record is an object with named components of possibly different types. Task and protected types are also
forms of composite types. The array types String and Wide_String are predefined.

Record, task, and protected types may have special components called discriminants which parameterize
the type. Variant record structures that depend on the values of discriminants can be defined within a
record type.

Access types alow the construction of linked data structures. A value of an access type represents a
reference to an object declared as aliased or to an object created by the evaluation of an alocator. Several
variables of an access type may designate the same object, and components of one object may designate
the same or other objects. Both the elements in such linked data structures and their relation to other
elements can be altered during program execution. Access types also permit references to subprograms to
be stored, passed as parameters, and ultimately dereferenced as part of an indirect call.

Private types permit restricted views of atype. A private type can be defined in a package so that only the
logically necessary properties are made visible to the users of the type. The full structural details that are
externally irrelevant are then only available within the package and any child units.

From any type a new type may be defined by derivation. A type, together with its derivatives (both direct
and indirect) form a derivation class. Class-wide operations may be defined that accept as a parameter an
operand of any type in a derivation class. For record and private types, the derivatives may be extensions
of the parent type. Types that support these object-oriented capabilities of class-wide operations and type
extension must be tagged, so that the specific type of an operand within a derivation class can be identified
at run time. When an operation of atagged type is applied to an operand whose specific type is not known
until run time, implicit dispatching is performed based on the tag of the operand.

The concept of atype is further refined by the concept of a subtype, whereby a user can constrain the set of
allowed values of atype. Subtypes can be used to define subranges of scalar types, arrays with alimited set
of index values, and records and private types with particular discriminant values.

Other Facilities

Representation clauses can be used to specify the mapping between types and features of an underlying
machine. For example, the user can specify that objects of a given type must be represented with a given
number of bits, or that the components of arecord are to be represented using a given storage layout. Other
features alow the controlled use of low level, nonportable, or implementation-dependent aspects,
including the direct insertion of machine code.

The predefined environment of the language provides for input-output and other capabilities (such as
string manipulation and random number generation) by means of standard library packages. Input-output is
supported for values of user-defined as well as of predefined types. Standard means of representing values
in display form are also provided. Other standard library packages are defined in annexes of the standard to
support systems with specialized requirements.

Finally, the language provides a powerful means of parameterization of program units, called generic
program units. The generic parameters can be types and subprograms (as well as objects and packages) and
so alow general agorithms and data structures to be defined that are applicable to al types of a given
class.
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Language Changes

This International Standard replaces the first edition of 1987. In this edition, the following major language
changes have been incorporated:

Support for standard 8-bit and 16-bit character sets. See Section 2, 3.5.2, 3.6.3, A.1, A.3, and
A.4.

Object-oriented programming with run-time polymorphism. See the discussions of classes,
derived types, tagged types, record extensions, and private extensions in clauses 3.4, 3.9, and
7.3. See adso the new forms of generic forma parameters that are allowed by 12.5.1, ‘‘Formal
Private and Derived Types”’ and 12.7, ** Formal Packages'’.

Access types have been extended to allow an access value to designate a subprogram or an object
declared by an object declaration (as opposed to just a heap-allocated object). See 3.10.

Efficient data-oriented synchronization is provided via protected types. See Section 9.

The library units of a library may be organized into a hierarchy of parent and child units. See
Section 10.

Additional support has been added for interfacing to other languages. See Annex B.

The Specidized Needs Annexes have been added to provide specific support for certain
application areas:

« Annex C, ‘‘ Systems Programming’’
« Annex D, ‘‘Red-Time Systems’’

« Annex E, ' Distributed Systems’’

« Annex F, “‘Information Systems’’

« Annex G, ‘‘Numerics’’

« Annex H, ‘‘ Safety and Security”’

| Introduction 15 June 2001
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Instructions for Comment Submission

Informal comments on this International Standard may be sent via e-mail to ada-comment @ada-auth.org. |ssi
If appropriate, the Project Editor will initiate the defect correction procedure.

Comments should use the following format: 59

Itopic Title summarizing comment 60
Ir efer ence RM 95-ss.s3(pp)

Ifrom Author Name yy-mm-dd

Ikeywor ds keywords related to topic

Idiscussion

text of discussion

where ss.ssis the section, clause or subclause number, pp is the paragraph number where applicable, and &1
yy-mm-dd is the date the comment was sent. The date is optional, asisthe 'keywordsline.

Please use adescriptive ‘* Subject’” in your e-mail message, and limit each message to a single comment. 62/1

When correcting typographical errors or making minor wording suggestions, please put the correction 63
directly as the topic of the comment; use square brackets [ ] to indicate text to be omitted and curly braces
{ } to indicate text to be added, and provide enough context to make the nature of the suggestion self-
evident or put additional information in the body of the comment, for example:
Itopic [c]{ C} haracter 64
Itopic it[']s meaning is not defined
Formal requests for interpretations and for reporting defects in this International Standard may be madein 65
accordance with the ISO/IEC JTC1 Directives and the 1SO/IEC JTC1/SC22 policy for interpretations.
National Bodies may submit a Defect Report to ISO/IEC JTCL/SC22 for resolution under the JTC1
procedures. A response will be provided and, if appropriate, a Technical Corrigendum will be issued in
accordance with the procedures.
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Changes

The Internationa Standard is the same as this version of the Reference Manual, except: 72
» Thislist of Changesis not included in the International Standard. 73
* The'*Acknowledgements’ pageis not included in the International Standard. 74
» Thetext in the running headers and footers on each page is slightly different in the International 75

Standard.

» Thetitle page(s) are different in the International Standard. 76
* This document is formatted for 8.5-by-11-inch paper, whereas the International Standard is 77

formatted for A4 paper (210-by-297mm); thus, the page breaks are in different places.

* The ‘‘Foreword to this version of the Ada Reference Manua’’ clause is not included in the 77.1/1
International Standard.
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INTERNATIONAL STANDARD ISO/IEC 8652:1995(E) with COR.1:2000

Information technology — Programming
Languages — Ada

Section 1: General

Ada is a programming language designed to support the construction of long-lived, highly reliable
software systems. The language includes facilities to define packages of related types, objects, and
operations. The packages may be parameterized and the types may be extended to support the construction
of libraries of reusable, adaptable software components. The operations may be implemented as
subprograms using conventional sequential control structures, or as entries that include synchronization of
concurrent threads of control as part of their invocation. The language treats modularity in the physical
sense as well, with afacility to support separate compilation.

The language includes a compl ete facility for the support of real-time, concurrent programming. Errors can
be signaled as exceptions and handled explicitly. The language also covers systems programming; this
requires precise control over the representation of data and access to system-dependent properties. Finaly,
a predefined environment of standard packages is provided, including facilities for, among others, input-
output, string manipulation, numeric elementary functions, and random number generation.

1.1 Scope

This International Standard specifies the form and meaning of programs written in Ada. Its purpose is to
promote the portability of Ada programs to a variety of data processing systems.

1.1.1 Extent

This International Standard specifies:
» Theform of aprogram written in Ada;
» Theé€ffect of trandating and executing such a program;
» The manner in which program units may be combined to form Ada programs;
» Thelanguage-defined library units that a conforming implementation is required to supply;

e The permissible variations within the standard, and the manner in which they are to be
documented;
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« Those violations of the standard that a conforming implementation is required to detect, and the
effect of attempting to translate or execute a program containing such violations;

* Those violations of the standard that a conforming implementation is not required to detect.

This International Standard does not specify:

* The means whereby a program written in Ada is transformed into object code executable by a
processor;

« The means whereby trandlation or execution of programs is invoked and the executing units are
controlled;

* The size or speed of the object code, or the relative execution speed of different language
constructs,

* The form or contents of any listings produced by implementations; in particular, the form or
contents of error or warning messages,

» The effect of unspecified execution.

e The size of a program or program unit that will exceed the capacity of a particular conforming
implementation.

1.1.2 Structure
This International Standard contains thirteen sections, fourteen annexes, and an index.
The core of the Ada language consists of:

e Sections 1 through 13

e Annex A, ‘' Predefined Language Environment’’

e Annex B, ‘‘Interface to Other Languages’”’

e Annex J, ‘‘ Obsolescent Features’

The following Specialized Needs Annexes define features that are needed by certain application areas:
e Annex C, ‘‘ Systems Programming’’
¢ Annex D, ‘'Real-Time Systems’’
e Annex E, ‘‘Digtributed Systems’”
¢ Annex F, “‘Information Systems’’
e Annex G, ‘‘Numerics’’
e Annex H, ‘‘ Safety and Security”’

The core language and the Specialized Needs Annexes are normative, except that the material in each of
theitems listed below is informative:

¢ Text under aNOTES or Examples heading.
» Each clause or subclause whose title starts with the word ** Example'’ or ** Examples'’.

All implementations shall conform to the core language. In addition, an implementation may conform
separately to one or more Specialized Needs Annexes.

| 1.1.1 Extent 15June2001 2
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The following Annexes are informative:
» Annex K, ‘‘Language-Defined Attributes'”’
* Annex L, ‘‘Language-Defined Pragmas’’
* Annex M, ‘‘Implementation-Defined Characteristics”’
e Annex N, ‘‘Glossary’’
e Annex P, ** Syntax Summary’’

Each section is divided into clauses and subclauses that have a common structure. Each section, clause,
and subclause first introduces its subject. After the introductory text, text is labeled with the following
headings:
Syntax
Syntax rules (indented).
Name Resolution Rules
Compile-time rules that are used in name resolution, including overload resolution.

Legality Rules
Rulesthat are enforced at compiletime. A construct islegal if it obeysall of the Legality Rules.

Satic Semantics
A definition of the compile-time effect of each construct.

Post-Compilation Rules

Rules that are enforced before running a partition. A partition is legal if its compilation units are legal and
it obeys all of the Post-Compilation Rules.

Dynamic Semantics
A definition of the run-time effect of each construct.

Bounded (Run-Time) Errors
Situations that result in bounded (run-time) errors (see 1.1.5).

Erroneous Execution

Situations that result in erroneous execution (see 1.1.5).

Implementation Requirements

Additional requirements for conforming implementations.

Documentation Reguirements

Documentation requirements for conforming implementations.

Metrics
Metrics that are specified for the time/space properties of the execution of certain language constructs.

Implementation Permissions

Additiona permissions given to theimplementer.
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Implementation Advice

Optional advice given to the implementer. The word ‘‘should’ is used to indicate that the advice is a
recommendation, not a requirement. It is implementation defined whether or not a given recommendation
is obeyed.

NOTES
1 Notes emphasize consequences of the rules described in the (sub)clause or elsewhere. This material isinformative.

Examples

Examplesillustrate the possible forms of the constructs described. This materia isinformative.

1.1.3 Conformity of an Implementation with the Standard

Implementation Requirements
A conforming implementation shall:

« Trandate and correctly execute legal programs written in Ada, provided that they are not so large
as to exceed the capacity of the implementation;

« ldentify al programs or program units that are so large as to exceed the capacity of the
implementation (or raise an appropriate exception at run time);

« ldentify all programs or program units that contain errors whose detection is required by this
International Standard;

* Supply al language-defined library units required by this International Standard;

e Contain no variations except those explicitly permitted by this International Standard, or those
that are impossible or impractical to avoid given the implementation's execution environment;

« Specify dl such variations in the manner prescribed by this International Standard.

The external effect of the execution of an Ada program is defined in terms of its interactions with its
externa environment. The following are defined as external interactions:

« Any interaction with an external file (see A.7);

* The execution of certain code_statements (see 13.8); which code_statements cause externa
interactions is implementation defined.

* Any call on an imported subprogram (see Annex B), including any parameters passed to it;

« Any result returned or exception propagated from a main subprogram (see 10.2) or an exported
subprogram (see Annex B) to an external caller;

« Any read or update of an atomic or volatile object (see C.6);

* The values of imported and exported objects (see Annex B) at the time of any other interaction
with the external environment.

A conforming implementation of this International Standard shall produce for the execution of agiven Ada
program a set of interactions with the external environment whose order and timing are consistent with the
definitions and requirements of this Internationa Standard for the semantics of the given program.

An implementation that conforms to this Standard shall support each capability required by the core
language as specified. In addition, an implementation that conforms to this Standard may conform to one
or more Specialized Needs Annexes (or to none). Conformance to a Specialized Needs Annex means that
each capability required by the Annex is provided as specified.

| 1.1.2 Structure 15June 2001 4
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An implementation conforming to this International Standard may provide additiona attributes, library
units, and pragmas. However, it shall not provide any attribute, library unit, or pragma having the same
name as an attribute, library unit, or pragma (respectively) specified in a Specialized Needs Annex unless
the provided construct is either as specified in the Speciaized Needs Annex or is more limited in
capability than that required by the Annex. A program that attempts to use an unsupported capability of an
Annex shall either be identified by the implementation before run time or shall raise an exception at run
time.

Documentation Requirements

Certain aspects of the semantics are defined to be either implementation defined or unspecified. In such
cases, the set of possible effects is specified, and the implementation may choose any effect in the set.
Implementations shall document their behavior in implementation-defined situations, but documentation is
not required for unspecified situations. The implementation-defined characteristics are summarized in
Annex M.

The implementation may choose to document implementation-defined behavior either by documenting
what happens in general, or by providing some mechanism for the user to determine what happens in a
particular case.

Implementation Advice
If an implementation detects the use of an unsupported Specialized Needs Annex feature at run time, it
should raise Program_Error if feasible.
If an implementation wishes to provide implementation-defined extensions to the functionality of a
language-defined library unit, it should normally do so by adding children to the library unit.

NOTES
2 The above requirements imply that an implementation conforming to this Standard may support some of the
capabilities required by a Specialized Needs Annex without supporting al required capabilities.

1.1.4 Method of Description and Syntax Notation

The form of an Ada program is described by means of a context-free syntax together with context-
dependent requirements expressed by narrative rules.

The meaning of Ada programs is described by means of narrative rules defining both the effects of each
construct and the composition rules for constructs.

The context-free syntax of the language is described using a simple variant of Backus-Naur Form. In
particular:

» Lower case words in a sans-serif font, some containing embedded underlines, are used to denote
syntactic categories, for example:

case_statement
» Boldface words are used to denote reserved words, for example:
array
» Square brackets enclose optional items. Thus the two following rules are equivalent.

return_statement ::= return [expression];
return_statement ::=return; | return expression;
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¢ Curly brackets enclose a repeated item. The item may appear zero or more times; the repetitions
occur from |eft to right as with an equivalent left-recursive rule. Thus the two following rules are
equivalent.

term ::= factor { multiplying_operator factor}
term ::= factor | term multiplying_operator factor

* A verticd line separates alternative items unless it occurs immediately after an opening curly
bracket, in which case it stands for itself:

constraint ::= scalar_constraint | composite_constraint
discrete_choice_list ::= discrete_choice {| discrete_choice}

 |If the name of any syntactic category starts with an italicized part, it is equivaent to the category
name without the italicized part. The italicized part is intended to convey some semantic
information. For example subtype_name and task_name are both equivaent to name aone.

A syntactic category is a nonterminal in the grammar defined in BNF under ‘‘ Syntax.”” Names of syntactic
categories are set in adifferent font, like_this.

A construct is a piece of text (explicit or implicit) that is an instance of a syntactic category defined under
““Syntax.”’

A constituent of a construct is the construct itself, or any construct appearing within it.

Whenever the run-time semantics defines certain actions to happen in an arbitrary order, this means that
the implementation shall arrange for these actions to occur in a way that is equivalent to some sequential
order, following the rules that result from that sequentia order. When evaluations are defined to happen in
an arbitrary order, with conversion of the results to some subtypes, or with some run-time checks, the
evaluations, conversions, and checks may be arbitrarily interspersed, so long as each expression is
evaluated before converting or checking its value. Note that the effect of a program can depend on the
order chosen by the implementation. This can happen, for example, if two actual parameters of a given call
have side effects.

NOTES
3 The syntax rules describing structured constructs are presented in a form that corresponds to the recommended
paragraphing. For example, an if_statement is defined as:
if_statement :: =
i f condition t hen
sequence_of_statements
{el sif condition t hen
sequence_of_statements}
[el se
sequence_of_statements]
end if;
4 The line breaks and indentation in the syntax rules indicate the recommended line breaks and indentation in the
corresponding constructs. The preferred places for other line breaks are after semicolons.

1.1.5 Classification of Errors

Implementation Requirements
The language definition classifies errorsinto several different categories:
« Errorsthat are required to be detected prior to run time by every Adaimplementation;

These errors correspond to any violation of arule given in this International Standard, other than
those listed below. In particular, violation of any rule that uses the terms shall, allowed,

| 1.1.4 Method of Description and Syntax Notation 15June2001 6
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permitted, legal, or illegal belongs to this category. Any program that contains such an error is
not alegal Ada program; on the other hand, the fact that a program is legal does not mean, per
se, that the program is free from other forms of error.

The rules are further classified as either compile time rules, or post compilation rules, depending
on whether a violation has to be detected at the time a compilation unit is submitted to the
compiler, or may be postponed until the time a compilation unit is incorporated into a partition
of aprogram.

» Errorsthat are required to be detected at run time by the execution of an Ada program;

The corresponding error situations are associated with the names of the predefined exceptions.
Every Ada compiler is required to generate code that raises the corresponding exception if such
an error situation arises during program execution. If such an error situation is certain to arise in
every execution of a construct, then an implementation is alowed (athough not required) to
report this fact at compilation time.

* Bounded errors,

The language rules define certain kinds of errors that need not be detected either prior to or
during run time, but if not detected, the range of possible effects shall be bounded. The errors of
this category are caled bounded errors. The possible effects of a given bounded error are
specified for each such error, but in any case one possible effect of a bounded error is the raising
of the exception Program_Error.

» Erroneous execution.

In addition to bounded errors, the language rules define certain kinds of errors as leading to
erroneous execution. Like bounded errors, the implementation need not detect such errors either
prior to or during run time. Unlike bounded errors, there is no language-specified bound on the
possible effect of erroneous execution; the effect isin general not predictable.

Implementation Permissions

An implementation may provide nonstandard modes of operation. Typicaly these modes would be
selected by a pragma or by a command line switch when the compiler is invoked. When operating in a
nonstandard mode, the implementation may reject compilation_units that do not conform to additional
requirements associated with the mode, such as an excessive number of warnings or violation of coding
style guidelines. Similarly, in a nonstandard mode, the implementation may apply specia optimizations or
alternative algorithms that are only meaningful for programs that satisfy certain criteria specified by the
implementation. In any case, an implementation shall support a standard mode that conforms to the
requirements of this International Standard; in particular, in the standard mode, all legal compilation_units
shall be accepted.

Implementation Advice

If an implementation detects a bounded error or erroneous execution, it should raise Program_Error.

1.2 Normative References

The following standards contain provisions which, through reference in this text, constitute provisions of
this International Standard. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the standards indicated below. Members
of IEC and SO maintain registers of currently vaid Internationa Standards.

I SO/IEC 646:1991, Information technology — SO 7-bit coded character set for information interchange.
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ISO/IEC 1539:1991, Information technology — Programming languages — FORTRAN.
SO 1989:1985, Programming languages — COBOL.
ISO/IEC 6429:1992, Information technology — Control functions for coded graphic character sets.

ISO/IEC 8859-1:1987, Information processing — 8-bit single-byte coded character sets — Part 1: Latin
alphabet No. 1.

ISO/IEC 9899:1990, Programming languages — C.

ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane, supplemented by Technical Corrigendum 1:1996.

1.3 Definitions

Terms are defined throughout this International Standard, indicated by italic type. Terms explicitly defined
in this Internationa Standard are not to be presumed to refer implicitly to similar terms defined elsewhere.
Terms not defined in this International Standard are to be interpreted according to the Webster's Third New
International Dictionary of the English Language. Informal descriptions of some terms are also given in
Annex N, ‘“‘Glossary'’.

| 1.2 Normative References 15June2001 8
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Section 2: Lexical Elements

The text of a program consists of the texts of one or more compilations. The text of a compilation is a
sequence of lexical elements, each composed of characters; the rules of composition are given in this
section. Pragmas, which provide certain information for the compiler, are also described in this section.

2.1 Character Set

The only characters allowed outside of comments are the graphic_characters and format_effectors.

Syntax
character ::= graphic_character | format_effector | other_control_function
graphic_character ::= identifier_letter | digit | space_character | special_character

Satic Semantics

The character repertoire for the text of an Ada program consists of the collection of characters caled the
Basic Multilingual Plane (BMP) of the ISO 10646 Universal Multiple-Octet Coded Character Set, plus a
set of format_effectors and, in comments only, a set of other_control_functions; the coded representation
for these characters is implementation defined (it need not be a representation defined within 1SO-10646-
1).

The description of the language definition in this International Standard uses the graphic symbols defined
for Row 00: Basic Latin and Row 00: Latin-1 Supplement of the ISO 10646 BMP; these correspond to the
graphic symbols of 1SO 8859-1 (Latin-1); no graphic symbols are used in this International Standard for
characters outside of Row 00 of the BMP. The actual set of graphic symbols used by an implementation
for the visual representation of the text of an Ada program is not specified.

The categories of characters are defined as follows:

identifier_letter
upper_case_identifier_letter | lower_case_identifier_letter

upper_case_identifier_letter
Any character of Row 00 of 1SO 10646 BMP whose name begins ‘‘ Latin Capital Letter’’.

lower_case_identifier_letter

Any character of Row 00 of 1SO 10646 BM P whose name begins ‘‘ Latin Small Letter’’.
digit

One of the characters 0, 1, 2, 3,4, 5,6, 7, 8, or 9.

space_character
The character of SO 10646 BMP named ‘* Space’’.

special_character
Any character of the ISO 10646 BMP that is not reserved for a control function, and is not
the space_character, an identifier_letter, or adigit.

format_effector
The control functions of 1SO 6429 called character tabulation (HT), line tabulation (VT),
carriage return (CR), line feed (LF), and form feed (FF).

other_control_function
Any control function, other than a format_effector, that is allowed in a comment; the set of
other_control_functions allowed in commentsis implementation defined.

9  15June2001 Lexical Elements 2 |
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The following names are used when referring to certain special_characters:

symbol name symbol name
" quotation mark : colon
# number sign ; semicolon
& ampersand < less-than sign
' apostrophe, tick = equalssign
( left parenthesis > greater-than sign
) right parenthesis _ low line, underline
* asterisk, multiply | vertical line
+ plussign [ |eft square bracket
, comma ] right square bracket
- hyphen-minus, minus { left curly bracket
. full stop, dot, point } right curly bracket
/ solidus, divide

Implementation Permissions
In a nonstandard mode, the implementation may support a different character repertoire; in particular, the
set of characters that are considered identifier_letters can be extended or changed to conform to local
conventions.
NOTES

1 Every code position of 1SO 10646 BMP that is not reserved for a control function is defined to be a graphic_character
by this International Standard. Thisincludes all code positions other than 0000 - 001F, 007F - 009F, and FFFE - FFFF.

2 The language does not specify the source representation of programs.

2.2 Lexical Elements, Separators, and Delimiters

Satic Semantics

The text of a program consists of the texts of one or more compilations. The text of each compilation is a
sequence of separate lexical elements. Each lexical element is formed from a sequence of characters, and is
either a delimiter, an identifier, a reserved word, a numeric_literal, a character_literal, a string_literal, or a
comment. The meaning of a program depends only on the particular sequences of lexical elements that
form its compilations, excluding comments.

The text of a compilation is divided into lines. In general, the representation for an end of line is
implementation defined. However, a sequence of one or more format_effectors other than character
tabulation (HT) signifies at least one end of line.

In some cases an explicit separator is required to separate adjacent lexical elements. A separator is any of
a space character, aformat effector, or the end of aline, asfollows:

* A space character is a separator except within acomment, astring_literal, or acharacter_literal.
e Character tabulation (HT) is a separator except within acomment.
e Theend of alineisaways a separator.

One or more separators are alowed between any two adjacent lexical elements, before the first of each
compilation, or after the last. At least one separator is required between an identifier, a reserved word, or a
numeric_literal and an adjacent identifier, reserved word, or numeric_literal.

| 2.1 Character Set 15June2001 10
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A delimiter is either one of the following specia characters
& " ()4, - <= >

or one of the following compound delimiters each composed of two adjacent special characters
= . ** = [= >= <= << >> <>

Each of the specia characters listed for single character delimiters is a single delimiter except if this
character is used as a character of a compound delimiter, or as a character of a comment, string_literal,
character_literal, or numeric_literal.

The following names are used when referring to compound delimiters:

delimiter name

=> arrow

. double dot

*x double star, exponentiate

= assignment (pronounced:
‘‘becomes’’)

/= inequality (pronounced:
“‘not equa’’)

>= greater than or equal

<= less than or equal

<< left label bracket

>> right label bracket

< box

Implementation Requirements

An implementation shall support lines of at least 200 characters in length, not counting any characters used
to signify the end of a line. An implementation shall support lexical elements of at least 200 charactersin
length. The maximum supported line length and lexical element length are implementation defined.

2.3 Identifiers

Identifiers are used as names.

Syntax
identifier ::=
identifier_letter { [underline] letter_or_digit}
letter_or_digit ::= identifier_letter | digit
An identifier shall not be a reserved word.

Satic Semantics

All characters of an identifier are significant, including any underline character. Identifiers differing only in
the use of corresponding upper and lower case |etters are considered the same.

Implementation Permissions

In a nonstandard mode, an implementation may support other upper/lower case equivalence rules for
identifiers, to accommodate local conventions.
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Examples
Examples of identifiers:
Count X Get_Symbol Ethelyn Marion

Snobol_4 X1 Page Count Store Next ltem

2.4 Numeric Literals

There are two kinds of numeric_literals, real literals and integer literals. A real literal is a numeric_literal
that includes a point; an integer literal is anumeric_literal without a point.

Syntax
numeric_literal ::= decimal_literal | based_literal

NOTES
3 Thetype of an integer literal is universal_integer. The type of areal literal isuniversal_real.

2.4.1 Decimal Literals

A decimal_literal isanumeric_literal in the conventional decimal notation (that is, the baseis ten).

Syntax
decimal_literal ::= numeral [.numeral] [exponent]
numeral ::= digit { [underline] digit}
exponent ::= E [+] numeral | E —numeral
An exponent for an integer literal shall not have aminus sign.

Static Semantics
An underline character in anumeric_literal does not affect its meaning. The letter E of an exponent can be
written either in lower case or in upper case, with the same meaning.

An exponent indicates the power of ten by which the value of the decimal_literal without the exponent is
to be multiplied to obtain the value of the decimal_literal with the exponent.

Examples
Examples of decimal literals:
12 0 1E6 123 456 -- integer literals
120 0.0 0.456 3.14159 26 -- real literals

2.4.2 Based Literals

A based_literal isanumeric_literal expressed in aform that specifies the base explicitly.

Syntax

based_literal ::=
base # based_numeral [.based_numeral] # [exponent]

base ::= numeral
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based_numeral ::=
extended_digit { [underline] extended_digit}

extended_digit ::= digit |A |B|C|D |E|F

Legality Rules

The base (the numeric value of the decima numeral preceding the first #) shall be at least two and at most
sixteen. The extended_digits A through F represent the digits ten through fifteen, respectively. The value
of each extended_digit of abased_literal shall be less than the base.

Satic Semantics

The conventional meaning of based notation is assumed. An exponent indicates the power of the base by
which the value of the based_literal without the exponent is to be multiplied to obtain the value of the
based_literal with the exponent. The base and the exponent, if any, are in decimal notation.

The extended_digits A through F can be written either in lower case or in upper case, with the same
meaning.

Examples
Examples of based literals:
2#1111 1111# 16#FF#  016#HOff# -- integer literals of value 255
16#E#EL 2#1110_0000# -- integer literals of value 224
16#F.FFHE+2 2#1.1111 1111 1110#E11 -- real literals of value 4095.0

2.5 Character Literals

A character_literal isformed by enclosing a graphic character between two apostrophe characters.

Syntax
character_literal ::= 'graphic_character'

NOTES
4 A character_literal is an enumeration literal of a character type. See 3.5.2.

Examples

Examples of character literals:

2.6 String Literals

A string_literal is formed by a sequence of graphic characters (possibly none) enclosed between two
quotation marks used as string brackets. They are used to represent operator_symbols (see 6.1), values of a
string type (see 4.2), and array subaggregates (see 4.3.3).

Syntax
string_literal ::= "{string_element}"

string_element ::="" | non_quotation_mark_graphic_character

A string_element is either apair of quotation marks (""), or asingle graphic_character other than a
quotation mark.
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Satic Semantics

The sequence of characters of astring_literal is formed from the sequence of string_elements between the
bracketing quotation marks, in the given order, with a string_element that is " becoming a single
quotation mark in the sequence of characters, and any other string_element being reproduced in the
sequence.

A null string literal isastring_literal with no string_elements between the quotation marks.

NOTES
5 An end of line cannot appear in a string_literal.
Examples
Examples of string literals:
"Message of the day:"
-- anull string literal
A -- three string literals of length 1

"Characters such as $, %, and } are allowed in string literals"

2.7 Comments
A comment starts with two adjacent hyphens and extends up to the end of theline.

Syntax
comment ::= --{non_end_of_line_character}

A comment may appear on any line of a program.

Satic Semantics

The presence or absence of comments has no influence on whether a program is legal or illegal.
Furthermore, comments do not influence the meaning of a program; their sole purpose is the
enlightenment of the human reader.

Examples
Examples of comments:
-- thelast sentence above echoes the Algol 68 report

end; -- processing of Lineis complete

-- along comment may be split onto
-- two or more consecutive lines

---------------- the first two hyphens start the comment

2.8 Pragmas

A pragma is a compiler directive. There are language-defined pragmas that give instructions for
optimization, listing control, etc. An implementation may support additional (implementation-defined)
pragmeas.
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Syntax
pragma ::=
pragma identifier [(pragma_argument_association {, pragma_argument_association})];

pragma_argument_association ::=
[pragma_argument_identifier =>] name
| [pragma_argument_identifier =>] expression

In apragma, any pragma_argument_associations without a pragma_argument_identifier shall
precede any associations with apragma_argument_identifier.

Pragmas are only allowed at the following placesin a program:
» After asemicolon delimiter, but not within aformal_part or discriminant_part.

» At any place where the syntax rules allow a construct defined by a syntactic category whose
name ends with "declaration”, "statement", "clause", or "alternative", or one of the
syntactic categories variant or exception_handler; but not in place of such a construct. Also
at any place where a compilation_unit would be allowed.

Additional syntax rules and placement restrictions exist for specific pragmas.
The name of apragma is the identifier following the reserved word pragma. The name or expression of a
pragma_argument_association is apragma argument.

An identifier specific to a pragma is an identifier that is used in a pragma argument with special meaning
for that pragma.

Satic Semantics

If an implementation does not recognize the name of a pragma, then it has no effect on the semantics of
the program. Inside such apragma, the only rules that apply are the Syntax Rules.

Dynamic Semantics

Any pragma that appears at the place of an executable construct is executed. Unless otherwise specified
for aparticular pragma, this execution consists of the evaluation of each evaluable pragma argument in an
arbitrary order.

Implementation Requirements

The implementation shall give awarning message for an unrecognized pragma hame.

Implementation Permissions

An implementation may provide implementation-defined pragmas; the name of an implementation-defined
pragmashall differ from those of the language-defined pragmas.

An implementation may ignore an unrecognized pragma even if it violates some of the Syntax Rules, if
detecting the syntax error istoo complex.

Implementation Advice

Normally, implementation-defined pragmas should have no semantic effect for error-free programs; that is,
if the implementation-defined pragmas are removed from a working program, the program should still be
legal, and should still have the same semantics.

Normally, an implementation should not define pragmas that can make an illegal program legal, except as
follows:

* A pragma used to complete adeclaration, such as apragma Import;
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* A pragma used to configure the environment by adding, removing, or replacing library_items.

Syntax
The forms of List, Page, and Optimize pragmas are as follows:
pragma List(identifier);
pragma Page;
pragma Optimize(identifier);
Other pragmas are defined throughout this International Standard, and are summarized in Annex L.

Satic Semantics

A pragma List takes one of the identifiers On or Off as the single argument. This pragma is allowed
anywhere a pragma is alowed. It specifies that listing of the compilation is to be continued or suspended
until aList pragma with the opposite argument is given within the same compilation. The pragma itself is
aways listed if the compiler is producing alisting.

A pragma Page is alowed anywhere a pragma is alowed. It specifies that the program text which follows
the pragma should start on anew page (if the compiler is currently producing alisting).

A pragma Optimize takes one of the identifiers Time, Space, or Off as the single argument. This pragma is
alowed anywhere a pragma is alowed, and it applies until the end of the immediately enclosing
declarative region, or for a pragma at the place of a compilation_unit, to the end of the compilation. It
gives advice to the implementation as to whether time or space is the primary optimization criterion, or
that optional optimizations should be turned off. It isimplementation defined how this advice is followed.

Examples
Examples of pragmas:

pragma List(Of); -- turnofflisting generation

pragma Optimze(OFf); -- turnoff optional optimizations

pragna | nline(Set_Mask); -- generatecodefor Set Mask inline

pragna Suppress(Range_Check, On => Index); -- turnoff range checking on Index
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This paragraph was deleted.

The following are the reserved words (ignoring upper/lower case distinctions):

abort
abs
abstract
accept
access
aliased
all

and
array

at

begin
body

case
constant

declare
delay
delta
digits
do
NOTES
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ese

elsif

end
entry
exception
exit

for
function
generic
goto

if

in

is
limited
loop

mod

Syntax

new
not
null

of

or
others
out

package
pragma
private
procedure
protected
raise
range
record
rem
renames
requeue

return
reverse

select
separ ate
subtype

tagged
task
terminate
then

type
until
use

when
while
with

xor

6 The reserved words appear in lower case boldface in this International Standard, except when used in the designator
of an attribute (see 4.1.4). Lower case boldface is aso used for a reserved word in a string_literal used as an
operator_symbol. Thisis merely a convention — programs may be written in whatever typeface is desired and available.
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Section 3: Declarations and Types

This section describes the types in the language and the rules for declaring constants, variables, and hamed
numbers.

3.1 Declarations

The language defines several kinds of named entities that are declared by declarations. The entity's nameis
defined by the declaration, usually by a defining_identifier, but sometimes by a defining_character_literal
or defining_operator_symbol.

There are several forms of declaration. A basic_declaration is aform of declaration defined as follows.

Syntax
basic_declaration ::=
type_declaration | subtype_declaration
| object_declaration | number_declaration
| subprogram_declaration | abstract_subprogram_declaration
| package_declaration | renaming_declaration
| exception_declaration | generic_declaration
| generic_instantiation
defining_identifier ::= identifier
Static Semantics

A declaration is alanguage construct that associates a name with (a view of) an entity. A declaration may
appear explicitly in the program text (an explicit declaration), or may be supposed to occur at a given place
in the text as a consequence of the semantics of another construct (an implicit declaration).

Each of the following is defined to be a declaration: any basic_declaration; an enumeration_literal_-
specification; a discriminant_specification; a component_declaration; aloop_parameter_specification; a
parameter_specification; a subprogram_body; an entry_declaration; an entry_index_specification; a
choice_parameter_specification; a generic_formal_parameter_declaration.

All declarations contain a definition for a view of an entity. A view consists of an identification of the
entity (the entity of the view), plus view-specific characteristics that affect the use of the entity through that
view (such as mode of access to an object, forma parameter names and defaults for a subprogram, or
visibility to components of a type). In most cases, a declaration also contains the definition for the entity
itself (arenaming_declaration is an example of a declaration that does not define a new entity, but instead
defines aview of an existing entity (see 8.5)).

For each declaration, the language rules define a certain region of text called the scope of the declaration
(see 8.2). Most declarations associate an identifier with a declared entity. Within its scope, and only there,
there are places where it is possible to use the identifier to refer to the declaration, the view it defines, and
the associated entity; these places are defined by the visibility rules (see 8.3). At such places the identifier
is said to be a name of the entity (the direct_name or selector_name); the name is said to denote the
declaration, the view, and the associated entity (see 8.6). The declaration is said to declare the name, the
view, and in most cases, the entity itself.

As an dlternative to an identifier, an enumeration literal can be declared with acharacter _literal asits name
(see 3.5.1), and afunction can be declared with an operator_symbol as its name (see 6.1).
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The syntax rules use the terms defining_identifier, defining_character_literal, and defining_operator_-
symbol for the defining occurrence of a name; these are collectively called defining names. The terms
direct_name and selector_name are used for usage occurrences of identifiers, character_literals, and
operator_symbols. These are collectively called usage names.

Dynamic Semantics
The process by which a construct achieves its run-time effect is called execution. This process is aso
caled elaboration for declarations and evaluation for expressions. One of the terms execution,
elaboration, or evaluation is defined by this International Standard for each construct that has a run-time
effect.

NOTES
1 At compiletime, the declaration of an entity declares the entity. At run time, the elaboration of the declaration creates
the entity.

3.2 Types and Subtypes

Satic Semantics

A type is characterized by a set of values, and a set of primitive operations which implement the
fundamental aspects of its semantics. An object of a given type is a run-time entity that contains (has) a
value of the type.

Types are grouped into classes of types, reflecting the similarity of their values and primitive operations.
There exist several language-defined classes of types (see NOTES below). Elementary types are those
whose values are logically indivisible; composite types are those whose values are composed of component
values.

The elementary types are the scalar types (discrete and real) and the access types (whose values provide
access to objects or subprograms). Discrete types are either integer types or are defined by enumeration of
their values (enumeration types). Real types are either floating point types or fixed point types.

The composite types are the record types, record extensions, array types, task types, and protected types.
A private type or private extension represents a partial view (see 7.3) of atype, providing support for data
abstraction. A partial view is acomposite type.

Certain composite types (and partial views thereof) have special components called discriminants whose
values affect the presence, congtraints, or initialization of other components. Discriminants can be thought
of as parameters of the type.

The term subcomponent is used in this International Standard in place of the term component to indicate
either a component, or a component of another subcomponent. Where other subcomponents are excluded,
the term component is used instead. Similarly, a part of an object or value is used to mean the whole
object or value, or any set of its subcomponents.

The set of possible values for an object of a given type can be subjected to a condition that is called a
constraint (the case of a null constraint that specifies no restriction is aso included); the rules for which
values satisfy a given kind of constraint are given in 3.5 for range_constraints, 3.6.1 for
index_constraints, and 3.7.1 for discriminant_constraints.

A subtype of a given type is a combination of the type, a constraint on values of the type, and certain
attributes specific to the subtype. The given type is called the type of the subtype. Similarly, the associated
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constraint is called the constraint of the subtype. The set of values of a subtype consists of the values of its
type that satisfy its constraint. Such values belong to the subtype.

A subtype is cdled an unconstrained subtype if its type has unknown discriminants, or if its type allows
range, index, or discriminant constraints, but the subtype does not impose such a constraint; otherwise, the
subtypeis caled a constrained subtype (since it has no unconstrained characteristics).

NOTES
2 Any set of types that is closed under derivation (see 3.4) can be called a ‘‘class’’ of types. However, only certain

classes are used in the description of the rules of the language — generally those that have their own particular set of
primitive operations (see 3.2.3), or that correspond to a set of types that are matched by a given kind of generic formal
type (see 12.5). The following are examples of ‘‘interesting’’ language-defined classes: elementary, scaar, discrete,
enumeration, character, boolean, integer, signed integer, modular, real, floating point, fixed point, ordinary fixed point,
decimal fixed point, numeric, access, access-to-object, access-to-subprogram, composite, array, string, (untagged)
record, tagged, task, protected, nonlimited. Specia syntax is provided to define typesin each of these classes.

These language-defined classes are organized like this:

al types
elementary
scalar
discrete
enumeration
character
boolean
other enumeration
integer
signed integer
modular integer
real
floating point
fixed point
ordinary fixed point
decimal fixed point
access
access-to-object
access-to-subprogram
composite
array
string
other array
untagged record
tagged
task
protected

The classes ““numeric’’ and ‘‘nonlimited’’ represent other classification dimensions and do not fit into the above strictly
hierarchical picture.

3.2.1 Type Declarations
A type_declaration declares atype and itsfirst subtype.

Syntax

type_declaration ::= full_type_declaration
| incomplete_type_declaration
| private_type_declaration
| private_extension_declaration

10

11

12
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full_type_declaration ::=
type defining_identifier [known_discriminant_part] istype_definition;
| task_type_declaration
| protected_type_declaration

type_definition ::=

enumeration_type_definition | integer_type_definition
| real_type_definition | array_type_definition
| record_type_definition | access_type_definition

| derived_type_definition

Legality Rules
A given type shall not have a subcomponent whose type is the given type itsdlf.

Satic Semantics

The defining_identifier of a type_declaration denotes the first subtype of the type. The known_-
discriminant_part, if any, defines the discriminants of the type (see 3.7, ** Discriminants’’). The remainder
of the type_declaration defines the remaining characteristics of (the view of) the type.

A type defined by a type_declaration is a named type; such a type has one or more nameable subtypes.
Certain other forms of declaration also include type definitions as part of the declaration for an object
(including a parameter or a discriminant). The type defined by such a declaration is anonymous — it has
no nameable subtypes. For explanatory purposes, this International Standard sometimes refers to an
anonymous type by a pseudo-name, written in italics, and uses such pseudo-names at places where the
syntax normally requires an identifier. For a named type whose first subtype is T, this International
Standard sometimes refersto the type of T assimply ‘‘thetype T.”

A named type that is declared by a full_type_declaration, or an anonymous type that is defined as part of
declaring an object of the type, is called a full type. The type_definition, task_definition, protected_-
definition, or access_definition that defines a full type is called a full type definition. Types declared by
other forms of type_declaration are not separate types;, they are partial or incomplete views of some full

type.

The definition of atype implicitly declares certain predefined operators that operate on the type, according
to what classes the type belongs, as specified in 4.5, ** Operators and Expression Evaluation’’.

The predefined types (for example the types Boolean, Wide Character, Integer, root_integer, and
universal_integer) are the types that are defined in a predefined library package called Standard; this
package also includes the (implicit) declarations of their predefined operators. The package Standard is
described in A.1.

Dynamic Semantics
The elaboration of a full_type_declaration consists of the elaboration of the full type definition. Each
elaboration of afull type definition creates a distinct type and its first subtype.

Examples
Examples of type definitions:

(Wiite, Red, Yellow, Geen, Blue, Brown, Bl ack)
range 1 .. 72
array(1 .. 10) of Integer
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Examples of type declarations:

type Color is (Wite, Red, Yellow, Geen, Blue, Brown, Bl ack);
type Colum is range 1 .. ;
type Table is array(1 .. 10) of Integer;

NOTES

3 Each of the above examples declares a named type. The identifier given denotes the first subtype of the type. Other
named subtypes of the type can be declared with subtype_declarations (see 3.2.2). Although names do not directly
denote types, a phrase like ‘‘the type Column’’ is sometimes used in this International Standard to refer to the type of
Column, where Column denotes the first subtype of the type. For an example of the definition of an anonymous type, see
the declaration of the array Color_Table in 3.3.1; its type is anonymous — it has no nameable subtypes.

3.2.2 Subtype Declarations

A subtype_declaration declares a subtype of some previously declared type, as defined by a
subtype_indication.

Syntax
subtype_declaration ::=
subtype defining_identifier is subtype_indication;
subtype_indication ::= subtype_mark [constraint]
subtype_mark ::= subtype_name
constraint ::= scalar_constraint | composite_constraint

scalar_constraint ::=
range_constraint | digits_constraint | delta_constraint

composite_constraint ::=
index_constraint | discriminant_constraint

Name Resolution Rules

A subtype_mark shall resolve to denote a subtype. The type determined by a subtype_mark is the type of
the subtype denoted by the subtype_mark.

Dynamic Semantics
The elaboration of a subtype_declaration consists of the elaboration of the subtype_indication. The
elaboration of a subtype_indication creates a new subtype. If the subtype_indication does not include a
constraint, the new subtype has the same (possibly null) constraint as that denoted by the subtype_mark.
The elaboration of asubtype_indication that includes a constraint proceeds as follows:

e Theconstraint isfirst elaborated.

* A check is then made that the constraint is compatible with the subtype denoted by the
subtype_mark.

The condition imposed by a constraint is the condition obtained after elaboration of the constraint. The
rules defining compatibility are given for each form of constraint in the appropriate subclause. These rules
are such that if a constraint is compatible with a subtype, then the condition imposed by the constraint
cannot contradict any condition aready imposed by the subtype on its values. The exception
Constraint_Error israised if any check of compatibility fails.

NOTES

4 A scalar_constraint may be applied to a subtype of an appropriate scalar type (see 3.5, 3.5.9, and J.3), even if the
subtype is already constrained. On the other hand, a composite_constraint may be applied to a composite subtype (or an
access-to-composite subtype) only if the composite subtype is unconstrained (see 3.6.1 and 3.7.1).
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Examples
Examples of subtype declarations:
subtype Rainbow is Color range Red .. Bl ue; - see32.1
subtype Red_Blue is Rainbow,
subtype Int is Integer;
subtype Small _Int is Integer range -10 .. 10;
subtype Up_To_K is Colum range 1 .. K; - see321
subt ype Square is Matrix(1 .. 10, 1 .. 10); - see3.6
subtype Mal e is Person(Sex => M; -- see3.10.1

3.2.3 Classification of Operations

Static Semantics

An operation operates on a type T if it yields a value of type T, if it has an operand whose expected type
(see 8.6) is T, or if it has an access parameter (see 6.1) designating T. A predefined operator, or other
language-defined operation such as assignment or a membership test, that operates on a type, is caled a
predefined operation of the type. The primitive operations of a type are the predefined operations of the
type, plus any user-defined primitive subprograms.
The primitive subprograms of a specific type are defined as follows:

* The predefined operators of the type (see 4.5);

« For aderived type, the inherited (see 3.4) user-defined subprograms;

« For an enumeration type, the enumeration literals (which are considered parameterless functions
—see3.5.1);

» For a specific type declared immediately within a package_specification, any subprograms (in
addition to the enumeration literals) that are explicitly declared immediately within the same
package_specification and that operate on the type;

* Any subprograms not covered above that are explicitly declared immediately within the same
declarative region as the type and that override (see 8.3) other implicitly declared primitive
subprograms of the type.

A primitive subprogram whose designator is an operator_symbol is called a primitive operator.

3.3 Objects and Named Numbers

Objects are created at run time and contain a value of agiven type. An object can be created and initialized
as part of eaborating a declaration, evaluating an allocator, aggregate, or function_call, or passing a
parameter by copy. Prior to reclaiming the storage for an object, it isfinalized if necessary (see 7.6.1).
Satic Semantics

All of the following are objects:

« theentity declared by an object_declaration;

« aformal parameter of a subprogram, entry, or generic subprogram;

* ageneric formal object;

« aloop parameter;

« achoice parameter of an exception_handler;

e anentry index of an entry_body;
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 theresult of dereferencing an access-to-object value (see 4.1);

« theresult of evaluating afunction_call (or the equivalent operator invocation — see 6.6);
 theresult of evaluating an aggregate;

» acomponent, slice, or view conversion of another object.

An object is either a constant object or a variable object. The value of a constant object cannot be changed
between its initialization and its finaization, whereas the value of a variable object can be changed.
Similarly, aview of an object is either a constant or avariable. All views of a constant object are constant.
A constant view of avariable object cannot be used to modify the value of the variable. The terms constant
and variable by themselves refer to constant and variable views of objects.

The value of an object is read when the value of any part of the object is evaluated, or when the value of
an enclosing object is evaluated. The value of a variable is updated when an assignment is performed to
any part of the variable, or when an assignment is performed to an enclosing object.

Whether a view of an object is constant or variable is determined by the definition of the view. The
following (and no others) represent constants:

» an object declared by an object_declaration with the reserved word constant;

» aformal parameter or generic formal object of modein;

 adiscriminant;

» aloop parameter, choice parameter, or entry index;

* the dereference of an access-to-constant value;

 theresult of evaluating afunction_call or an aggregate;

» aselected_component, indexed_component, slice, or view conversion of a constant.

At the place where a view of an object is defined, a nominal subtype is associated with the view. The
object's actual subtype (that is, its subtype) can be more restrictive than the nominal subtype of the view; it
always is if the nomina subtype is an indefinite subtype. A subtype is an indefinite subtype if it is an
unconstrained array subtype, or if it has unknown discriminants or unconstrained discriminants without
defaults (see 3.7); otherwise the subtype is a definite subtype (all elementary subtypes are definite
subtypes). A class-wide subtype is defined to have unknown discriminants, and is therefore an indefinite
subtype. An indefinite subtype does not by itself provide enough information to create an object; an
additional constraint or explicit initialization expression is necessary (see 3.3.1). A component cannot
have an indefinite nominal subtype.

A named number provides a name for a numeric value known at compile time. It is declared by a
number_declaration.
NOTES

5 A constant cannot be the target of an assignment operation, nor be passed as an in out or out parameter, between its
initialization and finalization, if any.

6 The nominal and actual subtypes of an elementary object are always the same. For a discriminated or array object, if
the nominal subtypeis constrained then so is the actual subtype.

25 15 June 2001 Objects and Named Numbers 3.3 |

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26



10

ISO/IEC 8652:1995(E) with COR.1:2000 — Ada Reference Manual

3.3.1 Object Declarations

An object_declaration declares a stand-alone object with a given nominal subtype and, optionaly, an
explicit initial value given by an initialization expression. For an array, task, or protected object, the
object_declaration may include the definition of the (anonymous) type of the object.

Syntax
object_declaration ::=
defining_identifier_list : [aliased] [constant] subtype_indication [:= expression];
| defining_identifier_list : [aliased] [constant] array_type_definition [:= expression];
| single_task_declaration
| single_protected_declaration
defining_identifier_list ::=
defining_identifier {, defining_identifier}

Name Resolution Rules

For an object_declaration with an expression following the compound delimiter :=, the type expected for
the expression is that of the object. This expression is caled the initialization expression.

Legality Rules
An object_declaration without the reserved word constant declares a variable object. If it has a
subtype_indication or an array_type_definition that defines an indefinite subtype, then there shall be an
initialization expression. An initiaization expression shall not be given if the object is of alimited type.

Satic Semantics

An object_declaration with the reserved word constant declares a constant object. If it has an initialization
expression, then it is called a full constant declaration. Otherwise it is caled a deferred constant
declaration. The rules for deferred constant declarations are given in clause 7.4. The rules for full constant
declarations are given in this subclause.

Any declaration that includes a defining_identifier_list with more than one defining_identifier is equivalent
to a series of declarations each containing one defining_identifier from the list, with the rest of the text of
the declaration copied for each declaration in the series, in the same order as the list. The remainder of this
International Standard relies on this equivalence; explanations are given for declarations with a single
defining_identifier.

The subtype_indication or full type definition of an object_declaration defines the nominal subtype of the
object. The object_declaration declares an object of the type of the nominal subtype.

Dynamic Semantics

If a composite object declared by an object_declaration has an unconstrained nominal subtype, then if this
subtype is indefinite or the object is constant or aliased (see 3.10) the actual subtype of this object is
constrained. The constraint is determined by the bounds or discriminants (if any) of its initia vaue; the
object is said to be constrained by itsinitial value. In the case of an aiased object, thisinitia value may be
either explicit or implicit; in the other cases, an explicit initial value is required. When not constrained by
its initial value, the actua and nomina subtypes of the object are the same. If its actual subtype is
constrained, the object is called a constrained object.

For an object_declaration without an initialization expression, any initia vaues for the object or its
subcomponents are determined by the implicit initial values defined for its nominal subtype, as follows:
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e Theimplicitinitial value for an access subtype is the null value of the access type. 11

e Theimplicit initial (and only) value for each discriminant of a constrained discriminated subtype 12
is defined by the subtype.

» For a (definite) composite subtype, the implicit initial value of each component with a 13
default_expression is obtained by evaluation of this expresson and conversion to the
component's nominal subtype (which might raise Constraint_Error — see 4.6, ‘‘Type

Conversions'’), unless the component is a discriminant of a constrained subtype (the previous
case), or is in an excluded variant (see 3.8.1). For each component that does not have a
default_expression, any implicit initial values are those determined by the component's nominal
subtype.

» For aprotected or task subtype, thereis an implicit component (an entry queue) corresponding to 14
each entry, with itsimplicit initial value being an empty queue.
The elaboration of an object_declaration proceeds in the following sequence of steps: 15
1. The subtype_indication, array_type_definition, single_task_declaration, or single_protected_- 16
declaration is first elaborated. This creates the nominal subtype (and the anonymous type in the
|atter three cases).
2. If the object_declaration includes an initialization expression, the (explicit) initial vaue is 17

obtained by evaluating the expression and converting it to the nomina subtype (which might
raise Constraint_Error — see 4.6).

3. The object is created, and, if there is not an initiaization expression, any per-object expressions 18/1
(see 3.8) are elaborated and any implicit initial values for the object or for its subcomponents are
obtained as determined by the nominal subtype.

4. Any initial values (whether explicit or implicit) are assigned to the object or to the corresponding 19
subcomponents. As described in 5.2 and 7.6, Initialize and Adjust procedures can be called.

For the third step above, the object creation and any elaborations and evaluations are performed in an 20
arbitrary order, except that if the default_expression for a discriminant is evaluated to obtain its initial
value, then this evaluation is performed before that of the default_expression for any component that
depends on the discriminant, and also before that of any default_expression that includes the name of the
discriminant. The evaluations of the third step and the assignments of the fourth step are performed in an
arbitrary order, except that each evaluation is performed before the resulting value is assigned.

There is no implicit initial value defined for a scalar subtype. In the absence of an explicit initialization, a 21
newly created scalar object might have a value that does not belong to its subtype (see 13.9.1 and H.1).

NOTES
7 Implicit initial values are not defined for an indefinite subtype, because if an object's nominal subtype isindefinite, an 22
explicit initial valueis required.

8 As indicated above, a stand-alone object is an object declared by an object_declaration. Similar definitions apply to 23
‘*stand-alone constant’’ and *‘ stand-alone variable.”” A subcomponent of an object is not a stand-alone object, nor is an
object that is created by an allocator. An object declared by a loop_parameter_specification, parameter_specification,
entry_index_specification, choice_parameter_specification, or a formal_object_declaration is not caled a stand-alone

object.
9 The type of a stand-alone object cannot be abstract (see 3.9.3). 24
Examples
Example of a multiple object declaration: 25
-- the multiple object declaration 26
John, Paul : Person_Name := new Person(Sex => M; -- se310.1 27
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-- isequivalent to the two single object declarationsin the order given

John : Person_Nane := new Person(Sex => M;
Paul Person_Nane : = new Person(Sex => M;

Examples of variable declarations:

Count, Sum I nt eger;

Si ze Integer range O .. 10_000 := O;

Sort ed : Bool ean : = Fal se;

Col or_Table : array(1 .. Max) of Color;

Option Bit_Vector(1l .. 10) := (others => True);

Hel | o constant String := "Hi, world.";
Examples of constant declarations:

Limt constant |Integer := 10_000;

Low Limt constant Integer := Limt/10;

Tol erance : constant Real := Dispersion(l.15);

3.3.2 Number Declarations

A number_declaration declares a named number.

Syntax
number_declaration ::=
defining_identifier_list : constant := static_expression;
Name Resolution Rules

The static_expression given for anumber_declaration is expected to be of any numeric type.

Legality Rules
The static_expression given for a number declaration shall be a static expression, as defined by clause 4.9.

Satic Semantics

The named number denotes a value of type universal_integer if the type of the static_expression is an
integer type. The named number denotes a value of type universal_real if the type of the static_expression
isared type.

The value denoted by the named number is the value of the static_expression, converted to the
corresponding universal type.

Dynamic Semantics
The elaboration of anumber_declaration has no effect.

Examples
Examples of number declarations:

Two_Pi constant := 2.0*Ada. Nunerics. Pi; -- areal number (see A.5)
Max : constant := 500; -- an integer number
Max_Line_Size : constant := Max/6 -- theinteger 83

Power _16 : constant := 2**16; -- the integer 65_536

One, Un, Eins : constant := 1; -- three different names for 1
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3.4 Derived Types and Classes

A derived_type_definition defines a new type (and its first subtype) whose characteristics are derived from
those of aparent type.

Syntax
derived_type_definition ::= [abstract] new parent_subtype_indication [record_extension_part]

Legality Rules
The parent_subtype_indication defines the parent subtype; its typeis the parent type.

A type shall be completely defined (see 3.11.1) prior to being specified as the parent type in a
derived_type_definition — the full_type_declarations for the parent type and any of its subcomponents
have to precede the derived_type_definition.

If there is a record_extension_part, the derived type is called a record extension of the parent type. A
record_extension_part shall be provided if and only if the parent typeis atagged type.

Satic Semantics

The first subtype of the derived type is unconstrained if a known_discriminant_part is provided in the
declaration of the derived type, or if the parent subtype is unconstrained. Otherwise, the constraint of the
first subtype corresponds to that of the parent subtype in the following sense: it is the same as that of the
parent subtype except that for a range constraint (implicit or explicit), the value of each bound of its range
isreplaced by the corresponding value of the derived type.

The characteristics of the derived type are defined as follows:
» Each class of types that includes the parent type also includes the derived type.

» If the parent type is an elementary type or an array type, then the set of possible values of the
derived type is a copy of the set of possible values of the parent type. For a scalar type, the base
range of the derived type is the same as that of the parent type.

» If the parent type is a composite type other than an array type, then the components, protected
subprograms, and entries that are declared for the derived type are as follows:

+ The discriminants specified by a new known_discriminant_part, if there is one; otherwise,
each discriminant of the parent type (implicitly declared in the same order with the same
specifications) — in the latter case, the discriminants are said to be inherited, or if unknown
in the parent, are also unknown in the derived type;

Each nondiscriminant component, entry, and protected subprogram of the parent type,
implicitly declared in the same order with the same declarations; these components, entries,
and protected subprograms are said to be inherited;

Each component declared in arecord_extension_part, if any.

Declarations of components, protected subprograms, and entries, whether implicit or explicit,
occur immediately within the declarative region of the type, in the order indicated above,
following the parent subtype_indication.

» Thederived typeislimited if and only if the parent typeis limited.

» For each predefined operator of the parent type, there is a corresponding predefined operator of
the derived type.
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« For each user-defined primitive subprogram (other than a user-defined equality operator — see
below) of the parent type that aready exists at the place of the derived_type_definition, there
exists a corresponding inherited primitive subprogram of the derived type with the same defining
name. Primitive user-defined equality operators of the parent type are aso inherited by the
derived type, except when the derived type is a nonlimited record extension, and the inherited
operator would have a profile that is type conformant with the profile of the corresponding
predefined equality operator; in this case, the user-defined equality operator is not inherited, but
is rather incorporated into the implementation of the predefined equality operator of the record
extension (see 4.5.2).

The profile of an inherited subprogram (including an inherited enumeration literal) is obtained
from the profile of the corresponding (user-defined) primitive subprogram of the parent type,
after systematic replacement of each subtype of its profile (see 6.1) that is of the parent type with
a corresponding subtype of the derived type. For a given subtype of the parent type, the
corresponding subtype of the derived type is defined as follows:

If the declaration of the derived type has neither a known_discriminant_part nor a
record_extension_part, then the corresponding subtype has a constraint that corresponds
(as defined above for the first subtype of the derived type) to that of the given subtype.

If the derived type is arecord extension, then the corresponding subtype is the first subtype
of the derived type.

If the derived type has a new known_discriminant_part but is not a record extension, then
the corresponding subtype is constrained to those values that when converted to the parent
type belong to the given subtype (see 4.6).

The same formal parameters have default_expressions in the profile of the inherited
subprogram. Any type mismatch due to the systematic replacement of the parent type by the
derived type is handled as part of the normal type conversion associated with parameter passing
—see6.4.1.

If a primitive subprogram of the parent type is visible at the place of the derived_type_definition, then the
corresponding inherited subprogram is implicitly declared immediately after the derived_type_definition.
Otherwise, the inherited subprogram isimplicitly declared later or not at al, as explained in 7.3.1.

A derived type can aso be defined by a private_extension_declaration (see 7.3) or a formal_derived_-
type_definition (see 12.5.1). Such aderived typeisapartia view of the corresponding full or actua type.

All numeric types are derived types, in that they are implicitly derived from a corresponding root numeric
type (see 3.5.4 and 3.5.6).

Dynamic Semantics
The elaboration of a derived_type_definition creates the derived type and its first subtype, and consists of

the elaboration of the subtype_indication and the record_extension_part, if any. If the subtype_indication
depends on adiscriminant, then only those expressions that do not depend on a discriminant are evaluated.

For the execution of a call on an inherited subprogram, a call on the corresponding primitive subprogram
of the parent type is performed; the normal conversion of each actual parameter to the subtype of the
corresponding formal parameter (see 6.4.1) performs any necessary type conversion as well. If the result
type of the inherited subprogram is the derived type, the result of calling the parent's subprogram is
converted to the derived type.

NOTES

10 Classes are closed under derivation — any class that contains a type also contains its derivatives. Operations
available for a given class of types are available for the derived typesin that class.
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11 Evaluating an inherited enumeration literal is equivalent to evaluating the corresponding enumeration literal of the
parent type, and then converting the result to the derived type. This follows from their equivalence to parameterless
functions.

12 A generic subprogram is not a subprogram, and hence cannot be a primitive subprogram and cannot be inherited by a
derived type. On the other hand, an instance of a generic subprogram can be a primitive subprogram, and hence can be
inherited.

13 If the parent type is an access type, then the parent and the derived type share the same storage pool; there is a null
access value for the derived type and it is the implicit initial value for the type. See 3.10.

14 If the parent type is a boolean type, the predefined relational operators of the derived type deliver a result of the
predefined type Boolean (see 4.5.2). If the parent type is an integer type, the right operand of the predefined
exponentiation operator is of the predefined type Integer (see 4.5.6).

15 Any discriminants of the parent type are either al inherited, or completely replaced with a new set of discriminants.

16 For an inherited subprogram, the subtype of a forma parameter of the derived type need not have any value in
common with the first subtype of the derived type.

17 If the reserved word abstract is given in the declaration of atype, the typeis abstract (see 3.9.3).

Examples
Examples of derived type declarations:
type Local _Coordinate is new Coordinate; -- two different types
type M dweek is new Day range Tue .. Thu; - see35.1
type Counter is new Positive; -- same range as Positive
type Special _Key is new Key_Manager. Key; - see7.31

-- the Inherited subprograms have the following specifications:
- procedure Get_Key(K : out Special_Key);
-- function "<" (XY : Special_Key) return Boolean;

3.4.1 Derivation Classes

In addition to the various language-defined classes of types, types can be grouped into derivation classes.

Satic Semantics

A derived typeis derived from its parent type directly; it is derived indirectly from any type from which its
parent type is derived. The derivation class of types for atype T (also called the class rooted at T) is the set
consisting of T (the root type of the class) and all types derived from T (directly or indirectly) plus any
associated universal or class-wide types (defined below).

Every typeis either a specific type, a class-wide type, or auniversal type. A specific type is one defined by
atype_declaration, a formal_type_declaration, or a full type definition embedded in a declaration for an
object. Class-wide and universal types are implicitly defined, to act as representatives for an entire class of
types, asfollows:

Class-wide types

31

Class-wide types are defined for (and belong to) each derivation class rooted at a tagged
type (see 3.9). Given a subtype S of a tagged type T, SClass is the subtype_mark for a
corresponding subtype of the tagged class-wide type T'Class. Such types are called *‘ class-
wide'’ because when a formal parameter is defined to be of a class-wide type T'Class, an
actual parameter of any typein the derivation classrooted at T is acceptable (see 8.6).

The set of values for a class-wide type T'Class is the discriminated union of the set of values
of each specific type in the derivation class rooted at T (the tag acts as the implicit
discriminant — see 3.9). Class-wide types have no primitive subprograms of their own.
However, as explained in 3.9.2, operands of a class-wide type T'Class can be used as part of
adispatching call on a primitive subprogram of the type T. The only components (including
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discriminants) of T'Class that are visible arethose of T. If Sisafirst subtype, then SClassis
afirst subtype.

Universal types

Universal types are defined for (and belong to) the integer, real, and fixed point classes, and
are referred to in this standard as respectively, universal_integer, universal_real, and
universal_fixed. These are analogous to class-wide types for these language-defined
numeric classes. Aswith class-wide types, if aformal parameter is of a universal type, then
an actual parameter of any type in the corresponding class is acceptable. In addition, avalue
of auniversal type (including an integer or real numeric_literal) is ‘‘universa’’ in that it is
acceptable where some particular type in the class is expected (see 8.6).

The set of values of a universal type is the undiscriminated union of the set of values
possible for any definable type in the associated class. Like class-wide types, universa
types have no primitive subprograms of their own. However, their ‘‘universality’’ alows
them to be used as operands with the primitive subprograms of any type in the
corresponding class.

The integer and real numeric classes each have a specific root type in addition to their universal type,
named respectively root_integer and root_real.

A class-wide or universal typeissaid to cover all of thetypesin itsclass. A specific type covers only itself.

A specific type T2 is defined to be a descendant of atype T1 if T2 is the same as T1, or if T2 is derived
(directly or indirectly) from T1. A class-wide type T2'Class is defined to be a descendant of type T1if T2 is
a descendant of T1. Similarly, the universal types are defined to be descendants of the root types of their
classes. If atype T2 is adescendant of atype T1, then T1 is called an ancestor of T2. The ultimate ancestor
of atypeisthe ancestor of the type that is not a descendant of any other type.

An inherited component (including an inherited discriminant) of a derived type is inherited from a given
ancestor of the type if the corresponding component was inherited by each derived type in the chain of
derivations going back to the given ancestor.
NOTES
18 Because operands of a universal type are acceptable to the predefined operators of any type in their class, ambiguity
can result. For universal_integer and universal_real, this potential ambiguity is resolved by giving a preference (see 8.6)
to the predefined operators of the corresponding root types (root_integer and root_real, respectively). Hence, in an
apparently ambiguous expression like
1+4<7

where each of the literals is of type universal_integer, the predefined operators of root_integer will be preferred over
those of other specific integer types, thereby resolving the ambiguity.

3.5 Scalar Types

Scalar types comprise enumeration types, integer types, and rea types. Enumeration types and integer
types are called discrete types; each value of a discrete type has a position number which is an integer
value. Integer types and rea types are called numeric types. All scalar types are ordered, that is, al
relational operators are predefined for their values.

Syntax
range_constraint ::= range range

range ::= range_attribute_reference
| simple_expression .. simple_expression
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A range has a lower bound and an upper bound and specifies a subset of the values of some scalar type
(the type of the range). A range with lower bound L and upper bound R isdescribed by ‘L .. R". If Ris
less than L, then the range is a null range, and specifies an empty set of values. Otherwise, the range
specifies the values of the type from the lower bound to the upper bound, inclusive. A value belongs to a
rangeiif it is of the type of the range, and isin the subset of values specified by the range. A value satisfies
arange constraint if it belongs to the associated range. One range is included in another if all values that
belong to thefirst range aso belong to the second.

Name Resolution Rules

For a subtype_indication containing a range_constraint, either directly or as part of some other
scalar_constraint, the type of the range shall resolve to that of the type determined by the subtype_mark
of the subtype_indication. For arange of a given type, the simple_expressions of the range (likewise, the
simple_expressions of the equivalent range for a range_attribute_reference) are expected to be of the
type of therange.

Satic Semantics

The base range of a scalar type is the range of finite values of the type that can be represented in every
unconstrained object of the type; it is dso the range supported a a minimum for intermediate values
during the evaluation of expressions involving predefined operators of the type.

A constrained scalar subtype is one to which a range constraint applies. The range of a constrained scalar
subtype is the range associated with the range constraint of the subtype. The range of an unconstrained
scalar subtypeis the base range of itstype.

Dynamic Semantics
A range is compatible with a scalar subtype if and only if it is either a null range or each bound of the

range belongs to the range of the subtype. A range_constraint is compatible with a scalar subtype if and
only if its range is compatible with the subtype.

The elaboration of arange_constraint consists of the evaluation of the range. The evaluation of a range
determines a lower bound and an upper bound. If simple_expressions are given to specify bounds, the
evaluation of the range evaluates these simple_expressionsin an arbitrary order, and converts them to the
type of the range. If a range_attribute_reference is given, the evaluation of the range consists of the
evaluation of the range_attribute_reference.

Attributes

For every scalar subtype S, the following attributes are defined:

SFirst SFirst denotes the lower bound of the range of S. The value of this attribute is of the type of
S.

Slast SlLast denotes the upper bound of the range of S. The value of this attribute is of the type of
S.

SRange SRange is equivalent to therange SFirst .. SLast.

SBase SBase denotes an unconstrained subtype of the type of S. This unconstrained subtype is

called the base subtype of the type.

SMin SMin denotes a function with the following specification:

function S M n(Left, Right : S Base)
return S Base

The function returns the lesser of the values of the two parameters.
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SMax

S'Succ

SPred

SMax denotes a function with the following specification:

function S Max(Left, Right : S Base)
return S Base

The function returns the greater of the values of the two parameters.

S'Succ denotes a function with the following specification:
function S Succ(Arg : S Base)
return S Base

For an enumeration type, the function returns the value whose position number is one more
than that of the value of Arg; Constraint_Error israised if thereis no such value of the type.
For an integer type, the function returns the result of adding one to the value of Arg. For a
fixed point type, the function returns the result of adding small to the value of Arg. For a
floating point type, the function returns the machine number (as defined in 3.5.7)
immediately above the value of Arg; Constraint_Error is raised if there is no such machine
number.

SPred denotes a function with the following specification:
function S Pred(Arg : S Base)
return S Base

For an enumeration type, the function returns the value whose position number is one less
than that of the value of Arg; Constraint_Error israised if thereis no such value of the type.
For an integer type, the function returns the result of subtracting one from the value of Arg.
For afixed point type, the function returns the result of subtracting small from the value of
Arg. For afloating point type, the function returns the machine number (as defined in 3.5.7)
immediately below the value of Arg; Constraint_Error is raised if there is no such machine
number.

SWide_ImageSWide_Image denotes a function with the following specification:

function S Wde_l| mage(Arg : S Base)
return Wde_String
The function returns an image of the vaue of Arg, that is, a sequence of characters
representing the value in display form. The lower bound of the result is one.

The image of an integer vaue is the corresponding decimal literal, without underlines,
leading zeros, exponent, or trailing spaces, but with a single leading character that is either
aminus sign or a space.

The image of an enumeration value is either the corresponding identifier in upper case or
the corresponding character litera (including the two apostrophes); neither leading nor
trailing spaces are included. For a nongraphic character (a value of a character type that
has no enumeration literal associated with it), the result is a corresponding |anguage-defined
or implementation-defined name in upper case (for example, the image of the nongraphic
character identified asnul is‘*NUL’" — the quotes are not part of the image).

The image of a floating point value is a decimal real literal best approximating the value
(rounded away from zero if halfway between) with a single leading character that is either a
minus sign or a space, a single digit (that is nonzero unless the value is zero), a decimal
point, SDigits-1 (see 3.5.8) digits after the decimal point (but one if SDigits is one), an
upper case E, the sign of the exponent (either + or —), and two or more digits (with leading
zeros if necessary) representing the exponent. If SSigned Zeros is True, then the leading
character isaminus sign for a negatively signed zero.

The image of a fixed point value is a decimal red literal best approximating the value
(rounded away from zero if halfway between) with a single leading character that is either a
minus sign or a space, one or more digits before the decima point (with no redundant
leading zeros), adecimal point, and SAft (see 3.5.10) digits after the decimal point.
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Slmage S'lmage denotes a function with the following specification:
function S' I mage(Arg : S Base)
return String
The function returns an image of the value of Arg as a String. The lower bound of the result
is one. The image has the same sequence of graphic characters as that defined for
SWide_Image if al the graphic characters are defined in Character; otherwise the sequence
of characters is implementation defined (but no shorter than that of SWide_Image for the
same value of Arg).

SWide Width
SWide_Width denotes the maximum length of a Wide_String returned by SWide_Image
over al values of the subtype S. It denotes zero for a subtype that has a null range. Its type
isuniversal_integer.

SWidth SWidth denotes the maximum length of a String returned by S1mage over al values of the
subtype S. It denotes zero for a subtype that has anull range. Itstypeis universal_integer.

SWide Value
SWide_Vaue denotes a function with the following specification:
function S Wde_Val ue(Arg : Wde_String)
return S Base
This function returns a value given an image of the value as a Wide_String, ignoring any
leading or trailing spaces.

For the evaluation of a call on SWide_Vaue for an enumeration subtype S, if the sequence
of characters of the parameter (ignoring leading and trailing spaces) has the syntax of an
enumeration literal and if it corresponds to a literal of the type of S (or corresponds to the
result of SWide Image for a nongraphic character of the type), the result is the
corresponding enumeration value; otherwise Constraint_Error is raised.

For the evaluation of a call on SWide_Value (or SValue) for an integer subtype S, if the
sequence of characters of the parameter (ignoring leading and trailing spaces) has the syntax
of an integer literal, with an optional leading sign character (plus or minus for a signed type;
only plus for a modular type), and the corresponding numeric value belongs to the base
range of the type of S, then that value is the result; otherwise Constraint_Error is raised.

For the evaluation of a call on SWide Vaue (or SValue) for a rea subtype S, if the
sequence of characters of the parameter (ignoring leading and trailing spaces) has the syntax
of one of the following:

e numeric_literal

* numeral.[exponent]

* .numeral[exponent]

* base#tbased_numeral.# exponent]
* base#.based_numeral# exponent]

with an optional leading sign character (plus or minus), and if the corresponding numeric
value belongs to the base range of the type of S, then that value is the result; otherwise
Congtraint_Error is raised. The sign of a zero value is preserved (positive if none has been
specified) if SSigned_Zerosis True.

SVdue S'Vaue denotes a function with the following specification:

function S Value(Arg : String)
return S Base
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This function returns a value given an image of the value as a String, ignoring any leading
or trailing spaces.

For the evaluation of a call on SValue for an enumeration subtype S, if the sequence of
characters of the parameter (ignoring leading and trailing spaces) has the syntax of an
enumeration literal and if it corresponds to a literal of the type of S (or corresponds to the
result of S1mage for avaue of the type), the result is the corresponding enumeration value;
otherwise Constraint_Error is raised. For a numeric subtype S, the evaluation of a call on
SVauewith Arg of type String is equivaent to acall on SWide_Value for a corresponding
Arg of type Wide_String.

Implementation Permissions
An implementation may extend the Wide Vaue, Value, Wide_Image, and Image attributes of a floating
point type to support special values such asinfinities and NaNs.

NOTES
19 The evaluation of SFirst or SLast never raises an exception. If a scalar subtype S has a nonnull range, SFirst and
SlLast belong to this range. These values can, for example, aways be assigned to a variable of subtype S.

20 For a subtype of a scalar type, the result delivered by the attributes Succ, Pred, and Value might not belong to the
subtype; similarly, the actual parameters of the attributes Succ, Pred, and Image need not belong to the subtype.

21 For any value V (including any nongraphic character) of an enumeration subtype S, SVaue(Simage(V)) equasV, as
does SWide Vaue(SWide_Image(V)). Neither expression ever raises Constraint_Error.

Examples

Examples of ranges:

-10 .. 10

X.. X+1

0.0 .. 2.0*Pi

Red .. Green --see35.1

1..0 --anull range

Tabl e' Range -- a range attribute reference (see 3.6)

Examples of range constraints:

range -999.0 .. +999.0
range S'First+l .. S' Last-1

3.5.1 Enumeration Types

An enumeration_type_definition defines an enumeration type.

Syntax
enumeration_type_definition ::=
(enumeration_literal_specification {, enumeration_literal_specification})

enumeration_literal_specification ::= defining_identifier | defining_character_literal
defining_character_literal ::= character_literal

Legality Rules

The defining_identifiers and defining_character_literals listed in an enumeration_type_definition shall be
distinct.
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Satic Semantics

Each enumeration_literal_specification is the explicit declaration of the corresponding enumeration
literal: it declares a parameterless function, whose defining name is the defining_identifier or defining_-
character_literal, and whose result type is the enumeration type.

Each enumeration literal corresponds to a distinct value of the enumeration type, and to a distinct position
number. The position number of the value of the first listed enumeration literal is zero; the position
number of the value of each subsequent enumeration literal is one more than that of its predecessor in the
list.

The predefined order relations between values of the enumeration type follow the order of corresponding
position numbers.

If the same defining_identifier or defining_character_literal is specified in more than one enumeration_-
type_definition, the corresponding enumeration literals are said to be overloaded. At any place where an
overloaded enumeration literal occurs in the text of a program, the type of the enumeration literal hasto be
determinable from the context (see 8.6).

Dynamic Semantics
The elaboration of an enumeration_type_definition creates the enumeration type and its first subtype,
which is constrained to the base range of the type.

When called, the parameterless function associated with an enumeration literal returns the corresponding
value of the enumeration type.

NOTES
22 |If an enumeration literal occurs in a context that does not otherwise suffice to determine the type of the literal, then
qualification by the name of the enumeration type is one way to resolve the ambiguity (see 4.7).

Examples

Examples of enumeration types and subtypes:

type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

type Suit is (dubs, D anonds, Hearts, Spades);

type Gender is (M F);

type Level is (Low, Medium Urgent);

type Color is (Wite, Red, Yellow, Geen, Blue, Brown, Bl ack);
type Light is (Red, Anber, Green); --RedandGreenareoverloaded
type Hexa is ( ‘B, 'C, 'D, 'E, 'F)

type Mxed is (

A, :
"A, "B, '"*', B, None, '?', '%);
subtype Weekday is Day range Mon .. Fri;

s Sui

s |

subt ype Maj or
subt ype Rai nbow i

range Hearts .. Spades;
r range Red .. Blue; -- theColor Red, not the Light

o~

3.5.2 Character Types

Satic Semantics

An enumeration type is said to be a character type if at least one of its enumeration literas is a
character_literal.

The predefined type Character is a character type whose values correspond to the 256 code positions of
Row 00 (also known as Latin-1) of the ISO 10646 Basic Multilingual Plane (BMP). Each of the graphic
characters of Row 00 of the BMP has a corresponding character_literal in Character. Each of the
nongraphic positions of Row 00 (0000-001F and 007F-009F) has a corresponding language-defined name,
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which is not usable as an enumeration literal, but which is usable with the attributes (Wide_)Image and
(Wide )Value; these names are given in the definition of type Character in A.1, ‘* The Package Standard’’,
but are set in italics.

The predefined type Wide Character is a character type whose values correspond to the 65536 code
positions of the ISO 10646 Basic Multilingual Plane (BMP). Each of the graphic characters of the BMP
has a corresponding character_literal in Wide_Character. The first 256 values of Wide_Character have the
same character_literal or language-defined name as defined for Character. The last 2 vaues of
Wide_Character correspond to the nongraphic positions FFFE and FFFF of the BMP, and are assigned the
language-defined names FFFE and FFFF. As with the other language-defined names for nongraphic
characters, the names FFFE and FFFF are usable only with the attributes (Wide )image and
(Wide )Value; they are not usable as enumeration literals. All other values of Wide Character are
considered graphic characters, and have a corresponding character_literal.

Implementation Permissions

In a nonstandard mode, an implementation may provide other interpretations for the predefined types
Character and Wide_Character, to conform to local conventions.

Implementation Advice

If an implementation supports a mode with aternative interpretations for Character and Wide_Character,
the set of graphic characters of Character should nevertheless remain a proper subset of the set of graphic
characters of Wide_Character. Any character set ‘‘localizations’’ should be reflected in the results of the
subprograms defined in the language-defined package Characters.Handling (see A.3) available in such a
mode. In a mode with an alternative interpretation of Character, the implementation should also support a
corresponding change in what is alegal identifier_letter.

NOTES

23 The language-defined library package Characters.Latin_1 (see A.3.3) includes the declaration of constants denoting
control characters, lower case characters, and special characters of the predefined type Character.

24 A conventional character set such as EBCDIC can be declared as a character type; the internal codes of the characters
can be specified by an enumeration_representation_clause as explained in clause 13.4.

Examples
Example of a character type:
type Roman_Digit is ('I', 'V, 'X, 'L', 'C, 'D, 'M);
3.5.3 Boolean Types
Satic Semantics

Thereis a predefined enumeration type named Boolean, declared in the visible part of package Standard. It
has the two enumeration literals False and True ordered with the relation False < True. Any descendant of
the predefined type Boolean is called a boolean type.

3.5.4 Integer Types

An integer_type_definition defines an integer type; it defines either a signed integer type, or a modular
integer type. The base range of a signed integer type includes at least the values of the specified range. A
modular type is an integer type with al arithmetic modulo a specified positive modulus; such a type
corresponds to an unsigned type with wrap-around semantics.
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Syntax
integer_type_definition ::= signed_integer_type_definition | modular_type_definition
signed_integer_type_definition ::= range static_simple_expression .. static_simple_expression
modular_type_definition ::= mod static_expression

Name Resolution Rules
Each simple_expression in a signed_integer_type_definition is expected to be of any integer type; they
need not be of the same type. The expression in a modular_type_definition is likewise expected to be of
any integer type.

Legality Rules

The simple_expressions of a signed_integer_type_definition shall be static, and their values shall be in
the range System.Min_Int .. System.Max_Int.

The expression of a modular_type_definition shall be static, and its value (the modulus) shall be positive,
and shall be no greater than System.Max_Binary Modulus if a power of 2, or no greater than
System.Max_Nonbinary_Modulusif not.

Satic Semantics

The set of values for asigned integer typeis the (infinite) set of mathematical integers, though only values
of the base range of the type are fully supported for run-time operations. The set of values for a modular
integer type are the values from 0 to one less than the modulus, inclusive.

A signed_integer_type_definition defines an integer type whose base range includes at least the values of
the simple_expressions and is symmetric about zero, excepting possibly an extra negative value. A
signed_integer_type_definition also defines a constrained first subtype of the type, with a range whose
bounds are given by the values of the simple_expressions, converted to the type being defined.

A modular_type_definition defines a modular type whose base range is from zero to one less than the
given modulus. A modular_type_definition also defines a constrained first subtype of the type with arange
that is the same as the base range of the type.

There is a predefined signed integer subtype named Integer, declared in the visible part of package
Standard. It is constrained to the base range of itstype.

Integer has two predefined subtypes, declared in the visible part of package Standard:

subtype Natural is Integer range O .. Integer'Last;

subtype Positive is Integer range 1 .. Integer'Last;
A type defined by an integer_type_definition is implicitly derived from root_integer, an anonymous
predefined (specific) integer type, whose base range is System.Min_Int .. System.Max_Int. However, the
base range of the new type is not inherited from root_integer, but is instead determined by the range or
modulus specified by the integer_type_definition. Integer literals are al of the type universal_integer, the
universal type (see 3.4.1) for the class rooted at root_integer, alowing their use with the operations of any

integer type.
The position number of an integer valueis equd to the value.

For every modular subtype S, the following attribute is defined:
SModulus  SModulus yields the modulus of the type of S, as avalue of the type universal_integer.

39  15June 2001 Integer Types 3.5.4 |

10

11

12

13

14

15

16

17



18

19

20

21

22

23

24

25

26

27

27.1/1

28

ISO/IEC 8652:1995(E) with COR.1:2000 — Ada Reference Manual

Dynamic Semantics
The elaboration of an integer_type_definition creates the integer type and itsfirst subtype.

For a modular type, if the result of the execution of a predefined operator (see 4.5) is outside the base
range of the type, the result is reduced modulo the modulus of the type to a value that is within the base
range of the type.

For a signed integer type, the exception Constraint_Error is raised by the execution of an operation that
cannot deliver the correct result because it is outside the base range of the type. For any integer type,
Constraint_Error israised by the operators"/", "rem", and "mod" if the right operand is zero.

Implementation Reguirements

In an implementation, the range of Integer shall include the range —2**15+1 .. +2**15-1.

If Long_Integer is predefined for an implementation, then its range shall include the range —2**31+1 ..
+2¥*31-1.

System.Max_Binary_Modulus shall be at |east 2**16.

Implementation Permissions

For the execution of a predefined operation of a signed integer type, the implementation need not raise
Constraint_Error if the result is outside the base range of the type, so long as the correct result is produced.

An implementation may provide additional predefined signed integer types, declared in the visible part of
Standard, whose first subtypes have names of the form Short_Integer, Long_Integer, Short_Short_Integer,
Long_Long_Integer, etc. Different predefined integer types are allowed to have the same base range.
However, the range of Integer should be no wider than that of Long_Integer. Similarly, the range of
Short_Integer (if provided) should be no wider than Integer. Corresponding recommendations apply to any
other predefined integer types. There need not be a named integer type corresponding to each distinct base
range supported by an implementation. The range of each first subtype should be the base range of its type.

An implementation may provide nonstandard integer types, descendants of root_integer that are declared
outside of the specification of package Standard, which need not have al the standard characteristics of a
type defined by an integer_type_definition. For example, a nonstandard integer type might have an
asymmetric base range or it might not be allowed as an array or loop index (a very long integer). Any type
descended from a nonstandard integer type is also nonstandard. An implementation may place arbitrary
restrictions on the use of such types; it isimplementation defined whether operators that are predefined for
‘‘any integer type'’ are defined for a particular nonstandard integer type. In any case, such types are not
permitted as explicit_generic_actual_parameters for formal scalar types — see 12.5.2.

For a one's complement machine, the high bound of the base range of a modular type whose modulus is
one less than a power of 2 may be equal to the modulus, rather than one less than the modulus. It is
implementation defined for which powers of 2, if any, this permission is exercised.

For a one's complement machine, implementations may support non-binary modulus values greater than
System.Max_Nonbinary_Modulus. It is implementation defined which specific values greater than
System.Max_Nonbinary_Modulus, if any, are supported.

Implementation Advice
An implementation should support Long_Integer in addition to Integer if the target machine supports 32-

bit (or longer) arithmetic. No other named integer subtypes are recommended for package Standard.
Instead, appropriate named integer subtypes should be provided in the library package Interfaces (see B.2).
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An implementation for a two's complement machine should support modular types with a binary modulus
up to System.Max_Int*2+2. An implementation should support a nonbinary modulus up to Integer'Last.
NOTES
25 Integer literals are of the anonymous predefined integer type universal_integer. Other integer types have no literals.

However, the overload resolution rules (see 8.6, ‘‘ The Context of Overload Resolution’”) alow expressions of the type
universal_integer whenever an integer type is expected.

26 The same arithmetic operators are predefined for all signed integer types defined by a signed_integer_type_definition
(see 4.5, ' Operators and Expression Evaluation’’). For modular types, these same operators are predefined, plus bit-wise
logical operators (and, or, xor, and not). In addition, for the unsigned types declared in the language-defined package
Interfaces (see B.2), functions are defined that provide bit-wise shifting and rotating.

27 Modular types match a generic_formal_parameter_declaration of the form "type T is mod <>;"; signed integer types
match "type T isrange <>;" (see 12.5.2).

Examples
Examples of integer types and subtypes:

type Page_Num is range 1 .. 2_000;
type Line_Size is range 1 .. Max_Line_Size;

subtype Smal | _Int is Integer range -10 .. 10;
subtype Colum_Ptr is Line_Size range 1 .. 10;
subtype Buffer_Size is Integer range 0 .. Max;

type Byte is mod 256; --anunsigned byte
type Hash_lIndex is nmod 97; --modulusisprime

3.5.5 Operations of Discrete Types

Satic Semantics
For every discrete subtype S, the following attributes are defined:

SPos S'Pos denotes a function with the following specification:
function S Pos(Arg : S' Base)
return universal_integer

This function returns the position number of the vaue of Arg, as a vaue of type
universal_integer.
Sva SVa denotes a function with the following specification:
function S Val (Arg : universal_integer)
return S Base
This function returns a value of the type of S whose position number equals the value of

Arg. For the evaluation of a call on SVal, if there is no value in the base range of its type
with the given position number, Constraint_Error is raised.

Implementation Advice

For the evaluation of a call on SPos for an enumeration subtype, if the value of the operand does not
correspond to the internal code for any enumeration literal of its type (perhaps due to an uninitialized
variable), then the implementation should raise Program_Error. This is particularly important for
enumeration types with noncontiguous internal codes specified by an
enumeration_representation_clause.

NOTES
28 Indexing and loop iteration use values of discrete types.

29 The predefined operations of a discrete type include the assignment operation, qualification, the membership tests,
and the relational operators; for a boolean type they include the short-circuit control forms and the logical operators; for
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an integer type they include type conversion to and from other numeric types, as well as the binary and unary adding
operators — and +, the multiplying operators, the unary operator abs, and the exponentiation operator. The assignment
operation is described in 5.2. The other predefined operations are described in Section 4.

30 Asfor al types, objects of adiscrete type have Size and Address attributes (see 13.3).

31 For asubtype of a discrete type, the result delivered by the attribute Va might not belong to the subtype; similarly,
the actual parameter of the attribute Pos need not belong to the subtype. The following relations are satisfied (in the
absence of an exception) by these attributes:

S Val (S Pos(X)) = X
S Pos(S Val (N)) = N
Examples
Examples of attributes of discrete subtypes:
-- For the types and subtypes declared in subclause 3.5.1 the following hold:

-- Color'First = Wite, Col or' Last = Bl ack
-- Rainbow First = Red, Rai nbow Last = Bl ue
-- Col or' Succ(Blue) = Rai nbow Succ(Bl ue) = Brown
-- Color'Pos(Blue) = Rainbow Pos(Blue) =4

-- Color'Val (0) = Rai nbow Val (0) = Wite

3.5.6 Real Types

Real types provide approximations to the real numbers, with relative bounds on errors for floating point
types, and with absolute bounds for fixed point types.

Syntax
real_type_definition ::=
floating_point_definition | fixed_point_definition
Static Semantics

A type defined by a real_type_definition is implicitly derived from root_real, an anonymous predefined
(specific) real type. Hence, al red types, whether floating point or fixed point, are in the derivation class
rooted at root_real.

Red literds are all of the type universal_real, the universa type (see 3.4.1) for the class rooted at
root_real, alowing their use with the operations of any real type. Certain multiplying operators have a
result type of universal_fixed (see 4.5.5), the universal type for the class of fixed point types, alowing the
result of the multiplication or division to be used where any specific fixed point type is expected.

Dynamic Semantics
The elaboration of areal_type_definition consists of the elaboration of the floating_point_definition or the
fixed_point_definition.

Implementation Requirements

An implementation shall perform the run-time evaluation of a use of a predefined operator of root_real
with an accuracy at least as great as that of any floating point type definable by afloating_point_definition.

Implementation Permissions
For the execution of a predefined operation of a rea type, the implementation need not raise

Constraint_Error if the result is outside the base range of the type, so long as the correct result is produced,
or the Machine_Overflows attribute of the typeisfalse (see G.2).
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An implementation may provide nonstandard real types, descendants of root_real that are declared
outside of the specification of package Standard, which need not have al the standard characteristics of a
type defined by areal_type_definition. For example, a nonstandard real type might have an asymmetric or
unsigned base range, or its predefined operations might wrap around or ‘‘saturate’’ rather than overflow
(modular or saturating arithmetic), or it might not conform to the accuracy model (see G.2). Any type
descended from a nonstandard real type is also nonstandard. An implementation may place arbitrary
restrictions on the use of such types; it isimplementation defined whether operators that are predefined for
‘‘any real type’ are defined for a particular nonstandard real type. In any case, such types are not
permitted as explicit_generic_actual_parameters for formal scalar types— see 12.5.2.

NOTES

32 As stated, real literals are of the anonymous predefined real type universal_real. Other real types have no literals.

However, the overload resolution rules (see 8.6) allow expressions of the type universal_real whenever areal type is
expected.

3.5.7 Floating Point Types

For floating point types, the error bound is specified as a relative precision by giving the required
minimum number of significant decimal digits.

Syntax
floating_point_definition ::=
digits static_expression [real_range_specification]
real_range_specification ::=
range static_simple_expression .. static_simple_expression

Name Resolution Rules

The requested decimal precision, which is the minimum number of significant decimal digits required for
the floating point type, is specified by the value of the expression given after the reserved word digits.
This expression is expected to be of any integer type.

Each simple_expression of areal_range_specification is expected to be of any real type; the types need
not be the same.

Legality Rules
The requested decimal precision shall be specified by a static expression whose value is positive and no
greater than System.Max_Base Digits. Each simple_expression of a real_range_specification shall also
be static. If the real_range_specification is omitted, the requested decimal precision shall be no greater
than System.Max_Digits.

A floating_point_definition is illegal if the implementation does not support a floating point type that
satisfies the requested decimal precision and range.

Satic Semantics
The set of values for afloating point typeis the (infinite) set of rational numbers. The machine numbers of
a floating point type are the values of the type that can be represented exactly in every unconstrained
variable of the type. The base range (see 3.5) of afloating point type is symmetric around zero, except that
it can include some extra negative values in some implementations.
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The base decimal precision of a floating point type is the number of decimal digits of precision
representable in objects of the type. The safe range of afloating point type is that part of its base range for
which the accuracy corresponding to the base decimal precision is preserved by al predefined operations.

A floating_point_definition defines a floating point type whose base decimal precision is no less than the
requested decimal precision. If a real_range_specification is given, the safe range of the floating point
type (and hence, also its base range) includes at least the values of the simple expressions given in the
real_range_specification. If areal_range_specification is not given, the safe (and base) range of the type
includes at least the values of the range —10.0**(4*D) .. +10.0**(4*D) where D is the requested decimal
precision. The safe range might include other values as well. The attributes Safe First and Safe_Last give
the actual bounds of the safe range.

A floating_point_definition also defines a first subtype of the type. If areal_range_specification is given,
then the subtype is constrained to a range whose bounds are given by a conversion of the values of the
simple_expressions of the real_range_specification to the type being defined. Otherwise, the subtype is
unconstrained.

There is a predefined, unconstrained, floating point subtype named Float, declared in the visible part of
package Standard.

Dynamic Semantics
The elaboration of afloating_point_definition creates the floating point type and its first subtype.

Implementation Requirements

In an implementation that supports floating point types with 6 or more digits of precision, the requested
decimal precision for Float shall be at least 6.

If Long_Float is predefined for an implementation, then its requested decimal precision shall be at least 11.

Implementation Permissions

An implementation is allowed to provide additional predefined floating point types, declared in the visible
part of Standard, whose (unconstrained) first subtypes have names of the form Short_Float, Long_Float,
Short_Short_Float, Long_Long_Float, etc. Different predefined floating point types are allowed to have
the same base decimal precision. However, the precision of Float should be no greater than that of
Long_Float. Similarly, the precision of Short Float (if provided) should be no greater than Float.
Corresponding recommendations apply to any other predefined floating point types. There need not be a
named floating point type corresponding to each distinct base decima precision supported by an
implementation.

Implementation Advice

An implementation should support Long_Float in addition to Float if the target machine supports 11 or
more digits of precision. No other named floating point subtypes are recommended for package Standard.
Instead, appropriate named floating point subtypes should be provided in the library package Interfaces
(seeB.2).

NOTES
33 If a floating point subtype is unconstrained, then assignments to variables of the subtype involve only
Overflow_Checks, never Range_Checks.
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Examples
Examples of floating point types and subtypes:
type Coefficient is digits 10 range -1.0 .. 1.0;

type Real is digits 8;
type Mass is digits 7 range 0.0 .. 1.0E35;

subtype Probability is Real range 0.0 .. 1.0; -- asubtype with a smaller range

3.5.8 Operations of Floating Point Types

Satic Semantics
The following attribute is defined for every floating point subtype S:
SDigits SDigits denotes the requested decimal precision for the subtype S. The value of this

attribute is of the type universal_integer. The requested decimal precision of the base

subtype of afloating point type T is defined to be the largest value of d for which

ceiling(d * log(10) / log(T'Machine_Radix)) + g <= T'Model_Mantissa

wheregis0if Machine_Radix is a positive power of 10 and 1 otherwise.
NOTES
34 The predefined operations of a floating point type include the assignment operation, qualification, the membership
tests, and explicit conversion to and from other numeric types. They also include the relational operators and the
following predefined arithmetic operators: the binary and unary adding operators — and +, certain multiplying operators,
the unary operator abs, and the exponentiation operator.

35 As for al types, objects of a floating point type have Size and Address attributes (see 13.3). Other attributes of
floating point types are defined in A.5.3.

3.5.9 Fixed Point Types

A fixed point type is either an ordinary fixed point type, or a decimal fixed point type. The error bound of
afixed point typeis specified as an absolute value, called the delta of the fixed point type.

Syntax

fixed_point_definition ::= ordinary_fixed_point_definition | decimal_fixed_point_definition
ordinary_fixed_point_definition ::=

delta static_expression real_range_specification
decimal_fixed_point_definition ::=

delta static_expression digits static_expression [real_range_specification]
digits_constraint ::=

digits static_expression [range_constraint]

Name Resolution Rules

For a type defined by a fixed_point_definition, the delta of the type is specified by the value of the
expression given after the reserved word delta; this expression is expected to be of any real type. For a
type defined by a decimal_fixed_point_definition (a decimal fixed point type), the number of significant
decimal digits for its first subtype (the digits of the first subtype) is specified by the expression given after
the reserved word digits; this expression is expected to be of any integer type.

Legality Rules
In a fixed_point_definition or digits_constraint, the expressions given after the reserved words delta and
digits shall be static; their values shall be positive.
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The set of values of afixed point type comprise the integral multiples of a number called the small of the
type. For a type defined by an ordinary_fixed_point_definition (an ordinary fixed point type), the small
may be specified by an attribute_definition_clause (see 13.3); if so specified, it shall be no greater than the
delta of the type. If not specified, the small of an ordinary fixed point type is an implementation-defined
power of two less than or equal to the delta.

For a decimal fixed point type, the small equas the delta; the delta shall be a power of 10. If a
real_range_specification is given, both bounds of the range shall be in the range (10**digits-1)*delta ..
+(10**digits-1)*delta.

A fixed_point_definition isillegal if the implementation does not support a fixed point type with the given
small and specified range or digits.

For a subtype_indication with a digits_constraint, the subtype_mark shall denote a decimal fixed point
subtype.

Satic Semantics

The base range (see 3.5) of a fixed point type is symmetric around zero, except possibly for an extra
negative value in some implementations.

An ordinary_fixed_point_definition defines an ordinary fixed point type whose base range includes at least
all multiples of small that are between the bounds specified in the real_range_specification. The base
range of the type does not necessarily include the specified bounds themselves. An ordinary_fixed_point_-
definition also defines a constrained first subtype of the type, with each bound of its range given by the
closer to zero of:

« the value of the conversion to the fixed point type of the corresponding expression of the
real_range_specification;

* the corresponding bound of the base range.

A decimal_fixed_point_definition defines a decimal fixed point type whose base range includes at |east the
range —(10**digits-1)*delta .. +(10**digits-1)*delta. A decimal_fixed_point_definition also defines a
constrained first subtype of the type. If areal_range_specification is given, the bounds of the first subtype
are given by a conversion of the values of the expressions of the real_range_specification. Otherwise, the
range of thefirst subtype is—(10**digits-1)*delta .. +(10**digits-1)*delta.

Dynamic Semantics
The elaboration of afixed_point_definition creates the fixed point type and its first subtype.

For a digits_constraint on a decima fixed point subtype with a given delta, if it does not have a
range_constraint, then it specifies an implicit range —-(10**D-1)*delta .. +(10**D-1)*delta, where D is
the value of the expression. A digits_constraint is compatible with a decimal fixed point subtype if the
value of the expression is no greater than the digits of the subtype, and if it specifies (explicitly or
implicitly) arange that is compatible with the subtype.

The elaboration of a digits_constraint consists of the elaboration of the range_constraint, if any. If a
range_constraint is given, a check is made that the bounds of the range are both in the range |(10**D—
1)*delta .. +(10**D-1)*delta, where D is the value of the (static) expression given after the reserved word
digits. If this check fails, Constraint_Error is raised.

Implementation Requirements

The implementation shall support at least 24 bits of precision (including the sign bit) for fixed point types.
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Implementation Permissions

Implementations are permitted to support only smalls that are a power of two. In particular, al decimal
fixed point type declarations can be disallowed. Note however that conformance with the Information
Systems Annex requires support for decimal smalls, and decimal fixed point type declarations with digits
up to at least 18.

NOTES

36 The base range of an ordinary fixed point type need not include the specified bounds themselves so that the range
specification can be given in a natural way, such as:

type Fraction is delta 2.0**(-15) range -1.0 .. 1.0;

With 2's complement hardware, such atype could have a signed 16-bit representation, using 1 bit for the sign and 15 bits
for fraction, resulting in a base range of —1.0 .. 1.0-2.0**(-15).

Examples
Examples of fixed point types and subtypes:
type Volt is delta 0.125 range 0.0 .. 255.0;

-- A pure fraction which requires all the available
-- spacein a word can be declared as the type Fraction:

type Fraction is delta SystemFine_Delta range -1.0 .. 1.0;
-- Fraction'Last = 1.0 - System.Fine_Delta

type Money is delta 0.01 digits 15; --decimal fixed point
subtype Salary is Mney digits 10;
-- Money'Last = 10.0**13 - 0.01, Salary'Last = 10.0**8 - 0.01

3.5.10 Operations of Fixed Point Types

Static Semantics
The following attributes are defined for every fixed point subtype S:
SSmall SSmall denotes the small of the type of S. The value of this attribute is of the type

universal_real. Small may be specified for nonderived ordinary fixed point types via an |
attribute_definition_clause (see 13.3); the expression of such a clause shall be static.

SDelta SDelta denotes the delta of the fixed point subtype S. The value of this attribute is of the
type universal_real.

SFore SFore yields the minimum number of characters needed before the decimal point for the
decimal representation of any value of the subtype S, assuming that the representation does
not include an exponent, but includes a one-character prefix that is either aminus sign or a
space. (This minimum number does not include superfluous zeros or underlines, and is at
least 2.) The value of this attribute is of the type universal_integer.

SAft SAft yields the number of decimal digits needed after the decimal point to accommodate
the delta of the subtype S, unless the delta of the subtype S is greater than 0.1, in which
case the attribute yields the value one. (SAft is the smallest positive integer N for which
(10**N)*SDdlta is greater than or equa to one.) The vaue of this attribute is of the type
universal_integer.

The following additional attributes are defined for every decimal fixed point subtype S:

SDigits SDigits denotes the digits of the decimal fixed point subtype S, which corresponds to the
number of decimal digits that are representable in objects of the subtype. The value of this
attribute is of the type universal_integer. Its value is determined as follows:

47 15 June 2001 Fixed Point Types 3.5.9 |

21

22

23

24

25

26
27

28

2/1



10

12
13

14

15

16

17

18

ISO/IEC 8652:1995(E) with COR.1:2000 — Ada Reference Manual

e For a first subtype or a subtype defined by a subtype_indication with a
digits_constraint, the digits is the value of the expression given after the reserved
word digits;

e For a subtype defined by a subtype_indication without a digits_constraint, the

digits of the subtype is the same as that of the subtype denoted by the
subtype_mark in the subtype_indication.

« Thedigits of abase subtypeis the largest integer D such that the range —(10**D—
1)*delta .. +(10**D-1)*delta isincluded in the base range of the type.

SScale S'Scale denotes the scale of the subtype S, defined as the value N such that SDelta =
10.0**(-N). The scale indicates the position of the point relative to the rightmost significant
digits of values of subtype S. The value of this attribute is of the type universal_integer.

SRound SRound denotes a function with the following specification:

function S Round(X : universal_real)
return S' Base

The function returns the value obtained by rounding X (away from O, if X is midway
between two values of the type of S).

NOTES

37 All subtypes of afixed point type will have the same value for the Delta attribute, in the absence of delta_constraints
(see J.3).

38 SScale is not always the same as SAft for a decimal subtype; for example, if SDelta = 1.0 then SAft is 1 while
SScaeisO.

39 The predefined operations of a fixed point type include the assignment operation, qualification, the membership
tests, and explicit conversion to and from other numeric types. They aso include the relational operators and the
following predefined arithmetic operators: the binary and unary adding operators — and +, multiplying operators, and the
unary operator abs.

40 Asfor al types, objects of afixed point type have Size and Address attributes (see 13.3). Other attributes of fixed
point types are defined in A.5.4.

3.6 Array Types

An array object is a composite object consisting of components which al have the same subtype. The
name for a component of an array uses one or more index values belonging to specified discrete types. The
value of an array object is acomposite value consisting of the values of the components.

Syntax

array_type_definition ::=
unconstrained_array_definition | constrained_array_definition

unconstrained_array_definition ::=
array(index_subtype_definition {, index_subtype_definition}) of component_definition

index_subtype_definition ::= subtype_mark range <>

constrained_array_definition ::=
array (discrete_subtype_definition {, discrete_subtype_definition}) of component_definition

discrete_subtype_definition ::= discrete_subtype_indication | range
component_definition ::= [aliased] subtype_indication
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Name Resolution Rules

For a discrete_subtype_definition that is a range, the range shall resolve to be of some specific discrete
type; which discrete type shall be determined without using any context other than the bounds of the range
itself (plus the preference for root_integer — see 8.6).

Legality Rules

Each index_subtype_definition or discrete_subtype_definition in an array_type_definition defines an
index subtype; its type (the index type) shall be discrete.

The subtype defined by the subtype_indication of a component_definition (the component subtype) shall
be a definite subtype.

Within the definition of a nonlimited composite type (or a limited composite type that later in its
immediate scope becomes nonlimited — see 7.3.1 and 7.5), if a component_definition contains the
reserved word aliased and the type of the component is discriminated, then the nomina subtype of the
component shall be constrained.

Satic Semantics

An array is characterized by the number of indices (the dimensionality of the array), the type and position
of each index, the lower and upper bounds for each index, and the subtype of the components. The order of
the indices is significant.

A one-dimensional array has a distinct component for each possible index value. A multidimensional array
has a distinct component for each possible sequence of index values that can be formed by selecting one
value for each index position (in the given order). The possible values for a given index are al the values
between the lower and upper bounds, inclusive; this range of valuesis called the index range. The bounds
of an array are the bounds of its index ranges. The length of a dimension of an array is the number of
values of the index range of the dimension (zero for a null range). The length of a one-dimensiona array is
the length of its only dimension.

An array_type_definition defines an array type and its first subtype. For each object of this array type, the
number of indices, the type and position of each index, and the subtype of the components are as in the
type definition; the values of the lower and upper bounds for each index belong to the corresponding index
subtype of its type, except for null arrays (see 3.6.1).

An unconstrained_array_definition defines an array type with an unconstrained first subtype. Each
index_subtype_definition defines the corresponding index subtype to be the subtype denoted by the
subtype_mark. The compound delimiter <> (called a box) of an index_subtype_definition stands for an
undefined range (different objects of the type need not have the same bounds).

A constrained_array_definition defines an array type with a constrained first subtype. Each discrete_-
subtype_definition defines the corresponding index subtype, as well as the corresponding index range for
the constrained first subtype. The constraint of the first subtype consists of the bounds of the index ranges.

The discrete subtype defined by a discrete_subtype_definition is either that defined by the subtype_-
indication, or a subtype determined by the range as follows:

 If the type of the range resolves to root_integer, then the discrete_subtype_definition defines a
subtype of the predefined type Integer with bounds given by a conversion to Integer of the
bounds of the range;

» Otherwise, the discrete_subtype_definition defines a subtype of the type of the range, with the
bounds given by the range.
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The component_definition of an array_type_definition defines the nominal subtype of the components. If
the reserved word aliased appears in the component_definition, then each component of the array is
diased (see 3.10).

Dynamic Semantics
The elaboration of an array_type_definition creates the array type and its first subtype, and consists of the
elaboration of any discrete_subtype_definitions and the component_definition.

The elaboration of a discrete_subtype_definition that does not contain any per-object expressions creates
the discrete subtype, and consists of the elaboration of the subtype_indication or the evaluation of the
range. The elaboration of a discrete_subtype_definition that contains one or more per-object expressions
is defined in 3.8. The elaboration of a component_definition in an array_type_definition consists of the
elaboration of the subtype_indication. The elaboration of any discrete_subtype_definitions and the
elaboration of the component_definition are performed in an arbitrary order.

NOTES
41 All components of an array have the same subtype. In particular, for an array of components that are one-dimensional
arrays, this means that all components have the same bounds and hence the same length.

42 Each elaboration of an array_type_definition creates a distinct array type. A consequence of this is that each object
whose object_declaration contains an array_type_definition is of its own unique type.
Examples
Examples of type declarations with unconstrained array definitions:

type Vector is array(lnteger range <>) of Real;

type Matrix is array(lnteger range <> Integer range <>) of Real;
type Bit_Vector is array(lnteger range <>) of Bool ean;

type Ronman is array(Positive range <>) of Roman_Digit; --see35.2

Examples of type declarations with constrained array definitions:

type Table is array(l .. 10) of Integer;
type Schedule is array(Day) of Bool ean;
type Line is array(1l .. Max_Line_Size) of Character;

Examples of object declarations with array type definitions:
Gid: array(1 .. 80, 1 .. 100) of Bool ean;

Mx : array(Color range Red .. Geen) of Bool ean;

Page : array(Positive range <>) of Line := -- anarrayofarrays
(1] 50 =>Line' (1] Line'Last =>"'+", others =>"'-"), --see4.33
2 49 => Line' (1 | Line'Last => '|', others =>"' "));

-- Page s congtrained by itsinitial value to (1..50)

3.6.1 Index Constraints and Discrete Ranges

An index_constraint determines the range of possible values for every index of an array subtype, and
thereby the corresponding array bounds.

Syntax
index_constraint ::= (discrete_range {, discrete_range})

discrete_range ::= discrete_subtype_indication | range
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Name Resolution Rules

The type of adiscrete_range is the type of the subtype defined by the subtype_indication, or the type of
the range. For an index_constraint, each discrete_range shal resolve to be of the type of the
corresponding index.

Legality Rules
An index_constraint shall appear only in a subtype_indication whose subtype_mark denotes either an
unconstrained array subtype, or an unconstrained access subtype whose designated subtype is an
unconstrained array subtype; in either case, the index_constraint shall provide a discrete_range for each
index of the array type.

Satic Semantics

A discrete_range defines a range whose bounds are given by the range, or by the range of the subtype
defined by the subtype_indication.

Dynamic Semantics
An index_constraint is compatible with an unconstrained array subtype if and only if the index range
defined by each discrete_range is compatible (see 3.5) with the corresponding index subtype. If any of the
discrete_ranges defines a null range, any array thus constrained is a null array, having no components. An
array value satisfies an index_constraint if at each index position the array value and the index_constraint
have the same index bounds.

The elaboration of an index_constraint consists of the evaluation of the discrete_range(s), in an arbitrary
order. The evaluation of a discrete_range consists of the elaboration of the subtype_indication or the
evaluation of therange.

NOTES
43 The elaboration of a subtype_indication consisting of a subtype_mark followed by an index_constraint checks the
compatibility of the index_constraint with the subtype_mark (see 3.2.2).

44 Even if an array value does not satisfy the index constraint of an array subtype, Constraint_Error is not raised on
conversion to the array subtype, so long as the length of each dimension of the array value and the array subtype match.
See 4.6.

Examples

Examples of array declarations including an index constraint:

Boar d : Matrix(1 .. 8, 1.. 8); - se36
Rectangle : Matrix(1 .. 20, 1 .. 30);

I nverse coMatrix(1l .. N, 1 .. N); - Nneednotbestatic
Filter : Bit_Vector(0 .. 31);

Example of array declaration with a constrained array subtype:
My/_Schedul e : Schedul e; -- all arrays of type Schedule have the same bounds

Example of record type with a component that is an array:

type Var_Line(Length : Natural) is
record
Image @ String(l .. Length);
end record;

Nul I _Line : Var_Line(0); -- Null_Linelmageisanull array
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3.6.2 Operations of Array Types

Legality Rules
The argument N used in the attribute_designators for the N-th dimension of an array shal be a static
expression of some integer type. The value of N shall be positive (nonzero) and no greater than the
dimensionality of the array.

Satic Semantics

The following attributes are defined for a prefix A that is of an array type (after any implicit dereference),
or denotes a constrained array subtype:

A'First A'First denotes the lower bound of the first index range; its type is the corresponding index
type.

A'First(N) A'First(N) denotes the lower bound of the N-th index range; its type is the corresponding
index type.

A'Last A'Last denotes the upper bound of the first index range; its type is the corresponding index
type.

A'Last(N) A'Last(N) denotes the upper bound of the N-th index range; its type is the corresponding
index type.

A'Range A'Range is equivalent to the range A'First .. A'Last, except that the prefix A is only
evauated once.

A'Range(N) A'Range(N) is equivalent to the range A'First(N) .. A'Last(N), except that the prefix A is
only evaluated once.

A'Length A'Length denotes the number of values of the first index range (zero for a null range); its
typeisuniversal_integer.

A'Length(N) A'Length(N) denotes the number of values of the N-th index range (zero for a null range);
itstypeisuniversal_integer.

Implementation Advice

An implementation should normally represent multidimensiona arrays in row-major order, consistent with
the notation used for multidimensional array aggregates (see 4.3.3). However, if a pragma
Convention(Fortran, ...) applies to a multidimensional array type, then column-major order should be used
instead (see B.5, *‘Interfacing with Fortran™”).

NOTES

45 The attribute_references A'First and A'First(l) denote the same value. A similar relation exists for the
attribute_references A'Last, A'Range, and A'Length. The following relation is satisfied (except for a null array) by the
above attributes if the index type is an integer type:

A Length(N) = A Last(N - AFirst(N + 1
46 An array typeislimited if its component typeislimited (see 7.5).

47 The predefined operations of an array type include the membership tests, qualification, and explicit conversion. If the
array type is not limited, they also include assignment and the predefined equality operators. For a one-dimensional array
type, they include the predefined concatenation operators (if nonlimited) and, if the component type is discrete, the
predefined relational operators; if the component type is boolean, the predefined logical operators are also included.

48 A component of an array can be named with an indexed_component. A value of an array type can be specified with
an array_aggregate, unless the array typeis limited. For a one-dimensional array type, a slice of the array can be named;
aso, string literals are defined if the component type is a character type.
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Examples
Examples (using arrays declared in the examples of subclause 3.6.1):

-- Filter' First 0 Filter'Last
-- Rectangl e' Last (1) 20 Rect angl e' Last (2)

31 Filter'Length = 32
30

3.6.3 String Types

Satic Semantics
A one-dimensional array type whose component type is a character typeis called a string type.

There are two predefined string types, String and Wide_String, each indexed by values of the predefined
subtype Positive; these are declared in the visible part of package Standard:
subtype Positive is Integer range 1 .. Integer'Last;

type String is array(Positive range <>) of Character;
type Wde_String is array(Positive range <>) of Wde_Character;

NOTES

49 String literals (see 2.6 and 4.2) are defined for all string types. The concatenation operator & is predefined for string
types, as for al nonlimited one-dimensional array types. The ordering operators <, <=, >, and >= are predefined for
string types, as for al one-dimensional discrete array types; these ordering operators correspond to lexicographic order
(see 4.5.2).

Examples

Examples of string objects:

Stars : String(1l .. 120) := (1 .. 120 => "*' );
Question : constant String = "How many characters?";
-- Question'First = 1, Question'Last = 20
-- Question'Length = 20 (the number of characters)
Ask_Twice : String := Question & Question; -- constrained to (1..40)
Ninety_Six : constant Roman 1= "XCVI"; --see352and3.6

3.7 Discriminants

A composite type (other than an array type) can have discriminants, which parameterize the type. A
known_discriminant_part specifies the discriminants of a composite type. A discriminant of an object isa
component of the object, and is either of a discrete type or an access type. An unknown_discriminant_part
in the declaration of apartia view of atype specifies that the discriminants of the type are unknown for the
given view; al subtypes of such a partia view are indefinite subtypes.

Syntax
discriminant_part ::= unknown_discriminant_part | known_discriminant_part
unknown_discriminant_part ::= (<>)

known_discriminant_part ::=

(discriminant_specification {; discriminant_specification})
discriminant_specification ::=

defining_identifier_list : subtype_mark [:= default_expression]
| defining_identifier_list : access_definition [:= default_expression]

default_expression ::= expression
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Name Resolution Rules

The expected type for the default_expression of a discriminant_specification is that of the corresponding
discriminant.

Legality Rules
A discriminant_part is only permitted in a declaration for a composite type that is not an array type (this

includes generic formal types). A type declared with a known_discriminant_part is called a discriminated
type, asis atype that inherits (known) discriminants.

The subtype of a discriminant may be defined by a subtype_mark, in which case the subtype_mark shall
denote a discrete or access subtype, or it may be defined by an access_definition (in which case the
subtype_mark of the access_definition may denote any kind of subtype). A discriminant that is defined by
an access_definition is called an access discriminant and is of an anonymous genera access-to-variable
type whose designated subtype is denoted by the subtype_mark of the access_definition.

A discriminant_specification for an access discriminant shall appear only in the declaration for a task or
protected type, or for atype with the reserved word limited in its (full) definition or in that of one of its
ancestors. In addition to the places where Legality Rules normally apply (see 12.3), thisrule applies aso in
the private part of an instance of a generic unit.

Default_expressions shall be provided either for all or for none of the discriminants of a known_-
discriminant_part. No default_expressions are permitted in aknown_discriminant_part in a declaration of
atagged type or ageneric formal type.

For a type defined by a derived_type_definition, if a known_discriminant_part is provided in its
declaration, then:

e The parent subtype shall be constrained;

« If the parent type is not a tagged type, then each discriminant of the derived type shall be used in
the constraint defining the parent subtype;

e If a discriminant is used in the constraint defining the parent subtype, the subtype of the
discriminant shall be statically compatible (see 4.9.1) with the subtype of the corresponding
parent discriminant.

The type of the default_expression, if any, for an access discriminant shall be convertible to the
anonymous access type of the discriminant (see 4.6).

Satic Semantics

A discriminant_specification declares a discriminant; the subtype_mark denotes its subtype unlessit is an
access discriminant, in which case the discriminant's subtype is the anonymous access-to-variable subtype
defined by the access_definition.

For a type defined by a derived_type_definition, each discriminant of the parent type is either inherited,
constrained to equal some new discriminant of the derived type, or constrained to the vaue of an
expression. When inherited or constrained to equal some new discriminant, the parent discriminant and the
discriminant of the derived type are said to correspond. Two discriminants also correspond if thereis some
common discriminant to which they both correspond. A discriminant corresponds to itself as well. If a
discriminant of a parent type is constrained to a specific value by a derived_type_definition, then that
discriminant is said to be specified by that derived_type_definition.
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A constraint that appears within the definition of a discriminated type depends on a discriminant of the
type if it names the discriminant as a bound or discriminant value. A component_definition depends on a
discriminant if its constraint depends on the discriminant, or on a discriminant that corresponds to it.

A component depends on a discriminant if:
* Itscomponent_definition depends on the discriminant; or
» Itisdeclared in avariant_part that is governed by the discriminant; or

» It is a component inherited as part of a derived_type_definition, and the constraint of the
parent_subtype_indication depends on the discriminant; or

* Itisasubcomponent of a component that depends on the discriminant.

Each value of a discriminated type includes a value for each component of the type that does not depend
on a discriminant; this includes the discriminants themselves. The values of discriminants determine which
other component values are present in the value of the discriminated type.

A type declared with a known_discriminant_part is said to have known discriminants; its first subtype is
unconstrained. A type declared with an unknown_discriminant_part is sad to have unknown
discriminants. A type declared without a discriminant_part has no discriminants, unless it is a derived
type; if derived, such atype has the same sort of discriminants (known, unknown, or none) as its parent (or
ancestor) type. A tagged class-wide type also has unknown discriminants. Any subtype of a type with
unknown discriminants is an unconstrained and indefinite subtype (see 3.2 and 3.3).

Dynamic Semantics

An access_definition is elaborated when the value of a corresponding access discriminant is defined,
either by evaluation of its default_expression or by elaboration of a discriminant_constraint. The
elaboration of an access_definition creates the anonymous access type. When the expression defining the
access discriminant is evaluated, it is converted to this anonymous access type (see 4.6).

NOTES

50 If a discriminated type has default_expressions for its discriminants, then unconstrained variables of the type are
permitted, and the values of the discriminants can be changed by an assignment to such a variable. If defaults are not
provided for the discriminants, then al variables of the type are constrained, either by explicit constraint or by their
initia value; the values of the discriminants of such a variable cannot be changed after initialization.

51 The default_expression for a discriminant of a type is evaluated when an object of an unconstrained subtype of the
typeis created.

52 Assignment to adiscriminant of an object (after itsinitialization) is not alowed, since the name of adiscriminant isa
constant; neither assignment_statements nor assignments inherent in passing as an in out or out parameter are allowed.
Note however that the value of a discriminant can be changed by assigning to the enclosing object, presuming it is an
unconstrained variable.

53 A discriminant that is of a named access type is not called an access discriminant; that term is used only for
discriminants defined by an access_definition.

Examples
Examples of discriminated types:
type Buffer(Size : Buffer_Size := 100) is --see354
record
Pos : Buffer_Size := 0;
Value : String(1 .. Size);
end record;
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type Matrix_Rec(Rows, Columms : Integer) is
record
Mat : Matrix(l .. Rows, 1 .. Colums); --see 3.6
end record;

type Square(Side : Integer) is new
Matri x_Rec(Rows => Side, Columms => Side);

type Doubl e_Square(Nunber : Integer) is
record
Left : Square(Nunber);
Ri ght : Square(Nunber);

end record;
type Item(Nunber : Positive) is
record
Content : Integer;
-- no component depends on the discriminant
end record;

3.7.1 Discriminant Constraints

A discriminant_constraint specifies the values of the discriminants for a given discriminated type.

Syntax
discriminant_constraint ::=
(discriminant_association {, discriminant_association})
discriminant_association ::=
[discriminant_selector_name {| discriminant_selector_name} =>] expression
A discriminant_association is said to be named if it has one or more discriminant_selector_names;

it is otherwise said to be positional. In a discriminant_constraint, any positional associations shall
precede any named associations.

Name Resolution Rules

Each selector_name of a named discriminant_association shall resolve to denote a discriminant of the
subtype being constrained; the discriminants so named are the associated discriminants of the named
association. For a positional association, the associated discriminant is the one whose discriminant_-
specification occurred in the corresponding position in the known_discriminant_part that defined the
discriminants of the subtype being constrained.

The expected type for the expression in a discriminant_association is that of the associated
discriminant(s).

Legality Rules
A discriminant_constraint is only allowed in a subtype_indication whose subtype_mark denotes either an
unconstrained discriminated subtype, or an unconstrained access subtype whose designated subtype is an
unconstrained discriminated subtype. However, in the case of a genera access subtype, a discriminant_-
constraint is illega if there is a place within the immediate scope of the designated subtype where the
designated subtype's view is constrained.

A named discriminant_association with more than one selector_name is alowed only if the named
discriminants are al of the same type. A discriminant_constraint shall provide exactly one value for each
discriminant of the subtype being constrained.

The expression associated with an access discriminant shall be of a type convertible to the anonymous
access type.
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Dynamic Semantics
A discriminant_constraint is compatible with an unconstrained discriminated subtype if each discriminant
value belongs to the subtype of the corresponding discriminant.

A composite value satisfies a discriminant constraint if and only if each discriminant of the composite
value has the value imposed by the discriminant constraint.

For the elaboration of a discriminant_constraint, the expressions in the discriminant_associations are
evaluated in an arbitrary order and converted to the type of the associated discriminant (which might raise
Constraint_Error — see 4.6); the expression of a named association is evaluated (and converted) once for
each associated discriminant. The result of each evaluation and conversion is the value imposed by the
constraint for the associated discriminant.

NOTES
54 The rules of the language ensure that a discriminant of an object always has a value, either from explicit or implicit
initiaization.
Examples
Examples (using types declared above in clause 3.7):
Large : Buffer(200);

- constrained, always 200 characters

- (explicit discriminant value)

Message : Buffer; -- unconstrained, initially 100 characters
-- (default discriminant value)

- constrained, always 5 by 5

- illegal, a Square has to be constrained

Basi s : Square(5);
Illegal : Square;

3.7.2 Operations of Discriminated Types

If a discriminated type has default_expressions for its discriminants, then unconstrained variables of the
type are permitted, and the discriminants of such a variable can be changed by assignment to the variable.
For a formal parameter of such a type, an attribute is provided to determine whether the corresponding
actual parameter is constrained or unconstrained.

Satic Semantics

For a prefix A that is of a discriminated type (after any implicit dereference), the following attribute is
defined:

A'Constrained
Yields the value True if A denotes a constant, a value, or a constrained variable, and False
otherwise.

Erroneous Execution
The execution of a construct is erroneous if the construct has a constituent that is a name denocting a
subcomponent that depends on discriminants, and the value of any of these discriminants is changed by
this execution between evaluating the name and the last use (within this execution) of the subcomponent
denoted by the name.

3.8 Record Types

A record object is a composite object consisting of named components. The value of a record object is a
composite value consisting of the values of the components.
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Syntax
record_type_definition ::= [[abstract] tagged] [limited] record_definition
record_definition ::=

record
component_list
end record
| null record
component_list ::=
component_item { component_item}
| {component_item} variant_part
| null;

component_item ::= component_declaration | aspect_clause

component_declaration ::=
defining_identifier_list : component_definition [:= default_expression];

Name Resolution Rules

The expected type for the default_expression, if any, in a component_declaration is the type of the
component.

Legality Rules
A default_expression is not permitted if the component is of alimited type.

Each component_declaration declares a component of the record type. Besides components declared by
component_declarations, the components of a record type include any components declared by
discriminant_specifications of the record type declaration. The identifiers of al components of a record
type shall be distinct.

Within a type_declaration, a name that denotes a component, protected subprogram, or entry of the type
isalowed only in the following cases:

e A name that denotes any component, protected subprogram, or entry is alowed within a
representation item that occurs within the declaration of the composite type.

* A name that denotes a noninherited discriminant is allowed within the declaration of the type,
but not within the discriminant_part. If the discriminant is used to define the constraint of a
component, the bounds of an entry family, or the constraint of the parent subtype in a
derived_type_definition then its name shall appear aone as a direct_name (not as part of a
larger expression or expanded name). A discriminant shall not be used to define the constraint of
ascalar component.

If the name of the current instance of atype (see 8.6) is used to define the constraint of a component, then
it shall appear as a direct_name that is the prefix of an attribute_reference whose result is of an access
type, and the attribute_reference shall appear alone.

Satic Semantics

The component_definition of a component_declaration defines the (nominal) subtype of the component.
If the reserved word aliased appears in the component_definition, then the component is aliased (see
3.10).

If the component_list of arecord type is defined by the reserved word null and there are no discriminants,
then the record type has no components and all records of the type are null records. A record_definition of
null record is equivalent to record null; end record.
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Dynamic Semantics
The elaboration of arecord_type_definition creates the record type and its first subtype, and consists of the

elaboration of the record_definition. The elaboration of a record_definition consists of the elaboration of
its component_list, if any.

The elaboration of acomponent_list consists of the elaboration of the component_items and variant_part,
if any, in the order in which they appear. The elaboration of a component_declaration consists of the
elaboration of the component_definition.

Within the definition of a composite type, if a component_definition or discrete_subtype_definition (see
9.5.2) includes a name that denotes a discriminant of the type, or that is an attribute_reference whose
prefix denotes the current instance of the type, the expression containing the name is called a per-object
expression, and the constraint or range being defined is called a per-object constraint. For the elaboration
of a component_definition of a component_declaration or the discrete_subtype_definition of an entry_-
declaration for an entry family (see 9.5.2), if the constraint or range of the subtype_indication or
discrete_subtype_definition is not a per-object constraint, then the subtype_indication or discrete_-
subtype_definition is elaborated. On the other hand, if the constraint or range is a per-object constraint,
then the elaboration consists of the evaluation of any included expression that is not part of a per-object
expression. Each such expression is evaluated once unless it is part of a named association in a
discriminant constraint, in which caseit is evaluated once for each associated discriminant.

When a per-object constraint is elaborated (as part of creating an object), each per-object expression of the
congtraint is evaluated. For other expressions, the values determined during the elaboration of the
component_definition or entry_declaration are used. Any checks associated with the enclosing
subtype_indication or discrete_subtype_definition are performed, including the subtype compatibility
check (see 3.2.2), and the associated subtypeis created.

NOTES
55 A component_declaration with several identifiers is equivalent to a sequence of single component_declarations, as
explained in 3.3.1.

56 The default_expression of a record component is only evaluated upon the creation of a default-initialized object of
the record type (presuming the object has the component, if it isin avariant_part — see 3.3.1).

57 The subtype defined by a component_definition (see 3.6) has to be a definite subtype.
58 If arecord type does not have a variant_part, then the same components are present in all values of the type.

59 A record type is limited if it has the reserved word limited in its definition, or if any of its components are limited
(see 7.5).

60 The predefined operations of a record type include membership tests, quaification, and explicit conversion. If the
record type is nonlimited, they aso include assignment and the predefined equality operators.

61 A component of a record can be named with a selected_component. A value of a record can be specified with a
record_aggregate, unless the record typeis limited.

Examples
Examples of record type declarations:
type Date is
record
Day : Integer range 1 .. 31;
Month : Mont h_Nane;
Year : Integer range O .. 4000,

end record;
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type Conplex is

record
Re : Real := 0.0;
Im: Real := 0.0;
end record;

Examples of record variables:

Tonmorrow, Yesterday : Date;
A, B, C: Conplex;

-- both components of A, B, and C are implicitly initialized to zero

3.8.1 Variant Parts and Discrete Choices

A record type with a variant_part specifies alternative lists of components. Each variant defines the
components for the value or values of the discriminant covered by its discrete_choice_list.

Syntax
variant_part ::=
case discriminant_direct_name is
variant
{variant}
end casg;

variant ::=
when discrete_choice_list =>
component_list

discrete_choice_list ::= discrete_choice {| discrete_choice}
discrete_choice ::= expression | discrete_range | others

Name Resolution Rules

The discriminant_direct_name shall resolve to denote a discriminant (called the discriminant of the
variant_part) specified in the known_discriminant_part of the full_type_declaration that contains the
variant_part. The expected type for each discrete_choice in a variant is the type of the discriminant of the
variant_part.

Legality Rules
The discriminant of the variant_part shall be of a discrete type.

The expressions and discrete_ranges given as discrete_choices in a variant_part shall be static. The
discrete_choice others shall appear alone in a discrete_choice_list, and such a discrete_choice_list, if it
appears, shall be the last one in the enclosing construct.

A discrete_choice is defined to cover a value in the following cases:

« A discrete_choice that is an expression covers a vaue if the value equals the value of the
expression converted to the expected type.

« A discrete_choice that is a discrete_range covers al values (possibly none) that belong to the
range.

* The discrete_choice others covers al values of its expected type that are not covered by
previous discrete_choice_lists of the same construct.

A discrete_choice_list coversavalueif one of itsdiscrete_choices covers the value.
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The possible values of the discriminant of avariant_part shall be covered as follows:

» If the discriminant is of a static constrained scalar subtype, then each non-others discrete_-
choice shall cover only values in that subtype, and each value of that subtype shall be covered by
some discrete_choice (either explicitly or by others);

» If the type of the discriminant is a descendant of a generic forma scalar type then the
variant_part shall have an other s discrete_choice;

» Otherwise, each value of the base range of the type of the discriminant shall be covered (either
explicitly or by others).

Two distinct discrete_choices of avariant_part shall not cover the same value.

Static Semantics
If the component_list of avariant is specified by null, the variant has no components.

The discriminant of a variant_part is said to govern the variant_part and its variants. In addition, the
discriminant of a derived type governs a variant_part and its variants if it corresponds (see 3.7) to the
discriminant of the variant_part.

Dynamic Semantics
A record value contains the values of the components of a particular variant only if the value of the
discriminant governing the variant is covered by the discrete_choice_list of the variant. This rule applies
in turn to any further variant that is, itself, included in the component_list of the given variant.

The elaboration of a variant_part consists of the elaboration of the component_list of each variant in the
order in which they appear.

Examples
Example of record type with a variant part:

type Device is (Printer, Disk, Drun);
type State is (Open, O osed);

type Peripheral (Unit : Device := Disk) is
record
Status : State;
case Unit is
when Printer =>

Line_Count : Integer range 1 .. Page_Size;
when ot hers =>

Cyl i nder . Cylinder_I ndex;

Track : Track_Nunber;
end case;

end record,;

Examples of record subtypes:
subtype Drum.Unit is Peripheral (Drum;
subtype Disk_Unit is Peripheral (Disk);
Examples of constrained record variables:

Witer . Peripheral (Unit => Printer);
Archive : Disk _Unit;
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3.9 Tagged Types and Type Extensions

Tagged types and type extensions support object-oriented programming, based on inheritance with
extension and run-time polymorphism via dispatching operations.

Satic Semantics

A record type or private type that has the reserved word tagged in its declaration is called a tagged type.
When deriving from a tagged type, additional components may be defined. As for any derived type,
additional primitive subprograms may be defined, and inherited primitive subprograms may be overridden.
The derived type is called an extension of the ancestor type, or simply a type extension. Every type
extension is also atagged type, and is either arecord extension or a private extension of some other tagged
type. A record extension is defined by a derived_type_definition with a record_extension_part. A private
extension, which is a partial view of a record extension, can be declared in the visible part of a package
(see 7.3) or in ageneric forma part (see 12.5.1).

An object of atagged type has an associated (run-time) tag that identifies the specific tagged type used to
create the object originally. The tag of an operand of a class-wide tagged type T'Class controls which
subprogram body is to be executed when a primitive subprogram of type T is applied to the operand (see
3.9.2); using atag to control which body to execute is called dispatching.

The tag of a specific tagged type identifies the full_type_declaration of the type. If a declaration for a
tagged type occurs within a generic_package_declaration, then the corresponding type declarations in
distinct instances of the generic package are associated with distinct tags. For a tagged type that is local to
a generic package body, the language does not specify whether repeated instantiations of the generic body
result in distinct tags.

The following language-defined library package exists:

package Ada.Tags is
type Tag is private;

function Expanded_Nane(T : Tag) return String;
function External _Tag(T : Tag) return String;

function Internal _Tag(External : String) return Tag;
Tag_Error : exception;
private

... -- not specified by the language
end Ada. Tags;
The function Expanded_Name returns the full expanded name of the first subtype of the specific type
identified by the tag, in upper case, starting with aroot library unit. The result is implementation defined if
the typeis declared within an unnamed block_statement.

The function External_Tag returns a string to be used in an external representation for the given tag. The
call External_Tag(STag) is equivalent to the attribute_reference SExternal_Tag (see 13.3).

The function Internal_Tag returns the tag that corresponds to the given externa tag, or raises Tag_Error if
the given string is not the external tag for any specific type of the partition.

For every subtype S of atagged type T (specific or class-wide), the following attributes are defined:

SClass SClass denotes a subtype of the class-wide type (caled T'Class in this International
Standard) for the class rooted at T (or if S already denotes a class-wide subtype, then
SClassisthesameas S).
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SClass is unconstrained. However, if S is constrained, then the values of SClass are only
those that when converted to the type T belong to S.

STag STag denotes the tag of the type T (or if T is class-wide, the tag of the root type of the

corresponding class). The value of this attribute is of type Tag.

Given aprefix X that is of a class-wide tagged type (after any implicit dereference), the following attribute
is defined:

X'Tag X'Tag denotes the tag of X. The value of this attributeis of type Tag.

Dynamic Semantics

The tag associated with an object of atagged type is determined as follows:
» The tag of a stand-alone object, a component, or an aggregate of a specific tagged type T

identifies T.

The tag of an object created by an allocator for an access type with a specific designated tagged
type T, identifies T.

The tag of an object of a class-wide tagged type isthat of itsinitialization expression.

The tag of the result returned by a function whose result type is a specific tagged type T
identifies T.

The tag of the result returned by a function with a class-wide result type is that of the return
expression.

The tag is preserved by type conversion and by parameter passing. The tag of a value is the tag of the
associated object (see 6.2).

Implementation Permissions

The implementation of the functionsin Ada.Tags may raise Tag_Error if no specific type corresponding to
the tag passed as a parameter exists in the partition at the time the function is called.

NOTES
62 A type declared with the reserved word tagged should normally be declared in a package_specification, so that new
primitive subprograms can be declared for it.

63 Once an object has been created, its tag never changes.

64 Class-wide types are defined to have unknown discriminants (see 3.7). This means that objects of a class-wide type
have to be explicitly initialized (whether created by an object_declaration or an allocator), and that aggregates have to be
explicitly qualified with a specific type when their expected type is class-wide.

65 If S denotes an untagged private type whose full type is tagged, then SClass is aso alowed before the full type
definition, but only in the private part of the package in which the type is declared (see 7.3.1). Similarly, the Class
attribute is defined for incomplete types whose full type is tagged, but only within the library unit in which the
incomplete type is declared (see 3.10.1).

Examples

Examples of tagged record types:

63

type Point is tagged
record
X, Y: Real := 0.0;
end record,;

type Expression is tagged null record;
-- Components will be added by each extension
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3.9.1 Type Extensions

Every type extension is atagged type, and is either arecord extension or a private extension of some other
tagged type.

Syntax
record_extension_part ::= with record_definition

Legality Rules
The parent type of arecord extension shall not be a class-wide type. If the parent type is nonlimited, then
each of the components of the record_extension_part shall be nonlimited. The accessibility level (see
3.10.2) of arecord extension shall not be statically deeper than that of its parent type. In addition to the
places where Legality Rules normally apply (see 12.3), these rules apply aso in the private part of an
instance of a generic unit.

A type extension shall not be declared in a generic body if the parent type is declared outside that body.

Dynamic Semantics
The elaboration of arecord_extension_part consists of the elaboration of the record_definition.

NOTES
66 The term ‘‘type extension’’ refers to a type as a whole. The term ‘“extension part’’ refers to the piece of text that
defines the additional components (if any) the type extension has relative to its specified ancestor type.

67 The accessibility rules imply that a tagged type declared in alibrary package_specification can be extended only at
library level or as a generic formal. When the extension is declared immediately within a package_body, primitive
subprograms are inherited and are overridable, but new primitive subprograms cannot be added.

68 A name that denotes a component (including a discriminant) of the parent type is not allowed within the
record_extension_part. Similarly, a name that denotes a component defined within the record_extension_part is not
allowed within the record_extension_part. It is permissible to use a name that denotes a discriminant of the record
extension, providing there is a new known_discriminant_part in the enclosing type declaration. (The full ruleis given in
3.8)

69 Each visible component of a record extension has to have a unique name, whether the component is (visibly)
inherited from the parent type or declared in the record_extension_part (see 8.3).

Examples
Examples of record extensions (of types defined abovein 3.9):

type Painted_Point is new Point with
record
Paint : Color := Wite;
end record;
-- Components X and Y are inherited

Oigin : constant Painted_Point := (X | Y => 0.0, Paint => Bl ack);
type Literal is new Expression with
record -- aleaf in an Expression tree
Val ue : Real;

end record;
type Expr_Ptr is access all Expression'd ass;

--see3.10
type Binary_Operation is new Expression with
record -- aninternal node in an Expression tree

Left, Right : Expr_Ptr;
end record;

| 3.9.1 TypeExtensions 15June2001 64



ISO/IEC 8652:1995(E) with COR.1:2000 — Ada Reference Manual

type Addition is new Binary_Operation with null record;
type Subtraction is new Binary_Operation with null record;
-- No additional components needed for these extensions

Tree : Expr_Ptr := -- Atreerepresentation of ‘5.0 + (13.0-7.0)"’
new Addition' (
Left => new Literal'(Value => 5.0),
Ri ght => new Subtraction'(
Left => new Literal'(Value => 13.0),
Right => new Literal'(Value => 7.0)));

3.9.2 Dispatching Operations of Tagged Types

The primitive subprograms of atagged type are called dispatching operations. A dispatching operation can
be called using a statically determined controlling tag, in which case the body to be executed is determined
at compile time. Alternatively, the controlling tag can be dynamically determined, in which case the call
dispatches to a body that is determined at run time; such a call is termed a dispatching call. As explained
below, the properties of the operands and the context of a particular call on a dispatching operation
determine how the controlling tag is determined, and hence whether or not the call is a dispatching call.
Run-time polymorphism is achieved when a dispatching operation is called by a dispatching call.

Satic Semantics

A call on a dispatching operation is a call whose name or prefix denotes the declaration of a primitive
subprogram of a tagged type, that is, a dispatching operation. A controlling operand in a cal on a
dispatching operation of atagged type T is one whose corresponding formal parameter is of type T or is of
an anonymous access type with designated type T; the corresponding formal parameter is caled a
controlling formal parameter. If the controlling formal parameter is an access parameter, the controlling
operand is the object designated by the actual parameter, rather than the actual parameter itself. If the call
isto a(primitive) function with result type T, then the call has a controlling result — the context of the call
can control the dispatching.

A name or expression of a tagged type is either statically tagged, dynamically tagged, or tag
indeterminate, according to whether, when used as a controlling operand, the tag that controls dispatching
is determined statically by the operand's (specific) type, dynamically by itstag at run time, or from context.
A qualified_expression or parenthesized expression is statically, dynamically, or indeterminately tagged
according to its operand. For other kinds of names and expressions, this is determined as follows:

» The name or expression is statically tagged if it is of a specific tagged type and, if it is a call
with a controlling result, it has at |east one statically tagged controlling operand;

» The name or expression is dynamically tagged if it is of a class-wide type, or it is a call with a
controlling result and at least one dynamically tagged controlling operand;

» Thename or expression is tag indeterminate if it is a call with a controlling result, all of whose
controlling operands (if any) are tag indeterminate.

A type_conversion is statically or dynamically tagged according to whether the type determined by the
subtype_mark is specific or class-wide, respectively. For an object that is designated by an expression
whose expected type is an anonymous access-to-specific tagged type, the object is dynamically tagged if
the expression, ignoring enclosing parentheses, is of the form X'Access, where X is of a class-wide type, or
is of the form new T'(...), where T denotes a class-wide subtype. Otherwise, the object is statically or
dynamically tagged according to whether the designated type of the type of the expression is specific or
class-wide, respectively.
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Legality Rules
A call on adispatching operation shall not have both dynamically tagged and statically tagged controlling
operands.

If the expected type for an expression or name is some specific tagged type, then the expression or name
shall not be dynamically tagged unless it is a controlling operand in a call on a dispatching operation.
Similarly, if the expected type for an expression is an anonymous access-to-specific tagged type, then the
object designated by the expression shall not be dynamically tagged unless it is a controlling operand in a
call on adispatching operation.

In the declaration of a dispatching operation of a tagged type, everywhere a subtype of the tagged type
appears as a subtype of the profile (see 6.1), it shall statically match the first subtype of the tagged type. If
the dispatching operation overrides an inherited subprogram, it shall be subtype conformant with the
inherited subprogram. The convention of an inherited or overriding dispatching operation is the
convention of the corresponding primitive operation of the parent type. An explicitly declared dispatching
operation shall not be of convention Intrinsic.

The default_expression for a controlling formal parameter of a dispatching operation shall be tag indeter-
minate. A controlling formal parameter that is an access parameter shall not have a default_expression.

A given subprogram shall not be a dispatching operation of two or more distinct tagged types.

The explicit declaration of a primitive subprogram of a tagged type shall occur before the type is frozen
(see 13.14). For example, new dispatching operations cannot be added after objects or values of the type
exist, nor after deriving arecord extension from it, nor after a body.

Dynamic Semantics
For the execution of a cal on a dispatching operation of a type T, the controlling tag value determines
which subprogram body is executed. The controlling tag value is defined as follows:

< |If one or more controlling operands are staticaly tagged, then the controlling tag value is
statically determined to be the tag of T.

 |If one or more controlling operands are dynamically tagged, then the controlling tag value is not
statically determined, but is rather determined by the tags of the controlling operands. If there is
more than one dynamically tagged controlling operand, a check is made that they al have the
same tag. If this check fails, Constraint_Error is raised unless the call is a function_call whose
name denotes the declaration of an equality operator (predefined or user defined) that returns
Boolean, in which case the result of the call is defined to indicate inequality, and no
subprogram_body is executed. This check is performed prior to evaluating any tag-
indeterminate controlling operands.

< |f al of the controlling operands are tag-indeterminate, then:
If the call has a controlling result and is itself a (possibly parenthesized or qualified)

controlling operand of an enclosing call on a dispatching operation of type T, then its
controlling tag value is determined by the controlling tag value of this enclosing call;

« Otherwise, the controlling tag value is statically determined to be the tag of type T.

For the execution of a call on a dispatching operation, the body executed is the one for the corresponding
primitive subprogram of the specific type identified by the controlling tag value. The body for an explicitly
declared dispatching operation is the corresponding explicit body for the subprogram. The body for an
implicitly declared dispatching operation that is overridden is the body for the overriding subprogram,
even if the overriding occurs in a private part. The body for an inherited dispatching operation that is not
overridden is the body of the corresponding subprogram of the parent or ancestor type.
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NOTES

70 The body to be executed for a call on a dispatching operation is determined by the tag; it does not matter whether
that tag is determined statically or dynamically, and it does not matter whether the subprogram'’s declaration is visible at
the place of the call.

71 This subclause covers calls on primitive subprograms of a tagged type. Rules for tagged type membership tests are
described in 4.5.2. Controlling tag determination for an assignment_statement is described in 5.2.

72 A dispatching call can dispatch to a body whose declaration is not visible at the place of the call.

73 A call through an access-to-subprogram value is never a dispatching call, even if the access value designates a
dispatching operation. Similarly a call whose prefix denotes a subprogram_renaming_declaration cannot be a
dispatching call unless the renaming itself is the declaration of a primitive subprogram.

3.9.3 Abstract Types and Subprograms

An abstract type is a tagged type intended for use as a parent type for type extensions, but which is not
allowed to have objects of its own. An abstract subprogram is a subprogram that has no body, but is
intended to be overridden at some point when inherited. Because objects of an abstract type cannot be
created, adispatching call to an abstract subprogram aways dispatches to some overriding body.

Legality Rules

An abstract type is a specific type that has the reserved word abstract in its declaration. Only a tagged
typeis allowed to be declared abstract.

A subprogram declared by an abstract_subprogram_declaration (see 6.1) is an abstract subprogram. If it
is a primitive subprogram of atagged type, then the tagged type shall be abstract.

For a derived type, if the parent or ancestor type has an abstract primitive subprogram, or a primitive
function with a controlling result, then:

* If the derived typeis abstract or untagged, the inherited subprogram is abstract.

» Otherwise, the subprogram shall be overridden with a nonabstract subprogram; for a type
declared in the visible part of a package, the overriding may be either in the visible or the private
part. However, if the type is a generic formal type, the subprogram need not be overridden for
the formal type itself; a nonabstract version will necessarily be provided by the actual type.

A cal on an abstract subprogram shall be a dispatching call; nondispatching calls to an abstract
subprogram are not allowed.

The type of an aggregate, or of an object created by an object_declaration or an allocator, or a generic
formal object of mode in, shall not be abstract. The type of the target of an assignment operation (see 5.2)
shall not be abstract. The type of a component shall not be abstract. If the result type of a function is
abstract, then the function shall be abstract.

If apartial view is not abstract, the corresponding full view shall not be abstract. If a generic formal typeis
abstract, then for each primitive subprogram of the formal that is not abstract, the corresponding primitive
subprogram of the actual shall not be abstract.

For an abstract type declared in avisible part, an abstract primitive subprogram shall not be declared in the
private part, unless it is overriding an abstract subprogram implicitly declared in the visible part. For a
tagged type declared in avisible part, a primitive function with a controlling result shall not be declared in
the private part, unlessit is overriding a function implicitly declared in the visible part.

A generic actual subprogram shall not be an abstract subprogram. The prefix of an attribute_reference for
the Access, Unchecked_Access, or Address attributes shall not denote an abstract subprogram.
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NOTES
74 Abstractnessis not inherited; to declare an abstract type, the reserved word abstract has to be used in the declaration
of the type extension.

75 A class-wide type is never abstract. Even if a class is rooted at an abstract type, the class-wide type for the class is
not abstract, and an object of the class-wide type can be created; the tag of such an object will identify some nonabstract
typein the class.

Examples
Example of an abstract type representing a set of natural numbers:

package Sets is
subtype El ement_Type is Natural;
type Set is abstract tagged null record;
function Enpty return Set is abstract;
function Union(Left, Right : Set) return Set is abstract;
function Intersection(Left, Right : Set) return Set is abstract;
function Unit_Set(El ement : Elenent_Type) return Set is abstract;
procedure Take(El enent : out El enent_Type;

From: in out Set) is abstract;
end Sets;

NOTES

76 Notes on the example: Given the above abstract type, one could then derive various (nonabstract) extensions of the
type, representing alternative implementations of a set. One might use a bit vector, but impose an upper bound on the
largest element representable, while another might use a hash table, trading off space for flexibility.

3.10 Access Types

A value of an access type (an access value) provides indirect access to the object or subprogram it
designates. Depending on its type, an access value can designate either subprograms, objects created by
alocators (see 4.8), or more generally aliased objects of an appropriate type.

Syntax
access_type_definition ::=
access_to_object_definition
| access_to_subprogram_definition
access_to_object_definition ::=
access [general_access_modifier] subtype_indication

general_access_modifier ::= all | constant

access_to_subprogram_definition ::=
access [protected] procedure parameter_profile
| access [protected] function parameter_and_result_profile

access_definition ::= access subtype_mark

Satic Semantics

There are two kinds of access types, access-to-object types, whose values designate objects, and access-to-
subprogram types, whose values designate subprograms. Associated with an access-to-object type is a
storage pool; several access types may share the same storage pool. All descendants of an access type
share the same storage pool. A storage pool is an area of storage used to hold dynamically allocated objects
(called pool elements) created by alocators; storage pools are described further in 13.11, ‘‘Storage
Management’’.

Access-to-object types are further subdivided into pool-specific access types, whose values can designate
only the elements of their associated storage pool, and general access types, whose values can designate
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the elements of any storage pool, as well as aliased objects created by declarations rather than allocators,
and aliased subcomponents of other objects.

A view of an object is defined to be aliased if it is defined by an object_declaration or component_-
definition with the reserved word aliased, or by arenaming of an aliased view. In addition, the dereference
of an access-to-object value denotes an aliased view, as does a view conversion (see 4.6) of an aliased
view. Finaly, the current instance of a limited type, and a formal parameter or generic formal object of a
tagged type are defined to be aliased. Aliased views are the ones that can be designated by an access value.
If the view defined by an object_declaration is aliased, and the type of the object has discriminants, then
the object is constrained; if its nominal subtype is unconstrained, then the object is constrained by its
initial value. Similarly, if the object created by an allocator has discriminants, the object is constrained,
either by the designated subtype, or by itsinitia value.

An access_to_object_definition defines an access-to-object type and its first subtype; the subtype._-
indication defines the designated subtype of the access type. If a general_access_maodifier appears, then
the access type is a genera access type. If the modifier is the reserved word constant, then the type is an
access-to-constant type; a designated object cannot be updated through a value of such a type. If the
modifier is the reserved word all, then the type is an access-to-variable type; a designated object can be
both read and updated through a vaue of such a type. If no general_access_modifier appears in the
access_to_object_definition, the access type is a pool-specific access-to-variable type.

An access_to_subprogram_definition defines an access-to-subprogram type and its first subtype; the
parameter_profile or parameter_and_result_profile defines the designated profile of the access type.
There is a calling convention associated with the designated profile; only subprograms with this calling
convention can be designated by values of the access type. By default, the caling convention is
‘‘protected’’ if the reserved word protected appears, and ‘‘Ada’ otherwise. See Annex B for how to
override this default.

An access_definition defines an anonymous general access-to-variable type; the subtype_mark denotes its
designated subtype. An access_definition is used in the specification of an access discriminant (see 3.7) or
an access parameter (see 6.1).

For each (named) access type, there is a literal null which has a null access value designating no entity at
al. The null value of a named access type is the default initial value of the type. Other values of an access
type are obtained by evaluating an attribute_reference for the Access or Unchecked_Access attribute of an
aliased view of an object or non-intrinsic subprogram, or, in the case of a named access-to-object type, an
allocator, which returns an access value designating a newly created object (see 3.10.2).

All subtypes of an access-to-subprogram type are constrained. The first subtype of a type defined by an
access_definition or an access_to_object_definition is unconstrained if the designated subtype is an
unconstrained array or discriminated subtype; otherwiseit is constrained.

Dynamic Semantics
A composite_constraint is compatible with an unconstrained access subtype if it is compatible with the
designated subtype. An access value satisfies a composite_constraint of an access subtype if it equals the
null value of itstype or if it designates an object whose value satisfies the constraint.

The elaboration of an access_type_definition creates the access type and its first subtype. For an access-
to-object type, this elaboration includes the elaboration of the subtype_indication, which creates the
designated subtype.
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The elaboration of an access_definition creates an anonymous general access-to-variable type (this
happens as part of the initialization of an access parameter or access discriminant).

NOTES
77 Accessvalues are called ‘‘pointers’” or ‘‘references”’ in some other languages.

78 Each access-to-object type has an associated storage pool; several access types can share the same pool. An object
can be created in the storage pool of an access type by an allocator (see 4.8) for the access type. A storage pool (roughly)
corresponds to what some other languages call a‘‘heap.’” See 13.11 for a discussion of pools.

79 Only index_constraints and discriminant_constraints can be applied to access types (see 3.6.1 and 3.7.1).

Examples
Examples of access-to-object types:

type Peripheral Ref is access Peripheral; - see38.1
type Binop_Ptr is access all Binary_Operation'd ass;
-- general access-to-class-wide, see 3.9.1

Example of an access subtype:
subtype Drum Ref is Peripheral _Ref(Drum; - see38.1

Example of an access-to-subprogram type:

type Message Procedure is access procedure (M: in String := "Error!");
procedure Default_Message_Procedure(M: in String);
G ve_Message : Message_Procedure : = Defaul t _Message_Procedure' Access;

b'rbcedure Q her_Procedure(M: in String);

G i/e_l\/bssage := Other _Procedure' Access;
e Ve_l\/bssage( "File not found."); -- call with parameter (.all isoptional)
G ve_Message. al | ; - - call with no parameters

3.10.1 Incomplete Type Declarations

There are no particular limitations on the designated type of an access type. In particular, the type of a
component of the designated type can be another access type, or even the same access type. This permits
mutually dependent and recursive access types. An incomplete_type_declaration can be used to introduce
a type to be used as a designated type, while deferring its full definition to a subsequent
full_type_declaration.

Syntax
incomplete_type_declaration ::= type defining_identifier [discriminant_part];

Legality Rules
An incomplete_type_declaration requires a completion, which shall be a full_type_declaration. If the
incomplete_type_declaration occurs immediately within either the visible part of a package_specification
or a declarative_part, then the full_type_declaration shall occur later and immediately within this visible
part or declarative_part. If the incomplete_type_declaration occurs immediately within the private part of
a given package_specification, then the full_type_declaration shall occur later and immediately within
either the private part itself, or the declarative_part of the corresponding package_body.

If an incomplete_type_declaration has a known_discriminant_part, then a full_type_declaration that
completes it shall have a fully conforming (explicit) known_discriminant_part (see 6.3.1). If an
incomplete_type_declaration has no discriminant_part (or an unknown_discriminant_part), then a
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corresponding full_type_declaration is nevertheless alowed to have discriminants, either explicitly, or
inherited via derivation.

The only allowed uses of aname that denotes an incomplete_type_declaration are as follows:

» as the subtype_mark in the subtype_indication of an access_to_object_definition; the only
form of constraint allowed in this subtype_indication is adiscriminant_constraint;

» as the subtype_mark defining the subtype of a parameter or result of an access_to_-
subprogram_definition;

» asthesubtype_mark in an access_definition;

« asthe prefix of an attribute_reference whose attribute_designator is Class; such an attribute_-
reference is similarly restricted to the uses alowed here; when used in this way, the
corresponding full_type_declaration shall declare a tagged type, and the attribute_reference
shall occur in the same library unit asthe incomplete_type_declaration.

A dereference (whether implicit or explicit — see 4.1) shall not be of an incomplete type.

Satic Semantics

An incomplete_type_declaration declares an incomplete type and its first subtype; the first subtype is
unconstrained if aknown_discriminant_part appears.

Dynamic Semantics
The elaboration of an incomplete_type_declaration has no effect.

NOTES
80 Within a declarative_part, an incomplete_type_declaration and a corresponding full_type_declaration cannot be
separated by an intervening body. This is because a type has to be completely defined before it is frozen, and a body

freezes all types declared prior to it in the same declarative_part (see 13.14).

Examples
Example of a recursive type:
type Cell; -- incompletetype declaration
type Link is access Cell;
type Cell is
record
Val ue : Integer;
Succ . Link;
Pr ed . Link;
end record;
Head Li nk = new Cell' (0, null, null);
Next Li nk = Head. Succ;
Examples of mutually dependent access types:
type Person(<>); -- incomplete type declaration
type Car; -- incomplete type declaration
type Person_Nane is access Person;
type Car_Nane is access all Car;
type Car is
record
Nunber : |nteger;
Owner . Person_Nane,;

end record;
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type Person(Sex : Cender) is

record
Name : String(l .. 20);
Birth . Date;
Age : Integer range O .. 130;

Vehicle : Car_Nang;
case Sex is

when M => Wfe . Person_Nane(Sex => F);
when F => Husband : Person_Name(Sex => M;
end case;
end record,
My_Car, Your_Car, Next_Car : Car_Name := new Car; --see4.8
George : Person_Nane : = new Person(M;

Geo'r'gé. Vehicle : = Your_Car;

3.10.2 Operations of Access Types

The attribute Access is used to create access values designating aliased objects and non-intrinsic
subprograms. The ‘‘accessibility’’ rules prevent dangling references (in the absence of uses of certain
unchecked features — see Section 13).

Name Resolution Rules

For an attribute_reference with attribute_designator Access (or Unchecked Access — see 13.10), the
expected type shall be a single access type; the prefix of such an attribute_reference is never interpreted as
an implicit_dereference. If the expected type is an access-to-subprogram type, then the expected profile of
the prefix is the designated profile of the access type.

Satic Semantics

The accessibility rules, which prevent dangling references, are written in terms of accessibility levels,
which reflect the run-time nesting of masters. As explained in 7.6.1, a master is the execution of a
task_body, a block_statement, a subprogram_body, an entry_body, or an accept_statement. An
accessibility level is deeper than another if it is more deeply nested at run time. For example, an object
declared local to a called subprogram has a deeper accessibility level than an object declared loca to the
calling subprogram. The accessibility rules for access types require that the accessibility level of an object
designated by an access value be no deeper than that of the access type. This ensures that the object will
live at least as long as the access type, which in turn ensures that the access value cannot later designate an
object that no longer exists. The Unchecked_Access attribute may be used to circumvent the accessibility
rules.

A given accessibility level is said to be statically deeper than another if the given level is known at
compile time (as defined below) to be deeper than the other for all possible executions. In most cases,
accessibility is enforced at compile time by Legality Rules. Run-time accessibility checks are also used,
since the Legality Rules do not cover certain casesinvolving access parameters and generic packages.

Each master, and each entity and view created by it, has an accessibility level:

e The accessibility level of a given master is deeper than that of each dynamically enclosing
master, and deeper than that of each master upon which the task executing the given master
directly depends (see 9.3).

« An entity or view created by a declaration has the same accessibility level as the innermost
enclosing master, except in the cases of renaming and derived access types described below. A
parameter of a master has the same accessibility level asthe master.
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» The accessibility level of aview of an object or subprogram defined by a renaming_declaration
is the same as that of the renamed view.

» Theaccessibility level of aview conversion isthe same as that of the operand.

» For afunction whose result type is a return-by-reference type, the accessibility level of the result
object is the same as that of the master that elaborated the function body. For any other function,
the accessibility level of the result object isthat of the execution of the called function.

» Theaccessibility level of aderived accesstype isthe same as that of its ultimate ancestor.

» Theaccessibility level of the anonymous access type of an access discriminant is the same as that
of the containing object or associated constrained subtype.

» Theaccessihility level of the anonymous access type of an access parameter is the same as that of
the view designated by the actual. If the actua is an allocator, thisis the accessibility level of the
execution of the called subprogram.

» Theaccessibility level of an object created by an allocator is the same as that of the access type.

» The accessihility level of a view of an object or subprogram denoted by a dereference of an
access value is the same as that of the access type.

» The accessibility level of a component, protected subprogram, or entry of (a view of) a
composite object is the same as that of (the view of) the composite object.

One accessibility level is defined to be statically deeper than another in the following cases:

» For a master that is statically nested within another master, the accessibility level of the inner
master is statically deeper than that of the outer master.

» The statically deeper relationship does not apply to the accessibility level of the anonymous type
of an access parameter; that is, such an accessibility level is not considered to be statically
deeper, nor statically shallower, than any other.

» For determining whether one level is statically deeper than another when within a generic
package body, the generic package is presumed to be instantiated at the same level as where it
was declared; run-time checks are needed in the case of more deeply nested instantiations.

» For determining whether one level is statically deeper than another when within the declarative
region of atype_declaration, the current instance of the type is presumed to be an object created
at a deeper level than that of the type.

The accessibility level of al library unitsis called the library level; alibrary-level declaration or entity is
one whose accessibility level isthelibrary level.

The following attribute is defined for aprefix X that denotes an aliased view of an object:

X'Access X'Access yields an access vaue that designates the object denoted by X. The type of
X'Accessis an access-to-object type, as determined by the expected type. The expected type
shall be a general access type. X shall denote an aliased view of an object, including
possibly the current instance (see 8.6) of a limited type within its definition, or a formal
parameter or generic formal object of atagged type. The view denoted by the prefix X shall
satisfy the following additional requirements, presuming the expected type for X'Access is
the general access type A with designated type D:

» If Aisan access-to-variable type, then the view shall be a variable; on the other
hand, if A is an access-to-constant type, the view may be either a constant or a
variable.
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e Theview shall not be a subcomponent that depends on discriminants of a variable
whose nominal subtype is unconstrained, unless this subtype is indefinite, or the
variableis aliased.

e |If Aisanamed access type and D is a tagged type, then the type of the view shall
be covered by D; if A is anonymous and D is tagged, then the type of the view
shall be either D'Class or a type covered by D; if D is untagged, then the type of
the view shall be D, and A's designated subtype shall either statically match the
nominal subtype of the view or be discriminated and unconstrained;

e The accessibility level of the view shall not be statically deeper than that of the
access type A. In addition to the places where Legality Rules normally apply (see
12.3), thisrule applies also in the private part of an instance of a generic unit.

A check is made that the accessibility level of X is not deeper than that of the access type A.
If this check fails, Program_Error is raised.

If the nominal subtype of X does not statically match the designated subtype of A, a view
conversion of X to the designated subtype is evaluated (which might raise Constraint_Error
— see 4.6) and the value of X'Access designates that view.

The following attribute is defined for a prefix P that denotes a subprogram:
P'Access P'Access yields an access value that designates the subprogram denoted by P. The type of

P'Access is an access-to-subprogram type (S), as determined by the expected type. The
accessibility level of P shall not be statically deeper than that of S. In addition to the places
where Legality Rules normally apply (see 12.3), this rule applies aso in the private part of
an instance of a generic unit. The profile of P shall be subtype-conformant with the
designated profile of S, and shall not be Intrinsic. If the subprogram denoted by P is
declared within a generic body, Sshall be declared within the generic body.

NOTES

81 The Unchecked_Access attribute yields the same result as the Access attribute for objects, but has fewer restrictions
(see 13.10). There are other predefined operations that yield access values: an allocator can be used to create an object,
and return an access value that designates it (see 4.8); evaluating the literal null yields a null access value that designates
no entity at al (see 4.2).

82 The predefined operations of an access type aso include the assignment operation, qualification, and membership
tests. Explicit conversion is alowed between general access types with matching designated subtypes; explicit
conversion is alowed between access-to-subprogram types with subtype conformant profiles (see 4.6). Named access
types have predefined equality operators; anonymous access types do not (see 4.5.2).

83 The object or subprogram designated by an access value can be named with a dereference, either an explicit_-
dereference or an implicit_dereference. See 4.1.

84 A call through the dereference of an access-to-subprogram value is never a dispatching call.

85 The accessibility rulesimply that it is not possible to use the Access attribute to implement *‘ downward closures” —
that is, to pass a more-nested subprogram as a parameter to a less-nested subprogram, as might be desired for example
for an iterator abstraction. Instead, downward closures can be implemented using generic formal subprograms (see 12.6).
Note that Unchecked_Accessis not allowed for subprograms.

86 Note that using an access-to-class-wide tagged type with a dispatching operation is a potentially more structured
aternative to using an access-to-subprogram type.

87 An implementation may consider two access-to-subprogram values to be unegual, even though they designate the
same subprogram. This might be because one points directly to the subprogram, while the other points to a special
prologue that performs an Elaboration_Check and then jumps to the subprogram. See 4.5.2.
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Examples
Example of use of the Access attribute:
Martha : Person_Nane : = new Person(F); --se3.10.1
Cars carray (1..2) of aliased Car;

Mart ha. Vehicl e :
George. Vehicle :

Cars(1)' Access;
Cars(2)' Access;

3.11 Declarative Parts

A declarative_part contains declarative_items (possibly none).

The elaboration of a declarative_part consists of the elaboration of the declarative_items, if any, in the

Syntax
declarative_part ::= { declarative_item}

declarative_item ::=
basic_declarative_item | body

basic_declarative_item ::=
basic_declaration | aspect_clause | use_clause

body ::= proper_body | body_stub
proper_body ::=
subprogram_body | package_body | task_body | protected_body

Dynamic Semantics

order in which they are given in the declarative_part.

An elaborable construct is in the elaborated state after the normal completion of its elaboration. Prior to

that, it is not yet elaborated.

For a construct that attempts to use a body, a check (Elaboration_Check) is performed, as follows:

For a call to a (non-protected) subprogram that has an explicit body, a check is made that the
body is aready elaborated. This check and the evaluations of any actua parameters of the call
aredonein an arbitrary order.

For acall to a protected operation of a protected type (that has a body — no check is performed
if a pragma Import applies to the protected type), a check is made that the protected_body is
already elaborated. This check and the evaluations of any actual parameters of the call are done
in an arbitrary order.

For the activation of a task, a check is made by the activator that the task_body is aready
elaborated. If two or more tasks are being activated together (see 9.2), as the result of the
elaboration of a declarative_part or the initialization for the object created by an allocator, this
check isdone for all of them before activating any of them.

For the instantiation of a generic unit that has a body, a check is made that this body is aready
elaborated. This check and the evaluation of any explicit_generic_actual_parameters of the
instantiation are done in an arbitrary order.

The exception Program_Error israised if any of these checks fails.
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3.11.1 Completions of Declarations

Declarations sometimes come in two parts. A declaration that requires a second part is said to require
completion. The second part is called the completion of the declaration (and of the entity declared), and is
either another declaration, a body, or a pragma. A body is a body, an entry_body, or a renaming-as-body
(see 8.5.4).

Name Resolution Rules
A construct that can be acompletion isinterpreted as the completion of a prior declaration only if:
» The declaration and the completion occur immediately within the same declarative region;

e The defining name or defining_program_unit_name in the completion is the same as in the
declaration, or in the case of apragma, the pragma appliesto the declaration;

 |If the declaration is overloadable, then the completion either has a type-conformant profile, or is
apragma.

Legality Rules

An implicit declaration shall not have a completion. For any explicit declaration that is specified to require
completion, there shall be a corresponding explicit completion.

At most one completion is allowed for a given declaration. Additional requirements on completions appear
where each kind of completion is defined.

A typeis completely defined at a place that is after its full type definition (if it has one) and after all of its
subcomponent types are completely defined. A type shall be completely defined before it is frozen (see
13.14 and 7.3).

NOTES

88 Completions arein principle allowed for any kind of explicit declaration. However, for some kinds of declaration, the
only allowed completion is a pragma Import, and implementations are not required to support pragma Import for every
kind of entity.

89 There are rules that prevent premature uses of declarations that have a corresponding completion. The
Elaboration_Checks of 3.11 prevent such uses at run time for subprograms, protected operations, tasks, and generic
units. The rules of 13.14, ‘‘Freezing Rules’’ prevent, at compile time, premature uses of other entities such as private
types and deferred constants.
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Section 4: Names and Expressions

The rules applicable to the different forms of name and expression, and to their evaluation, are given in
this section.

4.1 Names

Names can denote declared entities, whether declared explicitly or implicitly (see 3.1). Names can also
denote objects or subprograms designated by access values; the results of type_conversions or
function_calls; subcomponents and slices of objects and values; protected subprograms, single entries,
entry families, and entries in families of entries. Finaly, names can denote attributes of any of the
foregoing.

Syntax
name ::=
direct_name | explicit_dereference
|indexed_component |slice
| selected_component | attribute_reference
| type_conversion | function_call
| character_literal

direct_name ::= identifier | operator_symbol
prefix ::= name | implicit_dereference
explicit_dereference ::= name.all
implicit_dereference ::= name

Certain forms of name (indexed_components, selected_components, slices, and attributes) include a
prefix that is either itself a name that denotes some related entity, or an implicit_dereference of an access
value that designates some related entity.

Name Resolution Rules

The name in a dereference (either an implicit_dereference or an explicit_dereference) is expected to be of
any access type.

Satic Semantics
If the type of the name in a dereference is some access-to-object type T, then the dereference denotes a
view of an object, the nominal subtype of the view being the designated subtype of T.

If the type of the name in a dereference is some access-to-subprogram type S, then the dereference denotes
aview of asubprogram, the profile of the view being the designated profile of S.

Dynamic Semantics

The evaluation of a name determines the entity denoted by the name. This evaluation has no other effect
for aname that is adirect_name or acharacter_literal.

The evaluation of a name that has a prefix includes the evaluation of the prefix. The evaluation of a prefix
consists of the evaluation of the name or the implicit_dereference. The prefix denotes the entity denoted
by the name or the implicit_dereference.
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The evauation of a dereference consists of the evaluation of the name and the determination of the object
or subprogram that is designated by the value of the name. A check is made that the value of the name is
not the null access value. Constraint_Error is raised if this check fails. The dereference denotes the object
or subprogram designated by the value of the name.

Examples
Examples of direct names:

Pi -- the direct name of a number (see 3.3.2)
Limt  --thedirect name of a constant (see 3.3.1)
Count - thedirect name of a scalar variable (see 3.3.1)
Board -- thedirect name of an array variable (see 3.6.1)
Matri x --thedirect name of a type (see 3.6)
Random -- the direct name of a function (see 6.1)
Error  --thedirect name of an exception (see 11.1)

Examples of dereferences:

Next _Car. al | -- explicit dereference denoting the object designated by
the access variable Next_Car (see 3.10.1)
Next _Car. Oamner -- selected component with implicit dereference;

-- same as Next_Car.all.Owner

4.1.1 Indexed Components

An indexed_component denotes either a component of an array or an entry in afamily of entries.

Syntax
indexed_component ::= prefix(expression {, expression})

Name Resolution Rules

The prefix of an indexed_component with a given number of expressions shall resolve to denote an array
(after any implicit dereference) with the corresponding number of index positions, or shal resolve to
denote an entry family of atask or protected object (in which case there shall be only one expression).

The expected type for each expression is the corresponding index type.

Static Semantics
When the prefix denotes an array, the indexed_component denotes the component of the array with the
specified index value(s). The nominal subtype of the indexed_component is the component subtype of the
array type.
When the prefix denotes an entry family, the indexed_component denotes the individual entry of the entry
family with the specified index value.

Dynamic Semantics
For the evaluation of an indexed_component, the prefix and the expressions are evaluated in an arbitrary
order. The value of each expression is converted to the corresponding index type. A check is made that
each index value belongs to the corresponding index range of the array or entry family denoted by the
prefix. Constraint_Error israised if this check fails.
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Examples
Examples of indexed components:
My_Schedul e( Sat) -- a component of a one-dimensional array (see 3.6.1)
Page( 10) -- acomponent of a one-dimensional array (see 3.6)
Board(M J + 1) -- a component of a two-dimensional array (see 3.6.1)
Page( 10) ( 20) -- a component of a component (see 3.6)
Request ( Medi um -- anentry in afamily of entries (see9.1)
Next _Franme(L)(M N) -- acomponent of a function call (see6.1)

NOTES

1 Notes on the examples: Distinct notations are used for components of multidimensional arrays (such as Board) and
arrays of arrays (such as Page). The components of an array of arrays are arrays and can therefore be indexed. Thus
Page(10)(20) denotes the 20th component of Page(10). In the last example Next_Frame(L) is a function call returning an
access value that designates atwo-dimensional array.

4.1.2 Slices

A slice denotes a one-dimensional array formed by a sequence of consecutive components of a one-
dimensional array. A slice of avariableisavariable; aslice of aconstant is a constant; aslice of avaueis
avalue.

Syntax
slice ::= prefix(discrete_range)
Name Resolution Rules
The prefix of aslice shall resolve to denote aone-dimensiona array (after any implicit dereference).

The expected type for the discrete_range of aslice isthe index type of the array type.

Satic Semantics

A slice denotes a one-dimensional array formed by the sequence of consecutive components of the array
denoted by the prefix, corresponding to the range of values of the index given by the discrete_range.

The type of the slice isthat of the prefix. Its bounds are those defined by the discrete_range.

Dynamic Semantics
For the evaluation of a slice, the prefix and the discrete_range are evaluated in an arbitrary order. If the
slice is not a null slice (a slice where the discrete_range is a null range), then a check is made that the
bounds of the discrete_range belong to the index range of the array denoted by the prefix.
Congtraint_Error israised if this check fails.

NOTES

2 A slice is not permitted as the prefix of an Access attribute_reference, even if the components or the array as a whole
are diased. See 3.10.2.

3 For aone-dimensional array A, the slice A(N .. N) denotes an array that has only one component; its type is the type of
A. On the other hand, A(N) denotes a component of the array A and has the corresponding component type.
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Examples
Examples of dices:

Stars(1 .. 15) -- adliceof 15 characters (see 3.6.3)
Page(10 .. 10 + Size) -- adiceof 1+ Szecomponents (see3.6)

Page(L) (A .. B) -- adliceof the array Page(L) (see 3.6)

Stars(1 .. 0) -- anull dlice (see 3.6.3)
My_Schedul e(Weekday) -- bounds given by subtype (see3.6.1and 3.5.1)
Stars(5 .. 15)(K) -- same as Sars(K) (see 3.6.3)

-- provided that Kisin5.. 15

4.1.3 Selected Components

Selected_components are used to denote components (including discriminants), entries, entry families,
and protected subprograms; they are also used as expanded names as described below.

Syntax
selected_component ::= prefix . selector_name

selector_name ::= identifier | character_literal | operator_symbol

Name Resolution Rules

A selected_component is called an expanded name if, according to the visibility rules, at least one
possible interpretation of its prefix denotes a package or an enclosing named construct (directly, not
through a subprogram_renaming_declaration or generic_renaming_declaration).

A selected_component that is not an expanded name shall resolve to denote one of the following:
« A component (including a discriminant):

The prefix shall resolve to denote an object or value of some non-array composite type (after any
implicit dereference). The selector_name shall resolve to denote a discriminant_specification of
the type, or, unless the type is a protected type, a component_declaration of the type. The
selected_component denotes the corresponding component of the object or value.

« A singleentry, an entry family, or a protected subprogram:

The prefix shall resolve to denote an object or value of some task or protected type (after any
implicit dereference). The selector_name shall resolve to denote an entry_declaration or
subprogram_declaration occurring (implicitly or explicitly) within the visible part of that type.
The selected_component denotes the corresponding entry, entry family, or protected
subprogram.

An expanded name shall resolve to denote a declaration that occurs immediately within a named
declarative region, asfollows:

« The prefix shall resolve to denote either a package (including the current instance of a generic
package, or arename of a package), or an enclosing hamed construct.

e The selector_name shall resolve to denote a declaration that occurs immediately within the
declarative region of the package or enclosing construct (the declaration shall be visible at the
place of the expanded name — see 8.3). The expanded name denotes that declaration.

 If the prefix does not denote a package, then it shall be a direct_name or an expanded name, and
it shall resolve to denote a program unit (other than a package), the current instance of atype, a
block_statement, a loop_statement, or an accept_statement (in the case of an accept_-
statement or entry_body, no family index is alowed); the expanded name shall occur within the
declarative region of this construct. Further, if this construct is a calable construct and the prefix
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denotes more than one such enclosing callable construct, then the expanded name is ambiguous,
independently of the selector_name.
Dynamic Semantics
The evaluation of aselected_component includes the evaluation of the prefix. 14
For a selected_component that denotes a component of a variant, a check is made that the values of the 15

discriminants are such that the value or object denoted by the prefix has this component. The exception
Constraint_Error israised if this check fails.

Examples
Examples of selected components: 16
Tornor r ow. Mont h -- arecord component (see 3.8) 17
Next _Car . Oaner -- arecord component (see 3.10.1)
Next _Car . Oawner . Age -- arecord component (see 3.10.1)
-- the previous two lines involve implicit dereferences
Witer.Unit -- arecord component (a discriminant) (see3.8.1)
M n_Cel | (H). Val ue -- arecord component of the result (see6.1)
-- of the function call Min_Cell(H)
Control . Sei ze -- an entry of a protected object (see9.4)
Pool (K). Wite -- an entry of the task Pool (K) (see9.4)
Examples of expanded names: 18
Key_Manager."<" -- an operator of the visible part of a package (see 7.3.1) 19
Dot _Product . Sum -- avariable declared in a function body (see6.1)
Buf f er . Pool -- avariable declared in a protected unit (see9.11)
Buf f er . Read -- an entry of a protected unit (see9.11)
Swap. Tenp -- avariable declared in a block statement  (see 5.6)
St andar d. Bool ean -- the name of a predefined type (seeAl)

4.1.4 Attributes

An attribute is a characteristic of an entity that can be queried via an attribute_reference or a range_- 1
attribute_reference.

Syntax
attribute_reference ::= prefix'attribute_designator 2
attribute_designator ::= 3
identifier[ (static_expression)]
| Access | Delta | Digits
range_attribute_reference ::= prefix'range_attribute_designator 4
range_attribute_designator ::= Range[(static_expression)] 5

Name Resolution Rules

In an attribute_reference, if the attribute_designator is for an attribute defined for (at least some) objects 6
of an access type, then the prefix is never interpreted as an implicit_dereference; otherwise (and for all
range_attribute_references), if the type of the name within the prefix is of an access type, the prefix is
interpreted as an implicit_dereference. Similarly, if the attribute_designator is for an attribute defined for

(at least some) functions, then the prefix is never interpreted as a parameterless function_call; otherwise
(and for all range_attribute_references), if the prefix consists of a name that denotes a function, it is
interpreted as a parameterless function_call.
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The expression, if any, in an attribute_designator or range_attribute_designator is expected to be of any
integer type.

Legality Rules
The expression, if any, in an attribute_designator or range_attribute_designator shall be static.

Satic Semantics
An attribute_reference denotes avalue, an object, a subprogram, or some other kind of program entity.

A range_attribute_reference X'Range(N) is equivaent to the range X'First(N) .. X'Last(N), except that
the prefix is only evaluated once. Similarly, X'Range is equivalent to X'First .. X'Last, except that the
prefix is only evaluated once.

Dynamic Semantics
The evaluation of an attribute_reference (or range_attribute_reference) consists of the evaluation of the
prefix.

Implementation Permissions

An implementation may provide implementation-defined attributes; the identifier for an implementation-
defined attribute shall differ from those of the language-defined attributes unless supplied for compatibility
with a previous edition of this International Standard.

NOTES
4 Attributes are defined throughout this International Standard, and are summarized in Annex K.

5 In general, the name in a prefix of an attribute_reference (or arange_attribute_reference) has to be resolved without
using any context. However, in the case of the Access attribute, the expected type for the prefix has to be a single access
type, and if it is an access-to-subprogram type (see 3.10.2) then the resolution of the name can use the fact that the
profile of the callable entity denoted by the prefix has to be type conformant with the designated profile of the access

type.
Examples
Examples of attributes:

Col or' First -- minimum value of the enumeration type Color (see 3.5.1)
Rai nbow Base' Fi rst -- sameasColor'First (see35.1)
Real'Digits -- precision of the type Real (see 3.5.7)
Boar d' Last (2) -- upper bound of the second dimension of Board (see 3.6.1)
Boar d' Range( 1) -- index range of the first dimension of Board (see 3.6.1)
Pool (K)' Ter mi nat ed -- Trueif task Pool (K) is terminated (see9.1)
Date' Si ze -- number of bits for records of type Date (see 3.8)
Message' Addr ess -- address of the record variable Message (see3.7.1)

4.2 Literals

A literal represents a value literally, that is, by means of notation suited to its kind. A literal is either a
numeric_literal, acharacter_literal, the literal null, or a string_literal.

Name Resolution Rules
The expected type for aliteral null shall be a single access type.
For a name that consists of a character_literal, either its expected type shall be a single character type, in

which case it is interpreted as a parameterless function_call that yields the corresponding value of the
character type, or its expected profile shall correspond to a parameterless function with a character result
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type, in which case it is interpreted as the name of the corresponding parameterless function declared as
part of the character type's definition (see 3.5.1). In either case, the character_literal denotes the
enumeration_literal_specification.

The expected type for a primary that is a string_literal shall be a single string type.

Legality Rules

A character_literal that is a name shall correspond to a defining_character_literal of the expected type, or
of the result type of the expected profile.

For each character of a string_literal with a given expected string type, there shall be a corresponding
defining_character_literal of the component type of the expected string type.

A literal null shall not be of an anonymous access type, since such types do not have a null value (see
3.10).

Satic Semantics
An integer literd is of type universal_integer. A real litera is of type universal_real.

Dynamic Semantics
The evaluation of anumeric literal, or theliteral null, yields the represented value.

The evaluation of a string_literal that is a primary yields an array value containing the value of each
character of the sequence of characters of the string_literal, as defined in 2.6. The bounds of this array
value are determined according to the rules for positional_array_aggregates (see 4.3.3), except that for a
null string literal, the upper bound is the predecessor of the lower bound.

For the evaluation of a string_literal of type T, a check is made that the value of each character of the
string_literal belongs to the component subtype of T. For the evaluation of a null string literal, a check is
made that its lower bound is greater than the lower bound of the base range of the index type. The
exception Constraint_Error israised if either of these checksfails.

NOTES

6 Enumeration literals that are identifiers rather than character_literals follow the normal rules for identifiers when used
in a name (see 4.1 and 4.1.3). Character_literals used as selector_names follow the normal rules for expanded names
(see 4.1.3).

Examples

Examples of literals:

3.14159 26536 -- areal literal
1_345 -- aninteger literal
"A -- acharacter literal
"Some Text" -- astring literal

4.3 Aggregates

An aggregate combines component values into a composite value of an array type, record type, or record
extension.

Syntax
aggregate ::= record_aggregate | extension_aggregate | array_aggregate
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Name Resolution Rules

The expected type for an aggregate shall be a single nonlimited array type, record type, or record
extension.

Legality Rules
An aggregate shall not be of a class-wide type.

Dynamic Semantics
For the evaluation of an aggregate, an anonymous object is created and values for the components or
ancestor part are obtained (as described in the subsequent subclause for each kind of the aggregate) and
assigned into the corresponding components or ancestor part of the anonymous object. Obtaining the
values and the assignments occur in an arbitrary order. The value of the aggregate is the value of this
object.

If an aggregate is of atagged type, a check is made that its value belongs to the first subtype of the type.
Constraint_Error israised if this check fails.

4.3.1 Record Aggregates

In arecord_aggregate, a value is specified for each component of the record or record extension value,
using either anamed or a positional association.

Syntax
record_aggregate ::= (record_component_association_list)
record_component_association_list ::=
record_component_association {, record_component_association}
| null record
record_component_association ::=
[ component_choice_list =>] expression
component_choice_list ::=
component_selector_name { | component_selector_name}
| others
A record_component_association is a named component association if it hasa
component_choice_list; otherwise, it is apositional component association. Any positional
component associations shall precede any named component associations. If thereis a named
association with acomponent_choice_list of others, it shall come last.

In the record_component_association_list for arecord_aggregate, if thereis only one association, it
shall be a named association.

Name Resolution Rules

The expected type for arecord_aggregate shall be a single nonlimited record type or record extension.

For the record_component_association_list of a record_aggregate, al components of the composite
value defined by the aggregate are needed; for the association list of an extension_aggregate, only those
components not determined by the ancestor expression or subtype are needed (see 4.3.2). Each selector_-
name in a record_component_association shall denote a needed component (including possibly a
discriminant).
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The expected type for the expression of a record_component_association is the type of the associated
component(s); the associated component(s) are as follows:

» For a positiona association, the component (including possibly a discriminant) in the
corresponding relative position (in the declarative region of the type), counting only the needed
components;

e For a named association with one or more component_selector_names, the named
component(s);

» For a named association with the reserved word others, all needed components that are not
associated with some previous associ ation.

Legality Rules
If the type of a record_aggregate is a record extension, then it shall be a descendant of a record type,
through one or more record extensions (and no private extensions).

If there are no components needed in a given record_component_association_list, then the reserved
words null record shall appear rather than alist of record_component_associations.

Each record_component_association shall have at least one associated component, and each needed
component shall be associated with exactly one record_component_association. If a record_-
component_association has two or more associated components, all of them shall be of the same type.

If the components of a variant_part are needed, then the value of a discriminant that governs the
variant_part shall be given by a static expression.

Dynamic Semantics

The evauation of arecord_aggregate consists of the evaluation of the record_component_association_-
list.

For the evaluation of a record_component_association_list, any per-object constraints (see 3.8) for
components specified in the association list are elaborated and any expressions are evaluated and
converted to the subtype of the associated component. Any constraint elaborations and expression
evaluations (and conversions) occur in an arbitrary order, except that the expression for a discriminant is
evaluated (and converted) prior to the elaboration of any per-object constraint that depends on it, which in
turn occurs prior to the evaluation and conversion of the expression for the component with the per-object
constraint.

The expression of a record_component_association is evaluated (and converted) once for each
associated component.

NOTES
7 For arecord_aggregate with positiona associations, expressions specifying discriminant values appear first since the
known_discriminant_part is given first in the declaration of the type; they have to be in the same order as in the
known_discriminant_part.
Examples
Example of a record aggregate with positional associations:
(4, July, 1776) -- see38

Examples of record aggregates with named associations:

(Day => 4, Month => July, Year => 1776)
(Month => July, Day => 4, Year => 1776)
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(Disk, Cosed, Track => 5, Cylinder => 12) -- see38.1
(Unit => Disk, Status => Closed, Cylinder => 9, Track => 1)

Example of component association with several choices:
(Value => 0, Succ|Pred => new Cell' (0, null, null)) -- %e3.10.1
-- Theallocator is evaluated twice: Succ and Pred designate different cells

Examples of record aggregates for tagged types (see 3.9 and 3.9.1):

Expression' (null record)
Literal' (Value => 0.0)
Pai nted_Point' (0.0, Pi/2.0, Paint => Red)

4.3.2 Extension Aggregates

An extension_aggregate specifies a value for a type that is a record extension by specifying a value or
subtype for an ancestor of the type, followed by associations for any components not determined by the
ancestor_part.

Syntax
extension_aggregate ::=
(ancestor_part with record_component_association_list)
ancestor_part ::= expression | subtype_mark

Name Resolution Rules

The expected type for an extension_aggregate shall be a single nonlimited type that is a record extension.
If the ancestor_part is an expression, it is expected to be of any nonlimited tagged type.

Legality Rules
If the ancestor_part is a subtype_mark, it shall denote a specific tagged subtype. The type of the
extension_aggregate shall be derived from the type of the ancestor_part, through one or more record
extensions (and no private extensions).

Satic Semantics

For the record_component_association_list of an extension_aggregate, the only components needed are
those of the composite value defined by the aggregate that are not inherited from the type of the
ancestor_part, plus any inherited discriminants if the ancestor_part is a subtype_mark that denotes an
unconstrained subtype.

Dynamic Semantics
For the evaluation of an extension_aggregate, the record_component_association_list is evaluated. If
the ancestor_part is an expression, it is aso evaluated; if the ancestor_part is a subtype_mark, the
components of the value of the aggregate not given by the record_component_association_list are
initialized by default as for an object of the ancestor type. Any implicit initializations or evaluations are
performed in an arbitrary order, except that the expression for a discriminant is evaluated prior to any
other evaluation or initialization that depends on it.

If the type of the ancestor_part has discriminants that are not inherited by the type of the
extension_aggregate, then, unless the ancestor_part is a subtype_mark that denotes an unconstrained
subtype, a check is made that each discriminant of the ancestor has the value specified for a corresponding
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discriminant, either in the record_component_association_list, or in the derived_type_definition for some
ancestor of the type of the extension_aggregate. Constraint_Error is raised if this check fails.

NOTES
8 If all components of the value of the extension_aggregate are determined by the ancestor_part, then the record_-
component_association_list is required to be simply null record.

9 If the ancestor_part is a subtype_mark, then its type can be abstract. If its type is controlled, then as the last step of
evaluating the aggregate, the Initialize procedure of the ancestor type is called, unless the Initialize procedure is abstract
(see 7.6).

Examples
Examples of extension aggregates (for types defined in 3.9.1):

Pai nt ed_Poi nt' (Poi nt with Red)
(Point' (P) with Paint => Bl ack)

(Expression with Left => 1.2, Right => 3.4)
Addi tion' (Binop with null record)
-- presuming Binop is of type Binary_Operation

4.3.3 Array Aggregates

In an array_aggregate, a vaue is specified for each component of an array, either positionaly or by its
index. For a positional_array_aggregate, the components are given in increasing-index order, with a final
others, if any, representing any remaining components. For a named_array_aggregate, the components
areidentified by the values covered by the discrete_choices.

Syntax
array_aggregate ::=
positional_array_aggregate | named_array_aggregate
positional_array_aggregate ::=
(expression, expression {, expression})
| (expression {, expression}, others=> expression)
named_array_aggregate ::=
(array_component_association {, array_component_association})

array_component_association ::=
discrete_choice_list => expression
An n-dimensional array_aggregate is one that is written as n levels of nested array_aggregates (or at the
bottom level, equivalent string_literals). For the multidimensional case (n >= 2) the array_aggregates (or
equivaent string_literals) at the n—1 lower levels are called subaggregates of the enclosing n-dimensional
array_aggregate. The expressions of the bottom level subaggregates (or of the array_aggregate itself if
one-dimensional) are caled the array component expressions of the enclosing n-dimensional
array_aggregate.

Name Resolution Rules
The expected type for an array_aggregate (that is not a subaggregate) shall be a single nonlimited array
type. The component type of this array type is the expected type for each array component expression of
the array_aggregate.

The expected type for each discrete_choice in any discrete_choice_list of a named_array_aggregate is
the type of the corresponding index; the corresponding index for an array_aggregate that is not a
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subaggregate is the first index of its type for an (n—-m)-dimensiona subaggregate within an
array_aggregate of an n-dimensiona type, the corresponding index isthe index in position m+1.

Legality Rules
An array_aggregate of an n-dimensional array type shall be written as an n-dimensional array_aggregate.

An others choice is alowed for an array_aggregate only if an applicable index constraint applies to the
array_aggregate. An applicable index constraint is a constraint provided by certain contexts where an
array_aggregate is permitted that can be used to determine the bounds of the array value specified by the
aggregate. Each of the following contexts (and none other) defines an applicable index constraint:

¢ For an explicit_actual_parameter, an explicit_generic_actual_parameter, the expression of a
return_statement, the initialization expression in an object_declaration, or a default_-
expression (for a parameter or a component), when the nomina subtype of the corresponding
formal parameter, generic formal parameter, function result, object, or component is a
constrained array subtype, the applicable index constraint is the constraint of the subtype;

« For the expression of an assignment_statement where the name denotes an array variable, the
applicable index constraint isthe constraint of the array variable;

« For the operand of a qualified_expression whose subtype_mark denotes a constrained array
subtype, the applicable index constraint is the constraint of the subtype;

e For a component expression in an aggregate, if the component's nomina subtype is a
constrained array subtype, the applicable index constraint is the constraint of the subtype;

« For a parenthesized expression, the applicable index constraint is that, if any, defined for the
expression.

The applicable index constraint appliesto an array_aggregate that appears in such a context, as well asto
any subaggregates thereof. In the case of an explicit_actual_parameter (or default_expression) for a call
on ageneric formal subprogram, no applicableindex constraint is defined.

Thediscrete_choice_list of an array_component_association is allowed to have adiscrete_choice that is
a nonstatic expression or that is a discrete_range that defines a nonstatic or null range, only if it is the
single discrete_choice of its discrete_choice_list, and there is only one array_component_association in
the array_aggregate.

In anamed_array_aggregate with more than one discrete_choice, no two discrete_choices are allowed
to cover the same value (see 3.8.1); if there is no others choice, the discrete_choices taken together shall
exactly cover a contiguous sequence of values of the corresponding index type.

A bottom level subaggregate of a multidimensional array_aggregate of a given array typeis allowed to be
a string_literal only if the component type of the array type is a character type; each character of such a
string_literal shall correspond to a defining_character_literal of the component type.

Satic Semantics

A subaggregate that is a string_literal is equivalent to one that is a positional_array_aggregate of the same
length, with each expression being the character_literal for the corresponding character of the
string_literal.

Dynamic Semantics
The evaluation of an array_aggregate of a given array type proceeds in two steps:

1. Any discrete_choices of this aggregate and of its subaggregates are evaluated in an arbitrary
order, and converted to the corresponding index type;
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2. The array component expressions of the aggregate are evaluated in an arbitrary order and their
values are converted to the component subtype of the array type; an array component expression
is evaluated once for each associated component.

The bounds of the index range of an array_aggregate (including a subaggregate) are determined as
follows:

» For an array_aggregate with an others choice, the bounds are those of the corresponding index
range from the applicable index constraint;

» For a positional_array_aggregate (or equivalent string_literal) without an others choice, the
lower bound is that of the corresponding index range in the applicable index constraint, if
defined, or that of the corresponding index subtype, if not; in either case, the upper bound is
determined from the lower bound and the number of expressions (or the length of the
string_literal);

» For a named_array_aggregate without an others choice, the bounds are determined by the
smallest and largest index values covered by any discrete_choice_list.

For an array_aggregate, a check is made that the index range defined by its bounds is compatible with the
corresponding index subtype.

For an array_aggregate with an others choice, a check is made that no expression is specified for an
index value outside the bounds determined by the applicable index constraint.

For a multidimensional array_aggregate, a check is made that all subaggregates that correspond to the
same index have the same bounds.

The exception Constraint_Error israised if any of the above checks fail.

NOTES
10 In an array_aggregate, positional notation may only be used with two or more expressions; a single expression in
parentheses is interpreted as a parenthesized_expression. A named_array_aggregate, such as (1 => X), may be used to
specify an array with a single component.
Examples
Examples of array aggregates with positional associations:

(7, 9, 5 1, 3, 2, 4, 8, 6, 0)
Table' (5, 8, 4, 1, others => 0) -- 3.6

Examples of array aggregates with named associations:

(1.. 5=>(1.. 8=>0.0)) -- two-dimensional

(1 N => new Cel|) -- N new cells, in particular for N= 0

Table' (2 | 4| 10 => 1, others => 0)

Schedul e' (Mon .. Fri => True, others => False) -- see36

Schedul e' (Wd | Sun => Fal se, others => True)

Vector' (1 => 2.5) -- single-component vector

Examples of two-dimensional array aggregates:
-- Three aggregates for the same value of subtype Matrix(1..2,1..3) (see 3.6):

((1.1, 1.2, 1.3), (2.1, 2.2, 2.3))
(1 =>(1.12, 1.2, 1.3), 2 => (2.1, 2.2, 2.3))
(1 =>(1=>1.1, 2=>1.2, 3=>1.3), 2=>(1=>21, 2=>22 3=>213))
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Examples of aggregates asinitial values:

A: Table := (7, 9, 5, 1, 3, 2, 4, 8, 6, 0); - A(1)=7, A(10)=0

B: Table := (2| 4| 10 => 1, others => 0); --B(1)=0, B(10)=1

C: constant Matrix := (1 .. 5 => (1 .. 8 =>0.0)); --ClLast(1)=5, C'Last(2)=8
D: Bit_Vector(M.. N) := (M.. N => True); --see3.6

E: Bit_Vector(M.. N) := (others => True);

F: String(1l .. 1) := (1 =>"F"); --aonecomponent aggregate: sameas"F"

4.4 Expressions

An expression is a formula that defines the computation or retrieval of a value. In this International
Standard, the term *‘expression’’ refers to a construct of the syntactic category expression or of any of the
other five syntactic categories defined bel ow.

Syntax
expression ::=
relation {and relation} | relation {and then relation}
| relation { or relation} | relation {or else relation}

| relation {xor relation}

relation ::=
simple_expression [relational_operator simple_expression]
| simple_expression [not] in range
| simple_expression [not] in subtype_mark

simple_expression ::= [unary_adding_operator] term { binary_adding_operator term}
term ::= factor { multiplying_operator factor}
factor ::= primary [** primary] | abs primary | not primary
primary ::=
numeric_literal | null | string_literal | aggregate
| name | qualified_expression | allocator | (expression)

Name Resolution Rules

A name used as a primary shall resolve to denote an object or avalue.

Static Semantics
Each expression has atype; it specifies the computation or retrieval of avalue of that type.

Dynamic Semantics
The value of aprimary that isaname denoting an object is the value of the object.

Implementation Permissions
For the evaluation of a primary that is a name denoting an object of an unconstrained numeric subtype, if

the value of the object is outside the base range of its type, the implementation may either raise
Constraint_Error or return the value of the object.
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Examples

Examples of primaries:

4.0 -- real literal

Pi -- named number

(1 .. 10 => 0) -- array aggregate

Sum -- variable

I nt eger' Last -- attribute

Si ne( X) -- function call

Col or' (Bl ue) -- qualified expression

Real (MN) -- conversion

(Line_Count + 10) -

parenthesized expression

Examples of expressions:

Vol ure -- primary

not Destroyed -- factor

2*Li ne_Count --term

-4.0 -- simple expression

-4.0 + A -- simple expression

B**2 - 4. 0*A*C -- simple expression

Password(1 .. 3) = "Bw" -- relation

Count in Small _Int -- relation

Count not in Small_|nt -- relation

Index = 0 or ItemHt -- expression

(Cold and Sunny) or Warm -- expression (parentheses are required)
A**(B**C) -- expression (parentheses are required)

4.5 Operators and Expression Evaluation

The language defines the following six categories of operators (given in order of increasing precedence).
The corresponding operator_symbols, and only those, can be used as designators in declarations of
functions for user-defined operators. See 6.6, ‘* Overloading of Operators'”.

Syntax
logical_operator ::= and |or |xor
relational_operator ::= = /=< [<=]>]|>=
binary_adding_operator ::= + |- |&
unary_adding_operator ::= + |-
multiplying_operator ::= * |/ |mod|rem
highest_precedence_operator ::= ** | abs|not

Static Semantics

For a sequence of operators of the same precedence level, the operators are associated with their operands
in textual order from left to right. Parentheses can be used to impose specific associations.

For each form of type definition, certain of the above operators are predefined; that is, they are implicitly
declared immediately after the type definition. For each such implicit operator declaration, the parameters
are called Left and Right for binary operators; the single parameter is called Right for unary operators. An
expression of the form X op Y, where op is a binary operator, is equivalent to a function_call of the form
"op"(X, Y). An expression of the form op Y, where op is a unary operator, is equivalent to a function_call
of the form "op"(Y). The predefined operators and their effects are described in subclauses 4.5.1 through
45.6.
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Dynamic Semantics
The predefined operations on integer types either yield the mathematically correct result or raise the
exception Constraint_Error. For implementations that support the Numerics Annex, the predefined
operations on real types yield results whose accuracy is defined in Annex G, or raise the exception
Constraint_Error.

Implementation Requirements

The implementation of a predefined operator that delivers a result of an integer or fixed point type may
raise Constraint_Error only if the result is outside the base range of the result type.

The implementation of a predefined operator that delivers a result of a floating point type may raise
Constraint_Error only if the result is outside the safe range of the result type.

Implementation Permissions

For a sequence of predefined operators of the same precedence level (and in the absence of parentheses
imposing a specific association), an implementation may impose any association of the operators with
operands so long as the result produced is an allowed result for the left-to-right association, but ignoring
the potential for failure of language-defined checks in either the left-to-right or chosen order of
association.

NOTES
11 The two operands of an expression of the form X op Y, where op is a binary operator, are evaluated in an arbitrary
order, as for any function_call (see 6.4).

Examples
Examples of precedence:
not Sunny or Varm -- same as (not Sunny) or Warm
X >4.0 and Y > 0.0 - sameas(X>4.0)and(Y> 0.0)
-4, 0*A**2 -- sameas—(4.0* (A**2))
abs(l1 + A + B -- sameas(abs(1+ A)+B
Y**(-3) -- parentheses are necessary
Al B* C -- sameas (A/B)*C
A+ (B+ 0O -- evaluate B + C before adding it to A

4.5.1 Logical Operators and Short-circuit Control Forms

Name Resolution Rules

An expression consisting of two relations connected by and then or or else (a short-circuit control form)
shall resolve to be of some boolean type; the expected type for both relationsis that same boolean type.

Static Semantics
The following logical operators are predefined for every boolean type T, for every modular type T, and for
every one-dimensional array type T whose component type is a boolean type:

function "and"(Left, Right : T) return T

function "or" (Left, Right : T) return T

function "xor"(Left, Right : T) return T
For boolean types, the predefined logical operators and, or, and xor perform the conventional operations
of conjunction, inclusive disunction, and exclusive disjunction, respectively.

For modular types, the predefined logical operators are defined on a bit-by-bit basis, using the binary
representation of the value of the operands to yield a binary representation for the result, where zero
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represents False and one represents True. If this result is outside the base range of the type, a final
subtraction by the modulus is performed to bring the result into the base range of the type.

The logica operators on arrays are performed on a component-by-component basis on matching
components (as for equality — see 4.5.2), using the predefined logical operator for the component type.
The bounds of the resulting array are those of the left operand.

Dynamic Semantics
The short-circuit control forms and then and or else deliver the same result as the corresponding
predefined and and or operators for boolean types, except that the left operand is aways evaluated first,
and the right operand is not evaluated if the value of the left operand determines the result.

For the logical operators on arrays, a check is made that for each component of the left operand there is a
matching component of the right operand, and vice versa. Also, a check is made that each component of
the result belongs to the component subtype. The exception Constraint_Error is raised if either of the
above checksfails.

NOTES
12 The conventional meaning of the logical operatorsis given by the following truth table:
A B (A and B) (AorB) (A xor B)
True True True True False
True False False True True
Fase True False True True
False False False False False
Examples

Examples of logical operators:

Sunny or Warm
Filter(1 .. 10) and Filter(15 .. 24) - se36.1

Examples of short-circuit control forms:

Next _Car.Omner /= null and then Next_Car.Oaner.Age > 25 - se3.10.1
N =0 or else ACN = Ht_Value

4.5.2 Relational Operators and Membership Tests

The equality operators = (equals) and /= (not equals) are predefined for nonlimited types. The other
relational_operators are the ordering operators < (less than), <= (less than or equal), > (greater than), and
>= (greater than or equal). The ordering operators are predefined for scalar types, and for discrete array
types, that is, one-dimensiona array types whose components are of a discrete type.

A membership test, using in or not in, determines whether or not a value belongs to a given subtype or
range, or has a tag that identifies a type that is covered by a given type. Membership tests are allowed for
all types.

Name Resolution Rules
The tested type of a membership test is the type of the range or the type determined by the subtype_mark.

If the tested type is tagged, then the simple_expression shall resolve to be of a type that covers or is
covered by the tested type; if untagged, the expected type for the simple_expression is the tested type.
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Legality Rules
For a membership test, if the simple_expression is of atagged class-wide type, then the tested type shall
be (visibly) tagged.

Satic Semantics
The result type of amembership test is the predefined type Boolean.

The equality operators are predefined for every specific type T that is not limited, and not an anonymous
access type, with the following specifications:

function "=" (Left, Right : T) return Bool ean
function "/="(Left, Right : T) return Bool ean

The ordering operators are predefined for every specific scalar type T, and for every discrete array type T,
with the following specifications:

function "<" (Left, Right
function "<="(Left, Right
function ">" (Left, Right
function ">="(Left, R ght

return Bool ean
return Bool ean
return Bool ean
return Bool ean

J3dd

Dynamic Semantics
For discrete types, the predefined relational operators are defined in terms of corresponding mathematical
operations on the position numbers of the values of the operands.

For real types, the predefined relational operators are defined in terms of the corresponding mathematical
operations on the values of the operands, subject to the accuracy of the type.

Two access-to-object values are equal if they designate the same object, or if both are equa to the null
value of the accesstype.

Two access-to-subprogram values are equal if they are the result of the same evaluation of an Access
attribute_reference, or if both are equa to the null value of the access type. Two access-to-subprogram
values are unequal if they designate different subprograms. It is unspecified whether two access values that
designate the same subprogram but are the result of distinct evaluations of Access attribute_references are
equal or unequal.

For atype extension, predefined equality is defined in terms of the primitive (possibly user-defined) equals
operator of the parent type and of any tagged components of the extension part, and predefined equality for
any other components not inherited from the parent type.

For a private type, if its full type is tagged, predefined equality is defined in terms of the primitive equals
operator of the full type; if the full type is untagged, predefined equality for the private type is that of its
full type.

For other composite types, the predefined equality operators (and certain other predefined operations on
composite types — see 4.5.1 and 4.6) are defined in terms of the corresponding operation on matching
components, defined as follows:

« For two composite objects or values of the same non-array type, matching components are those
that correspond to the same component_declaration or discriminant_specification;

« For two one-dimensiona arrays of the same type, matching components are those (if any) whose
index values match in the following sense: the lower bounds of the index ranges are defined to
match, and the successors of matching indices are defined to match;

e For two multidimensional arrays of the same type, matching components are those whose index
values match in successive index positions.
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The anaogous definitions apply if the types of the two objects or values are convertible, rather than being
the same.

Given the above definition of matching components, the result of the predefined equals operator for
composite types (other than for those composite types covered earlier) is defined as follows:

« If there are no components, the result is defined to be True;
* If there are unmatched components, the result is defined to be False;

» Otherwise, theresult is defined in terms of the primitive equals operator for any matching tagged
components, and the predefined equal s for any matching untagged components.

For any composite type, the order in which "=" is called for components is unspecified. Furthermore, if the
result can be determined before calling "=" on some components, it is unspecified whether "=" is called on
those components.

The predefined "/=" operator gives the complementary result to the predefined "=" operator.

For a discrete array type, the predefined ordering operators correspond to lexicographic order using the
predefined order relation of the component type: A null array is lexicographically less than any array
having at least one component. In the case of nonnull arrays, the left operand is lexicographically less than
the right operand if the first component of the left operand is less than that of the right; otherwise the left
operand is lexicographically less than the right operand only if their first components are equal and the tail
of the left operand is lexicographicaly less than that of the right (the tail consists of the remaining
components beyond the first and can be null).

For the evaluation of a membership test, the simple_expression and the range (if any) are evaluated in an
arbitrary order.

A membership test using in yields the result Trueif:

» Thetested typeis scalar, and the value of the simple_expression belongs to the given range, or
the range of the named subtype; or

» Thetested typeis not scalar, and the value of the simple_expression satisfies any constraints of
the named subtype, and, if the type of the simple_expression is class-wide, the value has a tag
that identifies a type covered by the tested type.

Otherwise the test yields the result False.

A membership test using not in gives the complementary result to the corresponding membership test
using in.

Implementation Requirements

For all nonlimited types declared in language-defined packages, the "=" and "/=" operators of the type shall
behave as if they were the predefined equality operators for the purposes of the equality of composite types
and generic formal types.

NOTES

13 No exception is ever raised by a membership test, by a predefined ordering operator, or by a predefined equality
operator for an elementary type, but an exception can be raised by the evaluation of the operands. A predefined equality
operator for a composite type can only raise an exception if the type has a tagged part whose primitive equals operator
propagates an exception.

14 If acomposite type has components that depend on discriminants, two values of this type have matching components
if and only if their discriminants are equal. Two nonnull arrays have matching components if and only if the length of
each dimension is the same for both.
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Examples

Examples of expressionsinvolving relational operators and membership tests:

XI=Y
' < "A" and "A" < "A3" - True
"Aa" < "B' and "A'" <"A " - True
My_Car = null -- trueif My_Car has been set to null (see 3.10.1)
My_Car = Your_Car -- true if we both share the same car
My_Car.all = Your_Car.all -- trueif the two cars areidentical
Nnot inl1 .. 10 -- range membership test
Today in Mon .. Fri -- range membership test
Today in Weekday -- subtype membership test (see 3.5.1)
Archive in Disk_Unit -- subtype membership test (see 3.8.1)

Tree.all in Addition' dass --classmembership test (see 3.9.1)

4.5.3 Binary Adding Operators

Satic Semantics

The binary adding operators + (addition) and — (subtraction) are predefined for every specific numeric type
T with their conventional meaning. They have the following specifications:

function "+"(Left, Right : T) return T

function "-"(Left, Right : T) return T
The concatenation operators & are predefined for every nonlimited, one-dimensiona array type T with
component type C. They have the following specifications:

function "&'(Left : T, Right : T) return T
function "& (Left : T, Right : C) return T
function "& (Left : C; Right : T) return T
function "& (Left : C; Right : C) return T

Dynamic Semantics
For the evaluation of a concatenation with result type T, if both operands are of type T, the result of the
concatenation is aone-dimensional array whose length is the sum of the lengths of its operands, and whose
components comprise the components of the left operand followed by the components of the right
operand. If the left operand is a null array, the result of the concatenation is the right operand. Otherwise,
the lower bound of the result is determined as follows:

« If the ultimate ancestor of the array type was defined by a constrained_array_definition, then the
lower bound of the result is that of the index subtype;

« If the ultimate ancestor of the array type was defined by an unconstrained_array_definition, then
the lower bound of the result is that of the left operand.

The upper bound is determined by the lower bound and the length. A check is made that the upper bound
of the result of the concatenation belongs to the range of the index subtype, unless the result is a null array.
Constraint_Error israised if this check fails.

If either operand is of the component type C, the result of the concatenation is given by the above rules,
using in place of such an operand an array having this operand as its only component (converted to the
component subtype) and having the lower bound of the index subtype of the array type asits lower bound.

The result of a concatenation is defined in terms of an assignment to an anonymous object, as for any
function cal (see 6.5).
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NOTES
15 As for all predefined operators on modular types, the binary adding operators + and — on modular types include a
final reduction modulo the modulus if the result is outside the base range of the type.

Examples
Examples of expressions involving binary adding operators:
Z+ 0.1 -- Zhasto be of areal type
"A' & "BCD' -- concatenation of two string literals
"A & "BCD' -- concatenation of a character literal and a string literal
A &TA -- concatenation of two character literals
4.5.4 Unary Adding Operators
Satic Semantics

The unary adding operators + (identity) and — (negation) are predefined for every specific numeric type T
with their conventional meaning. They have the following specifications:

function "+"(Right : T) return T
function "-"(Right : T) return T

NOTES
16 For modular integer types, the unary adding operator —, when given a nonzero operand, returns the result of
subtracting the value of the operand from the modulus; for a zero operand, the result is zero.

4.5.5 Multiplying Operators

Satic Semantics
The multiplying operators * (multiplication), / (division), mod (modulus), and rem (remainder) are
predefined for every specific integer type T:

function "*" (Left, Right : T) return T
function "/" (Left, Right : T) return T
function "nmod"(Left, Right : T) return T
function "rem(Left, Right : T) return T

Signed integer multiplication has its conventional meaning.

Signed integer division and remainder are defined by the relation:

A= (AB)*B + (A remB)
where (A rem B) has the sign of A and an absolute value less than the absolute value of B. Signed integer
division satisfies the identity:

(-A/B =-(AB) = A(-B)

The signed integer modulus operator is defined such that the result of A mod B has the sign of B and an
absolute value less than the absolute value of B; in addition, for some signed integer value N, this result
satisfies the relation:

A= B*N + (A nod B)

The multiplying operators on modular types are defined in terms of the corresponding signed integer
operators, followed by a reduction modulo the modulus if the result is outside the base range of the type
(which is only possible for the "*" operator).

Multiplication and division operators are predefined for every specific floating point type T:
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function "*"(Left, Right : T) return T
function "/"(Left, Right : T) return T

The following multiplication and division operators, with an operand of the predefined type Integer, are
predefined for every specific fixed point type T:

function "*"(Left : T, Right : Integer) return T
function "*"(Left : Integer; Right : T) return T
function "/"(Left : T, Right : Integer) return T

All of the above multiplying operators are usable with an operand of an appropriate universal numeric
type. The following additional multiplying operators for root_real are predefined, and are usable when
both operands are of an appropriate universal or root numeric type, and the result is allowed to be of type
root_real, asin anumber_declaration:

function "*"(Left, Right : root_real) return root_real
function "/"(Left, R ght : root_real) return root_real

function "*"(Left : root_real; Right : root_integer) return root_real

function "*"(Left : root_integer; Right : root real) return root_real

function "/"(Left : root_real; Right : root_integer) return root_real
Multiplication and division between any two fixed point types are provided by the following two
predefined operators:

function "*"(Left, Right : universal_fixed) return universal_fixed
function "/"(Left, Right : universal_fixed) return universal_fixed

Legality Rules
The above two fixed-fixed multiplying operators shall not be used in a context where the expected type for

the result is itself universal_fixed — the context has to identify some other numeric type to which the
result isto be converted, either explicitly or implicitly.

Dynamic Semantics
The multiplication and division operators for real types have their conventiona meaning. For floating
point types, the accuracy of the result is determined by the precision of the result type. For decimal fixed
point types, the result is truncated toward zero if the mathematical result is between two multiples of the
small of the specific result type (possibly determined by context); for ordinary fixed point types, if the
mathematical result is between two multiples of the small, it is unspecified which of the two is the result.

The exception Constraint_Error is raised by integer division, rem, and mod if the right operand is zero.
Similarly, for areal type T with T'Machine_Overflows True, division by zero raises Constraint_Error.

NOTES
17 For positive A and B, A/B is the quotient and A rem B is the remainder when A is divided by B. The following
relations are setisfied by the rem operator:
A rem(-B) AremB
(-A rem B -(A remB)
18 For any signed integer K, the following identity holds:
AnmdB = (A + K*B) nod B
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The relations between signed integer division, remainder, and modulus are illustrated by the following table:

A B AB AremB Anod B A B AB AremB AndB
10 5 2 0 0 -10 5 -2 0 0
11 5 2 1 1 -11 5 -2 -1 4
12 5 2 2 2 -12 5 -2 -2 3
13 5 2 3 3 -13 5 -2 -3 2
14 5 2 4 4 -14 5 -2 -4 1
A B AB AremB Anod B A B AB AremB AndB
10 -5 -2 0 0 -10 -5 2 0 0
11 -5 -2 1 -4 -11 -5 2 -1 -1
12 -5 -2 2 -3 -12 -5 2 -2 -2
13 -5 -2 3 -2 -13 -5 2 -3 -3
14 -5 -2 4 -1 -14 -5 2 -4 -4
Examples
Examples of expressions involving multiplying operators:

I : Integer := 1,

J : Integer := 2;

K : Integer := 3;

X : Real :=1.0; - see357

Y : Real := 2.0

F : Fraction := 0.25; - see359

G: Fraction := 0.5;

Expression Value Result Type

1*J 2 sameas| and J, that is, Integer

K/J 1 sameasK and J, that is, Integer

K mod J 1 same asK and J, that is, Integer

XY 0.5 same as X and Y, that is, Real

F/2 0.125 same as F, that is, Fraction

3*F 0.75 same as F, that is, Fraction

0.75*G 0.375 universal_fixed, implicitly convertible

to any fixed point type
Fraction(F*G) 0.125 Fraction, as stated by the conversion
Real (J)*Y 4.0 Real, the type of both operands after

conversion of J

4.5.6 Highest Precedence Operators

Satic Semantics
The highest precedence unary operator abs (absolute value) is predefined for every specific numeric type
T, with the following specification:
function "abs"(Right : T) return T
The highest precedence unary operator not (logical negation) is predefined for every boolean type T, every

modular type T, and for every one-dimensiona array type T whose components are of a boolean type, with
the following specification:

function "not"(Right : T) return T
The result of the operator not for amodular type is defined as the difference between the high bound of the

base range of the type and the value of the operand. For a binary modulus, this corresponds to a bit-wise
complement of the binary representation of the value of the operand.
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The operator not that applies to a one-dimensiona array of boolean components yields a one-dimensional
boolean array with the same bounds; each component of the result is obtained by logical negation of the
corresponding component of the operand (that is, the component that has the same index value). A check is
made that each component of the result belongs to the component subtype; the exception Constraint_Error
israised if this check fails.

The highest precedence exponentiation operator ** is predefined for every specific integer type T with the
following specification:
function "**"(Left : T, Right : Natural) return T

Exponentiation is also predefined for every specific floating point type as well as root_real, with the
following specification (where T isroot_real or the floating point type):

function "**"(Left : T, Right : Integer'Base) return T

The right operand of an exponentiation is the exponent. The expression X**N with the value of the
exponent N positive is equivalent to the expression X*X*...X (with N-1 multiplications) except that the
multiplications are associated in an arbitrary order. With N equal to zero, the result is one. With the value
of N negative (only defined for a floating point operand), the result is the reciprocal of the result using the
absolute value of N as the exponent.

Implementation Permissions

The implementation of exponentiation for the case of a negative exponent is alowed to raise
Constraint_Error if the intermediate result of the repeated multiplications is outside the safe range of the
type, even though the final result (after taking the reciprocal) would not be. (The best machine
approximation to the final result in this case would generally be 0.0.)

NOTES
19 Asimplied by the specification given above for exponentiation of an integer type, a check is made that the exponent
is not negative. Constraint_Error israised if this check fails.

4.6 Type Conversions

Explicit type conversions, both vaue conversions and view conversions, are allowed between closely
related types as defined below. This clause also defines rules for value and view conversions to a particular
subtype of atype, both explicit ones and those implicit in other constructs.

Syntax
type_conversion ::=
subtype_mark(expression)
| subtype_mark(name)

The target subtype of atype_conversion is the subtype denoted by the subtype_mark. The operand of a
type_conversion is the expression or name within the parentheses; its type is the operand type.

One type is convertible to a second type if atype_conversion with the first type as operand type and the
second type as target typeis legal according to the rules of this clause. Two types are convertible if each is
convertible to the other.

A type_conversion whose operand is the name of an object is called a view conversion if both its target
type and operand type are tagged, or if it appears as an actua parameter of mode out or in out; other
type_conversions are called value conversions.
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Name Resolution Rules
The operand of atype_conversion is expected to be of any type.

The operand of a view conversion is interpreted only as a name; the operand of a value conversion is
interpreted as an expression.

Legality Rules
If the target type is a numeric type, then the operand type shall be a numeric type.
If the target typeis an array type, then the operand type shall be an array type. Further:
» Thetypes shal have the same dimensionality;
» Corresponding index types shall be convertible;
» The component subtypes shall statically match; and

* In aview conversion, the target type and the operand type shall both or neither have aliased
components.

If the target typeis a general access type, then the operand type shall be an access-to-object type. Further:

« If the target type is an access-to-variable type, then the operand type shall be an access-to-
variable type;

» |If the target designated type is tagged, then the operand designated type shall be convertible to
the target designated type;

» If the target designated type is not tagged, then the designated types shall be the same, and either
the designated subtypes shall statically match or the target designated subtype shall be
discriminated and unconstrained; and

» The accessibility level of the operand type shall not be statically deeper than that of the target
type. In addition to the places where Legality Rules normally apply (see 12.3), this rule applies
also in the private part of an instance of a generic unit.

If the target type is an access-to-subprogram type, then the operand type shall be an access-to-subprogram
type. Further:

» Thedesignated profiles shall be subtype-conformant.

» The accessibility level of the operand type shall not be statically deeper than that of the target
type. In addition to the places where Legality Rules normally apply (see 12.3), this rule applies
also in the private part of an instance of a generic unit. If the operand type is declared within a
generic body, the target type shall be declared within the generic body.

If the target type is not included in any of the above four cases, there shall be a type that is an ancestor of
both the target type and the operand type. Further, if the target type is tagged, then either:

» Theoperand type shall be covered by or descended from the target type; or
» Theoperand type shall be a class-wide type that covers the target type.

In aview conversion for an untagged type, the target type shall be convertible (back) to the operand type.

Satic Semantics

A type_conversion that is a value conversion denotes the value that is the result of converting the value of
the operand to the target subtype.
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A type_conversion that is a view conversion denotes a view of the object denoted by the operand. This
view is avariable of the target type if the operand denotes a variable; otherwise it is a constant of the target

type.
The nominal subtype of atype_conversion isits target subtype.

Dynamic Semantics
For the evaluation of atype_conversion that is a value conversion, the operand is evaluated, and then the
value of the operand is converted to a corresponding value of the target type, if any. If there is no value of
the target type that corresponds to the operand value, Constraint_Error is raised; this can only happen on
conversion to a modular type, and only when the operand value is outside the base range of the modular
type. Additional rulesfollow:

* Numeric Type Conversion

If the target and the operand types are both integer types, then the result is the value of the
target type that corresponds to the same mathematical integer as the operand.

If the target type is a decimal fixed point type, then the result is truncated (toward 0) if the
value of the operand is not a multiple of the small of the target type.

If the target type is some other real type, then the result is within the accuracy of the target
type (see G.2, **Numeric Performance Requirements”’, for implementations that support the
Numerics Annex).

If the target type is an integer type and the operand type is real, the result is rounded to the
nearest integer (away from zero if exactly hafway between two integers).

e Enumeration Type Conversion

« The result is the vaue of the target type with the same position number as that of the
operand value.

* Array Type Conversion

If the target subtype is a constrained array subtype, then a check is made that the length of
each dimension of the value of the operand equals the length of the corresponding
dimension of the target subtype. The bounds of the result are those of the target subtype.

If the target subtype is an unconstrained array subtype, then the bounds of the result are
obtained by converting each bound of the value of the operand to the corresponding index
type of the target type. For each nonnull index range, a check is made that the bounds of the
range belong to the corresponding index subtype.

In either array case, the value of each component of the result is that of the matching
component of the operand value (see 4.5.2).

» Composite (Non-Array) Type Conversion

« The vaue of each nondiscriminant component of the result is that of the matching
component of the operand value.

« The tag of the result is that of the operand. If the operand type is class-wide, a check is
made that the tag of the operand identifies a (specific) type that is covered by or descended
from the target type.

For each discriminant of the target type that corresponds to a discriminant of the operand
type, its value is that of the corresponding discriminant of the operand value; if it
corresponds to more than one discriminant of the operand type, a check is made that all
these discriminants are equal in the operand value.
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« For each discriminant of the target type that corresponds to a discriminant that is specified
by the derived_type_definition for some ancestor of the operand type (or if class-wide,
some ancestor of the specific type identified by the tag of the operand), its value in the
result is that specified by the derived_type_definition.

« For each discriminant of the operand type that corresponds to a discriminant that is
specified by the derived_type_definition for some ancestor of the target type, a check is
made that in the operand value it equals the value specified for it.

« For each discriminant of the result, a check is made that its value belongs to its subtype.
» Access Type Conversion

- For an access-to-object type, a check is made that the accessibility level of the operand type
is not deeper than that of the target type.

- If thetarget type is an anonymous access type, a check is made that the value of the operand
is not null; if the target is not an anonymous access type, then the result is null if the
operand valueis null.

- If the operand value is not null, then the result designates the same object (or subprogram)
as is designated by the operand value, but viewed as being of the target designated subtype
(or profile); any checks associated with evaluating a conversion to the target designated
subtype are performed.

After conversion of the value to the target type, if the target subtype is constrained, a check is performed
that the value setisfies this constraint.

For the evaluation of a view conversion, the operand name is evauated, and a new view of the object
denoted by the operand is created, whose type is the target type; if the target type is composite, checks are
performed as above for a value conversion.

The properties of this new view are as follows:

 If the target type is composite, the bounds or discriminants (if any) of the view are as defined
above for a value conversion; each nondiscriminant component of the view denotes the matching
component of the operand object; the subtype of the view is constrained if either the target
subtype or the operand object is constrained, or if the target subtype is indefinite, or if the |
operand type is a descendant of the target type, and has discriminants that were not inherited
from the target type;

» If the target type is tagged, then an assignment to the view assigns to the corresponding part of
the object denoted by the operand; otherwise, an assignment to the view assigns to the object,
after converting the assigned value to the subtype of the object (which might raise
Congtraint_Error);

» Reading the value of the view yields the result of converting the value of the operand object to
the target subtype (which might raise Constraint_Error), except if the object is of an access type
and the view conversion is passed as an out parameter; in this latter case, the value of the
operand object is used to initialize the formal parameter without checking against any constraint
of the target subtype (see 6.4.1).

If an Accessibility_Check fails, Program_Error is raised. Any other check associated with a conversion
raises Constraint_Error if it fails.

Conversion to atype is the same as conversion to an unconstrained subtype of the type.

NOTES
20 In addition to explicit type_conversions, type conversions are performed implicitly in situations where the expected
type and the actua type of a construct differ, as is permitted by the type resolution rules (see 8.6). For example, an
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integer literal is of the type universal_integer, and is implicitly converted when assigned to a target of some specific
integer type. Similarly, an actual parameter of a specific tagged type is implicitly converted when the corresponding
formal parameter is of a class-wide type.

21 Even when the expected and actual types are the same, implicit subtype conversions are performed to adjust the array
bounds (if any) of an operand to match the desired target subtype, or to raise Constraint_Error if the (possibly adjusted)
value does not satisfy the constraints of the target subtype.

A ramification of the overload resolution rules is that the operand of an (explicit) type_conversion cannot be the literal
null, an allocator, an aggregate, a string_literal, a character_literal, or an attribute_reference for an Access or
Unchecked_Access attribute. Similarly, such an expression enclosed by parentheses is not alowed. A
qualified_expression (see 4.7) can be used instead of such atype_conversion.

22 The constraint of the target subtype has no effect for a type_conversion of an elementary type passed as an out
parameter. Hence, it is recommended that the first subtype be specified as the target to minimize confusion (a similar
recommendation applies to renaming and generic formal in out objects).

Examples

Examples of numeric type conversion:

Real (2*J) -- valueis converted to floating point

I nteger(1.6) -- valueis2

Integer(-0.4) -- valueisO
Example of conversion between derived types:

type A Formis new B_Form

X : A Form

Y B _Form

X := A FormY);

Y := B_Form(X); -- thereverseconversion

Examples of conversions between array types:

type Sequence is array (Integer range <>) of Integer;
subtype Dozen is Sequence(1l .. 12);
Ledger : array(1l .. 100) of Integer;

Sequence( Ledger) -- bounds are those of Ledger
Sequence(Ledger (31 .. 42)) -- boundsare31and 42
Dozen( Ledger (31 .. 42)) -- bounds are those of Dozen

4.7 Qualified Expressions

A qualified_expression is used to state explicitly the type, and to verify the subtype, of an operand that is
either an expression or an aggregate.

Syntax
qualified_expression ::=
subtype_mark'(expression) | subtype_mark'aggregate
Name Resolution Rules

The operand (the expression or aggregate) shall resolve to be of the type determined by the subtype_-
mark, or auniversa typethat coversit.

Dynamic Semantics
The evaluation of a qualified_expression evaluates the operand (and if of a universal type, converts it to

the type determined by the subtype_mark) and checks that its value belongs to the subtype denoted by the
subtype_mark. The exception Constraint_Error israised if this check fails.
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NOTES

23 When a given context does not uniquely identify an expected type, a qualified_expression can be used to do so. In
particular, if an overloaded name or aggregate is passed to an overloaded subprogram, it might be necessary to qualify
the operand to resolve its type.

Examples
Examples of disambiguating expressions using qualification:

type Mask is (Fix, Dec, Exp, Signif);
type Code is (Fix, Oa, Dec, Tnz, Sub);

Print (Mask'(Dec)); -- DecisoftypeMask

Print (Code' (Dec)); -- DecisoftypeCode

for J in Code' (Fix) .. Code' (Dec) loop ... --qualification needed for either Fix or Dec
for Jin Code range Fix .. Dec loop ... -- qualification unnecessary

for J Code' (Fix) .. Dec loop ... -- qualification unnecessary for Dec

i
in
Dozen' (1| 3| 5| 7 => 2, others => 0) --see4d6

4.8 Allocators

The evaluation of an allocator creates an object and yields an access value that designates the object.

Syntax

allocator ::=
new subtype_indication | new qualified_expression

Name Resolution Rules

The expected type for an allocator shall be a single access-to-object type with designated type D such that
either D covers the type determined by the subtype_mark of the subtype_indication or
qualified_expression, or the expected type is anonymous and the determined type is D'Class.

Legality Rules
Aninitialized allocator is an allocator with a qualified_expression. An uninitialized alocator is one with a
subtype_indication. In the subtype_indication of an uninitialized allocator, a constraint is permitted only
if the subtype_mark denotes an unconstrained composite subtype; if there is no constraint, then the
subtype_mark shall denote a definite subtype.

If the type of the allocator is an access-to-constant type, the allocator shall be an initialized alocator. If the
designated typeis limited, the allocator shall be an uninitialized allocator.

Satic Semantics

If the designated type of the type of the allocator is elementary, then the subtype of the created object is the
designated subtype. If the designated type is composite, then the created object is always constrained; if
the designated subtype is constrained, then it provides the constraint of the created object; otherwise, the
object is constrained by itsinitial value (even if the designated subtype is unconstrained with defaults).

Dynamic Semantics
For the evauation of an allocator, the elaboration of the subtype_indication or the evaluation of the
qualified_expression is performed first. For the evaluation of an initialized allocator, an object of the
designated type is created and the value of the qualified_expression is converted to the designated subtype
and assigned to the object.

For the evaluation of an uninitialized allocator:
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If the designated type is elementary, an object of the designated subtype is created and any
implicit initial valueis assigned;

If the designated type is composite, an object of the designated type is created with tag, if any,
determined by the subtype_mark of the subtype_indication; any per-object constraints on
subcomponents are elaborated (see 3.8) and any implicit initial values for the subcomponents of
the object are obtained as determined by the subtype_indication and assigned to the
corresponding subcomponents. A check is made that the value of the object belongs to the
designated subtype. Constraint_Error is raised if this check fails. This check and the initialization
of the object are performed in an arbitrary order.

If the created object contains any tasks, they are activated (see 9.2). Finally, an access value that designates
the created object is returned.

NOTES
24 Allocators cannot create objects of an abstract type. See 3.9.3.

25 If any part of the created object is controlled, the initialization includes calls on corresponding Initialize or Adjust
procedures. See 7.6.

26 As explained in 13.11, ‘‘ Storage Management’’, the storage for an object alocated by an allocator comes from a
storage pool (possibly user defined). The exception Storage Error is raised by an allocator if there is not enough storage.
Instances of Unchecked_Deallocation may be used to explicitly reclaim storage.

27 Implementations are permitted, but not required, to provide garbage collection (see 13.11.3).

Examples

Examples of allocators:
new Cel I' (0, null, null) -- initialized explicitly, see 3.10.1
new Cel | ' (Value => 0, Succ => null, Pred => null) --initialized explicitly
new Cel | -- not initialized
new Matrix(1 .. 10, 1 .. 20) -- the bounds only are given
new Matrix' (1 .. 10 => (1 .. 20 => 0.0)) -- initialized explicitly
new Buf f er (100) -- the discriminant only is given
new Buffer' (Size => 80, Pos => 0, Value => (1 .. 80 =>"'"A")) --initialized explicitly
Expr_Ptr' (new Literal) -- allocator for access-to-class-wide type, see 3.9.1
Expr_Ptr' (new Literal' (Expression with 3.5)) -- initialized explicitly

4.9 Static Expressions and Static Subtypes

Certain expressions of a scalar or string type are defined to be static. Similarly, certain discrete ranges are
defined to be static, and certain scalar and string subtypes are defined to be static subtypes. Static means
determinable at compile time, using the declared properties or values of the program entities.

A static expression isascalar or string expression that is one of the following:

anumeric_literal;
astring_literal of astatic string subtype;
aname that denotes the declaration of a named number or a static constant;

a function_call whose function_name or function_prefix statically denotes a static function, and
whose actual parameters, if any (whether given explicitly or by default), are all static
expressions,

an attribute_reference that denotes a scalar value, and whose prefix denotes a static scalar
subtype;
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* an attribute_reference whose prefix statically denotes a statically constrained array object or
array subtype, and whose attribute_designator is First, Last, or Length, with an optiona
dimension;

» atype_conversion whose subtype_mark denotes a static scalar subtype, and whose operand is a
static expression;

» a qualified_expression whose subtype_mark denotes a static (scalar or string) subtype, and
whose operand is a static expression,;

» amembership test whose simple_expression is a static expression, and whose range is a static
range or whose subtype_mark denotes a static (scalar or string) subtype;

» ashort-circuit control form both of whose relations are static expressions;
» adgtatic expression enclosed in parentheses.
A name statically denotes an entity if it denotes the entity and:

» Itisadirect_name, expanded name, or character_literal, and it denotes a declaration other than
arenaming_declaration; or

» Itisan attribute_reference whose prefix statically denotes some entity; or
* It denotes arenaming_declaration with aname that statically denotes the renamed entity.

A static function is one of the following:

» apredefined operator whose parameter and result types are all scalar types none of which are
descendants of formal scalar types,

» apredefined concatenation operator whose result type is a string type;
e an enumeration literal;

» alanguage-defined attribute that is a function, if the prefix denotes a static scalar subtype, and if
the parameter and result types are scalar.

In any case, ageneric formal subprogram is not a static function.

A static constant is a constant view declared by a full constant declaration or an object_renaming_-
declaration with a static nominal subtype, having a value defined by a static scalar expression or by a static
string expression whose value has a length not exceeding the maximum length of a string_literal in the
implementation.

A static range is a range whose bounds are static expressions, or a range_attribute_reference that is
equivalent to such arange. A static discrete_range is one that is a static range or is a subtype_indication
that defines a static scalar subtype. The base range of a scalar type is a static range, unless the type is a
descendant of aformal scalar type.

A static subtype is either a static scalar subtype or a static string subtype. A static scalar subtype is an
unconstrained scalar subtype whose typeis not a descendant of aformal scalar type, or a constrained scalar
subtype formed by imposing a compatible static constraint on a static scalar subtype. A static string
subtype is an unconstrained string subtype whose index subtype and component subtype are static (and
whose type is not a descendant of aformal array type), or a constrained string subtype formed by imposing
a compatible static constraint on a static string subtype. In any case, the subtype of a generic formal object
of modein out, and the result subtype of ageneric formal function, are not static.

The different kinds of static constraint are defined as follows:
e A null constraint is aways static;
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e A scaar constraint is static if it has no range_constraint, or one with a static range;

* An index constraint is static if each discrete_range is static, and each index subtype of the
corresponding array typeis static;

e A discriminant constraint is static if each expression of the constraint is static, and the subtype
of each discriminant is static.

A subtype is statically constrained if it is constrained, and its constraint is static. An object is statically
constrained if its nominal subtypeis statically constrained, or if it is a static string constant.

Legality Rules
A static expression is evaluated at compile time except when it is part of the right operand of a static short-

circuit control form whose value is determined by its left operand. This evaluation is performed exactly,
without performing Overflow_Checks. For a static expression that is evaluated:

e The expression isillegal if its evaluation fails a language-defined check other than Overflow_-
Check.

« |If the expression is not part of alarger static expression, then its value shall be within the base
range of its expected type. Otherwise, the value may be arbitrarily large or small.

« |If the expression is of type universal_real and its expected type is a decimal fixed point type,
then its value shall be a multiple of the small of the decimal type.

The last two restrictions above do not apply if the expected type is a descendant of a formal scalar type (or
acorresponding actua typein an instance).

Implementation Requirements

For ared static expression that is not part of alarger static expression, and whose expected type is not a
descendant of aformal scalar type, the implementation shall round or truncate the value (according to the
Machine_Rounds attribute of the expected type) to the nearest machine number of the expected type; if the
valueis exactly haf-way between two machine numbers, any rounding shall be performed away from zero.
If the expected type is a descendant of a formal scalar type, no special rounding or truncating is required
— normal accuracy rules apply (see Annex G).

NOTES
28 An expression can be static even if it occursin a context where staticness is not required.

29 A static (or run-time) type_conversion from areal type to an integer type performs rounding. If the operand value is
exactly half-way between two integers, the rounding is performed away from zero.

Examples
Examples of static expressions:
1+1 -2
abs(-10)*3 --30
Kilo : constant := 1000;
Mega : constant := Kilo*Kil o; --1 000_000
Long : constant := Float'Digits*2;
Hal f _Pi : constant := Pi/2; --see3.3.2
Deg_To_Rad : constant := Half_Pi/90;

Rad_To_Deg : constant 1. 0/ Deg_To_Rad; --equivalentto 1.0/((3.14159 26536/2)/90)
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4.9.1 Statically Matching Constraints and Subtypes

Satic Semantics

A congtraint statically matches another constraint if both are null constraints, both are static and have
equal corresponding bounds or discriminant values, or both are nonstatic and result from the same
elaboration of a constraint of a subtype_indication or the same evaluation of a range of a discrete_-
subtype_definition.

A subtype statically matches another subtype of the same type if they have statically matching constraints.
Two anonymous access subtypes statically match if their designated subtypes statically match.

Two ranges of the same type statically match if both result from the same evaluation of arange, or if both
are static and have equal corresponding bounds.

A congtraint is statically compatible with a scalar subtype if it statically matches the constraint of the
subtype, or if both are static and the constraint is compatible with the subtype. A constraint is statically
compatible with an access or composite subtype if it statically matches the constraint of the subtype, or if
the subtype is unconstrained. One subtype is statically compatible with a second subtype if the constraint
of the first is statically compatible with the second subtype.
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Section 5; Statements

A statement defines an action to be performed upon its execution.

This section describes the general rules applicable to all statements. Some statements are discussed in
later sections. Procedure_call_statements and return_statements are described in 6, ‘‘ Subprograms'’.
Entry_call_statements, requeue_statements, delay_statements, accept_statements, select_statements,
and abort_statements are described in 9, *‘ Tasks and Synchronization’’. Raise_statements are described
in 11, ‘‘Exceptions’, and code_statements in 13. The remaining forms of statements are presented in
this section.

5.1 Simple and Compound Statements - Sequences of Statements

A statement is either simple or compound. A simple_statement encloses no other statement. A
compound_statement can enclose simple_statements and other compound_statements.

Syntax
sequence_of_statements ::= statement { statement}

statement ::=
{label} simple_statement |{label} compound_statement

simple_statement ::= null_statement

| assignment_statement | exit_statement

| goto_statement | procedure_call_statement
| return_statement | entry_call_statement

| requeue_statement | delay_statement

| abort_statement | raise_statement

| code_statement
compound_statement ::=

if_statement | case_statement
| loop_statement | block_statement
| accept_statement | select_statement

null_statement ::= null;

label ::= <<label_statement_identifier>>

statement_identifier ::= direct_name

The direct_name of a statement_identifier shall be an identifier (not an operator_symbol).

Name Resolution Rules

The direct_name of a statement_identifier shall resolve to denote its corresponding implicit declaration
(see below).

Legality Rules
Distinct identifiers shall be used for all statement_identifiers that appear in the same body, including inner
block_statements but excluding inner program units.

Satic Semantics

For each statement_identifier, there is an implicit declaration (with the specified identifier) at the end of
the declarative_part of the innermost block_statement or body that encloses the statement_identifier. The
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implicit declarations occur in the same order as the statement_identifiers occur in the source text. If a
usage name denotes such an implicit declaration, the entity it denotes is the label, loop_statement, or
block_statement with the given statement_identifier.

Dynamic Semantics
The execution of anull_statement has no effect.

A transfer of control is the run-time action of an exit_statement, return_statement, goto_statement, or
requeue_statement, selection of a terminate_alternative, raising of an exception, or an abort, which
causes the next action performed to be one other than what would normally be expected from the other
rules of the language. As explained in 7.6.1, a transfer of control can cause the execution of constructs to
be completed and then left, which may trigger finalization.

The execution of a sequence_of_statements consists of the execution of the individual statements in
succession until the sequence_ is completed.
NOTES
1 A statement_identifier that appears immediately within the declarative region of a named loop_statement or an
accept_statement is nevertheless implicitly declared immediately within the declarative region of the innermost
enclosing body or block_statement; in other words, the expanded name for a named statement is not affected by whether
the statement occurs inside or outside a named loop or an accept_statement — only nesting within block_statements is
relevant to the form of its expanded name.

Examples
Examples of labeled statements:

<<Her e>> <<l ci >> <<Aqui >> <<H er>> nul | ;
<<After>> X := 1;

5.2 Assighment Statements

An assignment_statement replaces the current value of a variable with the result of evaluating an
expression.

Syntax
assignment_statement ::=
variable_name := expression;

The execution of an assignment_statement includes the evaluation of the expression and the assignment
of the value of the expression into the target. An assignment operation (as opposed to an assignment_-
statement) is performed in other contexts as well, including object initialization and by-copy parameter
passing. The target of an assignment operation is the view of the object to which avalue is being assigned;
the target of an assignment_statement is the variable denoted by the variable name.

Name Resolution Rules

The variable_name of an assignment_statement is expected to be of any nonlimited type. The expected
type for the expression is the type of the target.

Legality Rules
The target denoted by the variable name shall be avariable.

If the target is of atagged class-wide type T'Class, then the expression shall either be dynamically tagged,
or of type T and tag-indeterminate (see 3.9.2).
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Dynamic Semantics

For the execution of an assignment_statement, the variable name and the expression are first evaluated
in an arbitrary order.

When the type of the target is class-wide:

» If the expression is tag-indeterminate (see 3.9.2), then the controlling tag value for the
expression is the tag of the target;

» Otherwise (the expression is dynamically tagged), a check is made that the tag of the value of
the expression is the same as that of the target; if this check fails, Constraint_Error israised.

The value of the expression is converted to the subtype of the target. The conversion might raise an
exception (see 4.6).

In cases involving controlled types, the target is finalized, and an anonymous object might be used as an
intermediate in the assignment, as described in 7.6.1, ‘*Completion and Finalization''. In any case, the
converted value of the expression is then assigned to the target, which consists of the following two steps:

» Thevalue of the target becomes the converted value.

» If any part of thetarget is controlled, its valueis adjusted as explained in clause 7.6.

NOTES
2 Thetag of an object never changes; in particular, an assignment_statement does not change the tag of the target.

3 The values of the discriminants of an object designated by an access value cannot be changed (not even by assigning a
complete value to the object itself) since such objects are always constrained; however, subcomponents of such objects
may be unconstrained.

Examples
Examples of assignment statements:

Val ue : = Max_Val ue - 1;
Shade : = Bl ue;

Next _Frane(F)(M N) := 2.5; -- seedll
U := Dot _Product(V, W; -- seeb.3

Witer := (Status => Open, Unit => Printer, Line_Count => 60); -- see38.1
Next _Car.all := (72074, null); -- see310.1

Examplesinvolving scalar subtype conversions:

5;
15;

I, J: Integer range 1 .. 10 :
K : Integer range 1 .. 20 :

J; -- identical ranges
J; -- compatibleranges

|
K :
J K;  -- will raise Constraint_Error if K> 10

Examples involving array subtype conversions:

A: String(l .. 31);
B: String(3 .. 33);

A := B; -- samenumber of components

A(1 .. 9) := "tar sauce";
A(4 .. 12) := A1 .. 9); -- A(..12)="tartar sauce"
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NOTES

4 Notes on the examples: Assignment_statements are allowed even in the case of overlapping slices of the same array,
because the variable_name and expression are both evaluated before copying the value into the variable. In the above
example, an implementation yielding A(1 .. 12) = "tartartartar” would be incorrect.

5.3 If Statements

An if_statement selects for execution at most one of the enclosed sequences_of_statements, depending
on the (truth) value of one or more corresponding conditions.

Syntax
if_statement ::=
if condition then
sequence_of_statements
{esif condition then
sequence_of_statements}
[else
sequence_of_statements]
end if;
condition ::= boolean_expression

Name Resolution Rules

A condition is expected to be of any boolean type.

Dynamic Semantics
For the execution of an if_statement, the condition specified after if, and any conditions specified after
elsif, are evaluated in succession (treating afina else as elsif True then), until one evaluates to True or al
conditions are evaluated and yield False. If a condition evaluates to True, then the corresponding
sequence_of_statements is executed; otherwise none of them is executed.

Examples
Examples of if statements:
if Month = Decenber and Day = 31 then

Mont h : = January;

Day =1,

Year := Year + 1;
end if;

i f Line_Too_Short then
rai se Layout_Error;
elsif Line_Full then
New_Li ne;
Put (1tem;
el se
Put (1tem;
end if;

if My_Car.Omner.Vehicle /= My_Car then -- se310.1
Report ("Incorrect data");
end if;
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5.4 Case Statements

A case_statement selects for execution one of a number of alternative sequences_of_statements; the
chosen dternative is defined by the value of an expression.

Syntax

case_statement ::=
case expression is
case_statement_alternative
{case_statement_alternative}
end case;
case_statement_alternative ::=
when discrete_choice_list =>
sequence_of_statements

Name Resolution Rules

The expression is expected to be of any discrete type. The expected type for each discrete_choice is the
type of the expression.

Legality Rules
The expressions and discrete_ranges given as discrete_choices of a case_statement shall be static. A
discrete_choice others, if present, shall appear alone and in the last discrete_choice_list.
The possible values of the expression shall be covered as follows:

« If the expression is aname (including atype_conversion or afunction_call) having a static and
constrained nominal subtype, or is a qualified_expression whose subtype_mark denotes a static
and constrained scalar subtype, then each non-other s discrete_choice shall cover only valuesin
that subtype, and each value of that subtype shall be covered by some discrete_choice (either
explicitly or by others).

» If the type of the expression is root_integer, universal_integer, or a descendant of a formal
scalar type, then the case_statement shall have an other s discrete_choice.

» Otherwise, each value of the base range of the type of the expression shall be covered (either
explicitly or by others).

Two distinct discrete_choices of acase_statement shall not cover the same value.

Dynamic Semantics
For the execution of acase_statement the expression isfirst evauated.

If the value of the expression is covered by the discrete_choice_list of some case_statement_alternative,
then the sequence_of_statements of the _alternative is executed.

Otherwise (the value is not covered by any discrete_choice_list, perhaps due to being outside the base
range), Constraint_Error is raised.

NOTES
5 The execution of a case_statement chooses one and only one aternative. Qualification of the expression of a
case_statement by a static subtype can often be used to limit the number of choices that need be given explicitly.

115 15 June 2001 Case Statements 5.4 |

10

11

12

13

14



15

16

17

18

ISO/IEC 8652:1995(E) with COR.1:2000 — Ada Reference Manual

Examples
Examples of case statements:
case Sensor is
when El evation => Record_El evati on(Sensor_Val ue);

when Azi nut h => Record_Azimuth (Sensor_Val ue);
when Distance => Record_Distance (Sensor_Val ue);

when ot hers => null;
end case;
case Today is
when Mon => Conpute_lnitial_Bal ance;
when Fri => Conput e_Cl osi ng_Bal ance;
when Tue .. Thu=> Cenerate_Report(Today);
when Sat .. Sun=> null;
end case;
case Bin_Number(Count) is
when 1 => Update_Bin(1);
when 2 => Update_Bin(2);
when 3 | 4=>
Empty_Bin(1);
Enpty_Bi n(2);
when ot hers => raise Error;
end case;

5.5 Loop Statements

A loop_statement includes a sequence_of_statements that is to be executed repeatedly, zero or more
times.

Syntax
loop_statement ::=
[loop_statement_identifier:]
[iteration_scheme] loop
sequence_of_statements
end loop [loop_identifier];
iteration_scheme ::= while condition
| for loop_parameter_specification
loop_parameter_specification ::=
defining_identifier in [rever se] discrete_subtype_definition
If aloop_statement has aloop_statement_identifier, then the identifier shall be repeated after the end
loop; otherwise, there shall not be an identifier after the end loop.

Satic Semantics

A loop_parameter_specification declares a loop parameter, which is an object whose subtype is that
defined by the discrete_subtype_definition.

Dynamic Semantics
For the execution of aloop_statement, the sequence_of_statements is executed repeatedly, zero or more
times, until the loop_statement is complete. The loop_statement is complete when a transfer of control
occurs that transfers control out of the loop, or, in the case of an iteration_scheme, as specified below.

For the execution of a loop_statement with a while iteration_scheme, the condition is evaluated before
each execution of the sequence_of_statements; if the value of the condition is True, the sequence_of -
statements is executed; if False, the execution of the loop_statement is complete.
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For the execution of a loop_statement with a for iteration_scheme, the loop_parameter_specification is
first elaborated. This elaboration creates the loop parameter and elaborates the discrete_subtype_-
definition. If the discrete_subtype_definition defines a subtype with a null range, the execution of the
loop_statement is complete. Otherwise, the sequence_of _statements is executed once for each value of
the discrete subtype defined by the discrete_subtype_definition (or until the loop is left as a consequence
of atransfer of control). Prior to each such iteration, the corresponding value of the discrete subtype is
assigned to the loop parameter. These vaues are assigned in increasing order unless the reserved word
reverseis present, in which case the values are assigned in decreasing order.

NOTES
6 A loop parameter is a constant; it cannot be updated within the sequence_of_statements of the loop (see 3.3).

7 An object_declaration should not be given for aloop parameter, since the loop parameter is automatically declared by
the loop_parameter_specification. The scope of a loop parameter extends from the loop_parameter_specification to the
end of the loop_statement, and the visibility rules are such that a loop parameter is only visible within the
sequence_of_statements of the loop.

8 The discrete_subtype_definition of a for loop is elaborated just once. Use of the reserved word rever se does not alter
the discrete subtype defined, so that the following iteration_schemes are not equivalent; the first has anull range.

for Jinreverse 1l .. 0
for Jin0 .. 1

Examples
Example of a loop statement without an iteration scheme:
| oop
Get (Current _Character);
exit when Current_Character = '*";
end | oop;

Example of a loop statement with a while iteration scheme:

while Bid(N).Price < Cut_Of.Price |oop
Record_Bi d(Bi d(N). Price);
N:= N+ 1,

end | oop;

Example of a loop statement with a for iteration scheme:

for J in Buffer' Range | oop - - works even with a null range
if Buffer(J) /= Space then
Put (Buffer(J));
end if;
end | oop;

Example of a loop statement with a name:

Sumat i on:
while Next /= Head | oop -- 23101
Sum := Sum + Next. Val ue;
Next := Next. Succ;

end | oop Sunmati on;

5.6 Block Statements

A block_statement encloses a handled_sequence_of statements optionaly preceded by a
declarative_part.
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Syntax
block statement ::=
[block_statement_identifier:]
[declare
declarative_part]
begin
handled_sequence_of_statements
end [block_identifier];
If ablock_statement has ablock_statement_identifier, then the identifier shall be repeated after the
end; otherwise, there shall not be an identifier after the end.

Satic Semantics
A block_statement that has no explicit declarative_part has an implicit empty declarative_part.

Dynamic Semantics

The execution of a block_statement consists of the elaboration of its declarative_part followed by the
execution of itshandled_sequence_of_statements.

Examples
Example of a block statement with a local variable:
Swap:

decl are

Tenp : Integer;
begi n

Temp :=V; V:=U U:= Tenp;
end Swap;

5.7 Exit Statements

An exit_statement is used to complete the execution of an enclosing loop_statement; the completion is
conditional if the exit_statement includes a condition.

Syntax

exit_statement ::=
exit [loop_name] [when condition];

Name Resolution Rules

Theloop_name, if any, in an exit_statement shall resolve to denote aloop_statement.

Legality Rules
Each exit_statement applies to a loop_statement; this is the loop_statement being exited. An exit_-
statement with a name is only alowed within the loop_statement denoted by the name, and applies to
that loop_statement. An exit_statement without a name is only allowed within a loop_statement, and
appliesto the innermost enclosing one. An exit_statement that applies to a given loop_statement shall not
appear within a body or accept_statement, if this construct is itsef enclosed by the given
loop_statement.
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Dynamic Semantics
For the execution of an exit_statement, the condition, if present, is first evaluated. If the value of the
condition is True, or if thereis no condition, a transfer of control is done to complete the loop_statement.
If the value of the condition is False, no transfer of control takes place.

NOTES
9 Severa nested loops can be exited by an exit_statement that names the outer loop.

Examples
Examples of loops with exit statements:

for Nin 1 .. Max_NumlItens | oop
Get _New | ten(New_ | ten);
Merge_Item(New Item Storage File);
exit when New Item = Term nal _Item

end | oop;
Mai n_Cycl e:
| oop

- - initial statements
exit Main_Cycl e when Found;
- - final statements

end | oop Main_Cycle;

5.8 Goto Statements

A goto_statement specifies an explicit transfer of control from this statement to a target statement with a
given label.

Syntax
goto_statement ::= goto label_name;

Name Resolution Rules
The label_name shall resolve to denote a label; the statement with that label is the target statement.

Legality Rules
The innermost sequence_of_statements that encloses the target statement shall also enclose the

goto_statement. Furthermore, if a goto_statement is enclosed by an accept_statement or a body, then
the target statement shall not be outside this enclosing construct.

Dynamic Semantics

The execution of a goto_statement transfers control to the target statement, completing the execution of
any compound_statement that encloses the goto_statement but does not enclose the target.

NOTES

10 The above rules alow transfer of control to a statement of an enclosing sequence_of_statements but not the reverse.
Similarly, they prohibit transfers of control such as between dternatives of a case_statement, if_statement, or
select_statement; between exception_handlers; or from an exception_handler of a handled_sequence_of_statements
back to its sequence_of_statements.
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Examples
Example of a loop containing a goto statement:

<<Sort >>
for I in1 .. N1 Iloop
if A(l) > A(l1+1) then
Exchange(A(l), A(l+1));
goto Sort;
end if;
end | oop;
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Section 6: Subprograms

A subprogram is a program unit or intrinsic operation whose execution is invoked by a subprogram call.
There are two forms of subprogram: procedures and functions. A procedure call is a statement; afunction
cal is an expression and returns a value. The definition of a subprogram can be given in two parts. a
subprogram declaration defining its interface, and a subprogram_body defining its execution. Operators
and enumeration literals are functions.

A callable entity is a subprogram or entry (see Section 9). A callable entity is invoked by a call; that is, a
subprogram call or entry call. A callable construct is a construct that defines the action of a call upon a
callable entity: asubprogram_body, entry_body, or accept_statement.

6.1 Subprogram Declarations

A subprogram_declaration declares a procedure or function.

Syntax
subprogram_declaration ::= subprogram_specification;
abstract_subprogram_declaration ::= subprogram_specification is abstract;

subprogram_specification ::=
procedur e defining_program_unit_name parameter_profile
| function defining_designator parameter_and_result_profile

designator ::= [parent_unit_name . ]identifier | operator_symbol
defining_designator ::= defining_program_unit_name | defining_operator_symbol
defining_program_unit_name ::= [parent_unit_name . ]defining_identifier

The optiona parent_unit_name isonly alowed for library units (see 10.1.1).
operator_symbol ::= string_literal

The sequence of charactersin an operator_symbol shall correspond to an operator belonging to one
of the six classes of operators defined in clause 4.5 (spaces are not allowed and the case of lettersis
not significant).

defining_operator_symbol ::= operator_symbol
parameter_profile ::= [formal_part]
parameter_and_result_profile ::= [formal_part] return subtype_mark

formal_part ::=
(parameter_specification {; parameter_specification})
parameter_specification ::=
defining_identifier_list : mode subtype_mark [:= default_expression]
| defining_identifier_list : access_definition [:= default_expression]

mode ::=[in] |in out | out

Name Resolution Rules
A formal parameter is an object directly visible within a subprogram_body that represents the actual

parameter passed to the subprogram in a call; it is declared by a parameter_specification. For a formal
parameter, the expected type for its default_expression, if any, isthat of the formal parameter.
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Legality Rules
The parameter mode of a formal parameter conveys the direction of information transfer with the actual
parameter: in, in out, or out. Mode in is the default, and is the mode of a parameter defined by an
access_definition. The formal parameters of afunction, if any, shall have the mode in.

A default_expression is only alowed in a parameter_specification for aformal parameter of modein.

A subprogram_declaration or a generic_subprogram_declaration requires a completion: a body, a
renaming_declaration (see 8.5), or a pragma Import (see B.1). A completion is not allowed for an
abstract_subprogram_declaration.

A name that denotes a formal parameter is not allowed within the formal_part in which it is declared, nor
within the formal_part of a corresponding body or accept_statement.

Satic Semantics

The profile of (aview of) acallable entity is either a parameter_profile or parameter_and_result_profile;
it embodies information about the interface to that entity — for example, the profile includes information
about parameters passed to the callable entity. All callable entities have a profile — enumeration literals,
other subprograms, and entries. An access-to-subprogram type has a designated profile. Associated with a
profileis acalling convention. A subprogram_declaration declares a procedure or a function, as indicated
by theinitial reserved word, with name and profile as given by its specification.

The nominal subtype of aformal parameter is the subtype denoted by the subtype_mark, or defined by the
access_definition, in the parameter_specification.

An access parameter isaformal in parameter specified by an access_definition. An access parameter is of
an anonymous general access-to-variable type (see 3.10). Access parameters allow dispatching calls to be
controlled by access values.
The subtypes of a profile are:

« For any non-access parameters, the nominal subtype of the parameter.

« For any access parameters, the designated subtype of the parameter type.

e For any result, the result subtype.
The types of a profile are the types of those subtypes.

A subprogram declared by an abstract_subprogram_declaration is abstract; a subprogram declared by a
subprogram_declaration is not. See 3.9.3, ‘* Abstract Types and Subprograms'’.

Dynamic Semantics
The elaboration of asubprogram_declaration or an abstract_subprogram_declaration has no effect.

NOTES
1 A parameter_specification with several identifiers is equivalent to a sequence of single parameter_specifications, as
explainedin 3.3.

2 Abstract subprograms do not have bodies, and cannot be used in a nondispatching call (see 3.9.3, ‘*Abstract Types
and Subprograms’’).

3 The evaluation of default_expressions is caused by certain calls, as described in 6.4.1. They are not evaluated during
the elaboration of the subprogram declaration.

4 Subprograms can be called recursively and can be called concurrently from multiple tasks.
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Examples
Examples of subprogram declarations:

procedure Traverse_Tree;
procedure Increment(X : in out |nteger);
procedure Right_Indent(Margin : out Line_Size); -- see354
procedure Switch(From To : in out Link); -- se310.1
functi on Randomreturn Probability; -- se357
function Mn_Cell (X : Link) return Cell; -- se310.1
function Next_Frame(K : Positive) return Frang; -- se3.10
function Dot_Product(Left, Right : Vector) return Real; -- see36
function "*"(Left, Right : Matrix) return Matrix; -- se36

Examples of in parameters with default expressions:

procedure Print_Header(Pages : in Natural;
Header : in Line = (1 .. Line'lLast =>""); -- se36
Center : in Boolean := True);

6.2 Formal Parameter Modes

A parameter_specification declares aformal parameter of modein, in out, or out.

Satic Semantics

A parameter is passed either by copy or by reference. When a parameter is passed by copy, the formal
parameter denotes a separate object from the actual parameter, and any information transfer between the
two occurs only before and after executing the subprogram. When a parameter is passed by reference, the
formal parameter denotes (a view of) the object denoted by the actual parameter; reads and updates of the
formal parameter directly reference the actual parameter object.

A typeis aby-copy typeif it is an elementary type, or if it is a descendant of a private type whose full type
is aby-copy type. A parameter of aby-copy typeis passed by copy.
A typeisaby-reference typeif it is a descendant of one of the following:

* atagged type;

» atask or protected type;

» anonprivate type with the reserved word limited in its declaration;

» acomposite type with a subcomponent of a by-reference type;

» aprivate type whose full typeis a by-reference type.

A parameter of a by-reference type is passed by reference. Each value of a by-reference type has an
associated object. For a parenthesized expression, qualified_expression, or type_conversion, this object is
the one associated with the operand.

For parameters of other types, it is unspecified whether the parameter is passed by copy or by reference.

Bounded (Run-Time) Errors

If one name denotes a part of a formal parameter, and a second name denotes a part of a distinct formal
parameter or an object that is not part of a forma parameter, then the two names are considered distinct
access paths. If an object is of atype for which the parameter passing mechanism is not specified, theniit is
a bounded error to assign to the object via one access path, and then read the value of the object via a
distinct access path, unless the first access path denotes a part of aformal parameter that no longer exists at
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the point of the second access (due to leaving the corresponding callable construct). The possible
consequences are that Program_Error is raised, or the newly assigned value is read, or some old value of
the object is read.

NOTES
5 A formal parameter of modein isaconstant view (see 3.3); it cannot be updated within the subprogram_body.

6.3 Subprogram Bodies

A subprogram_body specifies the execution of a subprogram.

Syntax
subprogram_body ::=
subprogram_specification is
declarative_part
begin
handled_sequence_of_statements
end [designator];

If adesignator appears at the end of a subprogram_body, it shall repeat the defining_designator of
the subprogram_specification.

Legality Rules
In contrast to other bodies, a subprogram_body need not be the completion of a previous declaration, in
which case the body declares the subprogram. If the body is a completion, it shall be the completion of a

subprogram_declaration or generic_subprogram_declaration. The profile of a subprogram_body that
compl etes a declaration shall conform fully to that of the declaration.

Satic Semantics

A subprogram_body is considered a declaration. It can either complete a previous declaration, or itself be
theinitial declaration of the subprogram.

Dynamic Semantics

The elaboration of a non-generic subprogram_body has no other effect than to establish that the
subprogram can from then on be called without failing the Elaboration_Check.

The execution of a subprogram_body is invoked by a subprogram call. For this execution the
declarative_part is elaborated, and the handled_sequence_of_statements is then executed.

Examples
Example of procedure body:
procedure Push(E : in Elenent_Type; S : in out Stack) is
begi n

if S.Index = S.Size then
rai se Stack_Overfl ow
el se
S.Index := S.Index + 1;
S. Space(S. I ndex) := E
end if;
end Push;
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Example of a function body:

function Dot_Product(Left, Right : Vector) return Real is
Sum: Real := 0.0;
begi n
Check(Left' First = Right' First and Left'Last = Right'Last);
for J in Left'Range | oop
Sum := Sum + Left(J)*R ght(J);
end | oop;
return Sum
end Dot _Product;

6.3.1 Conformance Rules

When subprogram profiles are given in more than one place, they are required to conform in one of four
ways:. type conformance, mode conformance, subtype conformance, or full conformance.

Satic Semantics

As explained in B.1, “‘Interfacing Pragmas’’, a convention can be specified for an entity. Unless this
International Standard states otherwise, the default convention of an entity is Ada. For a calable entity or
access-to-subprogram type, the convention is called the calling convention. The following conventions are
defined by the language:

» The default calling convention for any subprogram not listed below is Ada. A pragma
Convention, Import, or Export may be used to override the default calling convention (see B.1).

» Thelntrinsic caling convention represents subprograms that are **built in'’ to the compiler. The
default calling convention is Intrinsic for the following:

- an enumeration literal;
- a"/=" operator declared implicitly due to the declaration of "=" (see 6.6);
. any other implicitly declared subprogram unless it is a dispatching operation of a tagged
type;
+ aninherited subprogram of a generic formal tagged type with unknown discriminants;
«+ an attribute that is a subprogram;
« asubprogram declared immediately within a protected_body.
The Access attribute is not alowed for Intrinsic subprograms.

» The default calling convention is protected for a protected subprogram, and for an access-to-
subprogram type with the reserved word protected in its definition.

» Thedefault calling convention is entry for an entry.

» If not specified above as Intrinsic, the calling convention for any inherited or overriding
dispatching operation of a tagged type is that of the corresponding subprogram of the parent
type. The default calling convention for a new dispatching operation of a tagged type is the
convention of the type.

Of these four conventions, only Ada and Intrinsic are allowed as a convention_identifier in a pragma
Convention, Import, or Export.

Two profiles are type conformant if they have the same number of parameters, and both have a result if
either does, and corresponding parameter and result types are the same, or, for access parameters,
corresponding designated types are the same.
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Two profiles are mode conformant if they are type-conformant, and corresponding parameters have
identical modes, and, for access parameters, the designated subtypes statically match.

Two profiles are subtype conformant if they are mode-conformant, corresponding subtypes of the profile
statically match, and the associated calling conventions are the same. The profile of a generic formal
subprogram is not subtype-conformant with any other profile.

Two profiles are fully conformant if they are subtype-conformant, and corresponding parameters have the
same names and have default_expressions that are fully conformant with one another.

Two expressions are fully conformant if, after replacing each use of an operator with the equivalent
function_call:

« each constituent construct of one corresponds to an instance of the same syntactic category in the
other, except that an expanded name may correspond to a direct_name (or character_literal) or
to adifferent expanded name in the other; and

« each direct_name, character_literal, and selector_name that is not part of the prefix of an
expanded name in one denotes the same declaration as the corresponding direct_name,
character_literal, or selector_name in the other; and

« each attribute_designator in one must be the same as the corresponding attribute_designator in
the other; and

« each primary that isalitera in one has the same value as the corresponding literal in the other.
Two known_discriminant_parts are fully conformant if they have the same number of discriminants, and

discriminants in the same positions have the same names, staticaly matching subtypes, and
default_expressionsthat are fully conformant with one another.

Two discrete_subtype_definitions are fully conformant if they are both subtype_indications or are both
ranges, the subtype_marks (if any) denote the same subtype, and the corresponding simple_expressions
of theranges (if any) fully conform.

Implementation Permissions

An implementation may declare an operator declared in alanguage-defined library unit to beintrinsic.

6.3.2 Inline Expansion of Subprograms
Subprograms may be expanded in line at the call site.

Syntax
The form of apragma Inline, which is a program unit pragma (see 10.1.5), is as follows:
pragma Inline(name {, name});

Legality Rules
The pragma shall apply to one or more callable entities or generic subprograms.

Static Semantics

If apragma Inline applies to a calable entity, this indicates that inline expansion is desired for al calls to
that entity. If a pragma Inline applies to a generic subprogram, this indicates that inline expansion is
desired for all callsto al instances of that generic subprogram.
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Implementation Permissions

For each call, an implementation is free to follow or to ignore the recommendation expressed by the
pragma.
NOTES

6 The name in apragma Inline can denote more than one entity in the case of overloading. Such a pragma appliesto al
of the denoted entities.

6.4 Subprogram Calls

A subprogram call is either aprocedure_call_statement or afunction_call; it invokes the execution of the
subprogram_body. The call specifies the association of the actual parameters, if any, with formal
parameters of the subprogram.

Syntax
procedure_call_statement ::=
procedure_name;
| procedure_prefix actual_parameter_part;
function_call ::=
function_name
| function_prefix actual_parameter_part
actual_parameter_part ::=
(parameter_association {, parameter_association})

parameter_association ::=
[formal_parameter _selector_name =>] explicit_actual_parameter

explicit_actual_parameter ::= expression | variable_name
A parameter_association is hamed or positional according to whether or not the formal_-
parameter _selector_name is specified. Any positional associations shall precede any named

associations. Named associations are not allowed if the prefix in a subprogram call is an attribute_-
reference.

Name Resolution Rules

The name or prefix given in a procedure_call_statement shall resolve to denote a callable entity that is a
procedure, or an entry renamed as (viewed as) a procedure. The name or prefix given in a function_call
shall resolve to denote a callable entity that is a function. When there is an actual_parameter_part, the
prefix can be an implicit_dereference of an access-to-subprogram value.

A subprogram call shall contain at most one association for each formal parameter. Each formal parameter
without an association shall have a default_expression (in the profile of the view denoted by the name or
prefix). Thisrule is an overloading rule (see 8.6).

Dynamic Semantics
For the execution of a subprogram call, the name or prefix of the call is evaluated, and each parameter_-
association is evaluated (see 6.4.1). If adefault_expression is used, an implicit parameter_association is
assumed for this rule. These evaluations are done in an arbitrary order. The subprogram_body is then
executed. Finally, if the subprogram completes normally, then after it is |eft, any necessary assigning back
of formal to actual parameters occurs (see 6.4.1).

The exception Program_Error is raised at the point of a function_call if the function completes normally
without executing areturn_statement.
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12 A function_call denotes a constant, as defined in 6.5; the nominal subtype of the constant is given by the
result subtype of the function.

Examples
13 Examples of procedure calls:
14 Traverse_Tree; -- seeb6.l
Print_Header (128, Title, True); -- seeb.l
15 Switch(From => X, To => Next); -- seeb6.1l
Print_Header (128, Header => Title, Center => True); -- seeb.l
Print_Header (Header => Title, Center => True, Pages => 128); -- see6.l
16 Examples of function calls:
17 Dot _Product (U, V) -- see6.land 6.3
Cd ock -- se96
F.all - - presuming F is of an access-to-subprogram type — see 3.10
18 Examples of procedures with default expressions:
19 procedure Activate(Process : in Process_Nane;
After in Process_Nanme := No_Process;
Wi t in Duration := 0.0;
Prior in Bool ean : = Fal se);
20 procedure Pair(Left, Right : in Person_Nanme := new Person); -- se310.1

21 Examples of their calls:

22 Activate(X);
Activate(X, After =>Y);
Activate(X, Wit => 60.0, Prior => True);
Activate(X, Y, 10.0, False);

23 Pai r;
Pair(Left => new Person, Right => new Person);
NOTES
24 7 If a default_expression is used for two or more parameters in a multiple parameter_specification, the default_-
expression is evaluated once for each omitted parameter. Hence in the above examples, the two calls of Pair are
equivalent.
Examples
25 Examples of overloaded subprograms:
26 procedure Put (X : in Integer);
procedure Put(X : in String);
27 procedure Set (Tint :in Color);
procedure Set(Signal : in Light);

28 Examples of their calls:

29 Put ( 28) ;
Put ("no possibl e anbiguity here");
30 Set (Ti nt => Red);

Set (Si gnal => Red);
Set (Col or' (Red));

31 - - Set(Red) would be ambiguous since Red may
- - denote a value either of type Color or of type Light
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6.4.1 Parameter Associations

A parameter association defines the association between an actual parameter and aformal parameter.

Name Resolution Rules

The formal_parameter_selector_name of a parameter_association shall resolve to denote a parameter_-
specification of the view being called.

The actual parameter is either the explicit_actual_parameter given in a parameter_association for a
given formal parameter, or the corresponding default_expression if no parameter_association is given
for the formal parameter. The expected type for an actual parameter is the type of the corresponding formal
parameter.

If the mode is in, the actual is interpreted as an expression; otherwise, the actual is interpreted only as a
name, if possible.

Legality Rules
If the modeisin out or out, the actual shall be aname that denotes avariable.

The type of the actual parameter associated with an access parameter shall be convertible (see 4.6) to its
anonymous access type.

Dynamic Semantics
For the evaluation of a parameter_association:
» Theactual parameter isfirst evaluated.

» For an access parameter, the access_definition is elaborated, which creates the anonymous
access type.

» For a parameter (of any mode) that is passed by reference (see 6.2), a view conversion of the
actual parameter to the nomina subtype of the forma parameter is evaluated, and the formal
parameter denotes that conversion.

e For anin or in out parameter that is passed by copy (see 6.2), the formal parameter object is
created, and the value of the actua parameter is converted to the nomina subtype of the formal
parameter and assigned to the formal.

» For an out parameter that is passed by copy, the formal parameter object is created, and:

» For an access type, the formal parameter is initialized from the value of the actual,
without a constraint check;

» For a composite type with discriminants or that has implicit initial values for any
subcomponents (see 3.3.1), the behavior is asfor an in out parameter passed by copy.

» For any other type, the forma parameter is uninitialized. If composite, a view
conversion of the actual parameter to the nominal subtype of the formal is evaluated
(which might raise Constraint_Error), and the actua subtype of the forma is that of
the view conversion. If elementary, the actual subtype of the formal is given by its
nominal subtype.

A formal parameter of mode in out or out with discriminants is constrained if either its nominal subtype or
the actual parameter is constrained.
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After normal completion and leaving of a subprogram, for each in out or out parameter that is passed by
copy, the value of the formal parameter is converted to the subtype of the variable given as the actual
parameter and assigned to it. These conversions and assignments occur in an arbitrary order.

6.5 Return Statements

A return_statement is used to complete the execution of the innermost enclosing subprogram_body,
entry_body, or accept_statement.

Syntax
return_statement ::= return [expression];
Name Resolution Rules

The expression, if any, of a return_statement is called the return expression. The result subtype of a
function is the subtype denoted by the subtype_mark after the reserved word return in the profile of the
function. The expected type for areturn expression is the result type of the corresponding function.

Legality Rules
A return_statement shall be within a callable construct, and it applies to the innermost one. A return_-
statement shall not be within a body that is within the construct to which the return_statement applies.

A function body shall contain at least one return_statement that applies to the function body, unless the
function contains code_statements. A return_statement shall include a return expression if and only if it
appliesto afunction body.

Dynamic Semantics

For the execution of a return_statement, the expression (if any) is first evaluated and converted to the
result subtype.

If the result type is class-wide, then the tag of the result is the tag of the value of the expression.

If the result type is a specific tagged type:

e If itislimited, then a check is made that the tag of the value of the return expression identifies
the result type. Constraint_Error israised if this check fails.

< If itisnonlimited, then the tag of the result isthat of the result type.
A typeisareturn-by-reference typeif it is a descendant of one of the following:
« atagged limited type;
* atask or protected type;
e anonprivate type with the reserved word limited in its declaration;
¢ acomposite type with a subcomponent of a return-by-reference type;
« aprivate type whose full typeis areturn-by-reference type.

If the result type is a return-by-reference type, then a check is made that the return expression is one of the
following:

* aname that denotes an object view whose accessibility level is not deeper than that of the master
that elaborated the function body; or
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» a parenthesized expression or qualified_expression whose operand is one of these kinds of
expressions.

The exception Program_Error israised if this check fails.
For afunction with a return-by-reference result type the result is returned by reference; that is, the function
call denotes a constant view of the object associated with the value of the return expression. For any other

function, the result is returned by copy; that is, the converted value is assigned into an anonymous constant
created at the point of the return_statement, and the function call denotes that object.

Finally, atransfer of control is performed which completes the execution of the callable construct to which
the return_statement applies, and returns to the caler.

Examples
Examples of return statements:
return; - - inaprocedure body, entry_body, or accept_statement
return Key_Val ue(Last_| ndex); - - inafunction body

6.6 Overloading of Operators

An operator is a function whose designator is an operator_symbol. Operators, like other functions, may
be overloaded.

Name Resolution Rules

Each use of a unary or binary operator is equivaent to a function_call with function_prefix being the
corresponding operator_symbol, and with (respectively) one or two positional actual parameters being the
operand(s) of the operator (in order).

Legality Rules

The subprogram_specification of a unary or binary operator shall have one or two parameters,
respectively. A generic function instantiation whose designator is an operator_symbol is only allowed if
the specification of the generic function has the corresponding number of parameters.

Default_expressions are not alowed for the parameters of an operator (whether the operator is declared
with an explicit subprogram_specification or by a generic_instantiation).

An explicit declaration of "/=" shall not have aresult type of the predefined type Boolean.

Satic Semantics

A declaration of "=" whose result type is Boolean implicitly declares a declaration of "/=" that gives the
complementary result.

NOTES
8 The operators "+" and "—" are both unary and binary operators, and hence may be overloaded with both one- and two-
parameter functions.
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Examples
8 Examples of user-defined operators:

9 function "+" (Left, Right : Matrix) return Matrix;
function "+" (Left, Right : Vector) return Vector;

- - assuming that A, B, and C are of the type Vector
- - thefollowing two statements are equivalent:

B + G

A=
A:="+"(B, O;
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Section 7: Packages

Packages are program units that allow the specification of groups of logically related entities. Typicaly, a
package contains the declaration of a type (often a private type or private extension) aong with the
declarations of primitive subprograms of the type, which can be called from outside the package, while
their inner workings remain hidden from outside users.

7.1 Package Specifications and Declarations

A package is generally provided in two parts: a package_specification and a package_body. Every
package has a package_specification, but not al packages have apackage_body.

Syntax
package_declaration ::= package_specification;
package_specification ::=
package defining_program_unit_name is
{basic_declarative_item}
[private
{basic_declarative_item}]
end [[parent_unit_name.]identifier]
If an identifier or parent_unit_name.identifier appears at the end of a package_specification, then
this sequence of lexical elements shall repeat the defining_program_unit_name.

Legality Rules

A package_declaration or generic_package_declaration requires a completion (a body) if it contains any
declarative_item that requires a completion, but whose completion is not in its package_specification.

Satic Semantics

The first list of declarative_items of a package_specification of a package other than a generic formal
package is called the visible part of the package. The optiona list of declarative_items after the reserved
word private (of any package_specification) is called the private part of the package. If the reserved
word private does not appear, the package has an implicit empty private part.

An entity declared in the private part of a package is visible only within the declarative region of the
package itself (including any child units — see 10.1.1). In contrast, expanded names denoting entities
declared in the visible part can be used even outside the package; furthermore, direct visibility of such
entities can be achieved by means of use_clauses (see 4.1.3 and 8.4).

Dynamic Semantics
The elaboration of a package_declaration consists of the elaboration of its basic_declarative_itemsin the
given order.

NOTES
1 Thevisible part of a package contains all the information that another program unit is able to know about the package.

2 If a declaration occurs immediately within the specification of a package, and the declaration has a corresponding
completion that is abody, then that body has to occur immediately within the body of the package.
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Examples
Example of a package declaration:
package Rational _Nunbers is
type Rational is

record
Nurrer at or : I nteger;
Denomi nator : Positive;
end record;
function "="(X, Y : Rational) return Bool ean;
function "/" (X Y : Integer) return Rational; -- toconstructa rational number
function "+" (X, Y : Rational) return Rational;
function "-" (X, Y : Rational) return Rational;
function "*" (X, Y : Rational) return Rational;
/

function "/" (X Y : Rational) return Rational;
end Rational _Nunbers;
There are also many examples of package declarations in the predefined language environment (see Annex
A).

7.2 Package Bodies

In contrast to the entities declared in the visible part of a package, the entities declared in the
package_body are visible only within the package_body itself. As a consequence, a package with a
package_body can be used for the construction of a group of related subprograms in which the logica
operations available to clients are clearly isolated from the internal entities.

Syntax
package_body ::=
package body defining_program_unit_name is
declarative_part
[begin
handled_sequence_of_statements]
end [[parent_unit_name.]identifier];
If an identifier or parent_unit_name.identifier appears at the end of a package_body, then this
sequence of lexical elements shall repeat the defining_program_unit_name.

Legality Rules
A package_body shall be the completion of a previous package_declaration or generic_package._-
declaration. A library package_declaration or library generic_package_declaration shall not have a
body unless it requires a body; pragma Elaborate_ Body can be used to require a library_unit_declaration
to have abody (see 10.2.1) if it would not otherwise require one.

Satic Semantics

In any package_body without statements there is an implicit null_statement. For any package._-
declaration without an explicit completion, there is an implicit package_body containing a single
null_statement. For a noninstance, nonlibrary package, this body occurs at the end of the declarative_part
of the innermost enclosing program unit or block_statement; if there are several such packages, the order
of the implicit package_bodies is unspecified. (For an instance, the implicit package_body occurs at the
place of the instantiation (see 12.3). For a library package, the place is partialy determined by the
elaboration dependences (see Section 10).)
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Dynamic Semantics
For the elaboration of a nongeneric package_body, its declarative_part is first elaborated, and its
handled_sequence_of_statements is then executed.

NOTES

3 A variable declared in the body of a package is only visible within this body and, consequently, its value can only be
changed within the package_body. In the absence of local tasks, the value of such a variable remains unchanged
between calls issued from outside the package to subprograms declared in the visible part. The properties of such a
variable are similar to those of a*‘ static’” variable of C.

4 The elaboration of the body of a subprogram explicitly declared in the visible part of a package is caused by the
elaboration of the body of the package. Hence a call of such a subprogram by an outside program unit raises the
exception Program_Etrror if the call takes place before the elaboration of the package_body (see 3.11).

Examples
Example of a package body (see 7.1):
package body Rational _Nunmbers is
procedure Same_Denominator (X, Y : in out Rational) is

begin
- - reduces X and Y to the same denominator:

end Sane_Denomni nat or;

function "="(X, Y : Rational) return Boolean is
U: Rational := X
V : Rational :=Y;

begi n

Sanme_Denoni nator (U, V);
return U Nunerator = V.Nunerator;

end "=",
function "/" (X Y : Integer) return Rational is
begi n
if Y>O0 then
return (Nunerator => X, Denominator =>Y);
el se
return (Nunerator => -X, Denonminator => -Y);
end if;
end "/";
function "+" (X, Y : Rational) return Rational is . end "+";
function "-" (X, Y : Rational) return Rational is . end "-";
function "*" (X, Y : Rational) return Rational is . end "*";
function "/" (X, Y : Rational) return Rational is . end "/";
end Rational _Nunbers;

7.3 Private Types and Private Extensions

The declaration (in the visible part of a package) of a type as a private type or private extension serves to
separate the characteristics that can be used directly by outside program units (that is, the logica
properties) from other characteristics whose direct use is confined to the package (the details of the
definition of the type itself). See 3.9.1 for an overview of type extensions.

Syntax
private_type_declaration ::=
type defining_identifier [discriminant_part] is [[abstract] tagged] [limited] private;

private_extension_declaration ::=
type defining_identifier [discriminant_part] is
[abstract] new ancestor_subtype_indication with private;
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Legality Rules
A private_type_declaration or private_extension_declaration declares a partial view of the type; such a
declaration is alowed only as a declarative_item of the visible part of a package, and it requires a
completion, which shall be a full_type_declaration that occurs as a declarative_item of the private part of
the package. The view of the type declared by the full_type_declaration is called the full view. A generic
formal private type or ageneric formal private extension is also a partial view.

A type shall be completely defined before it is frozen (see 3.11.1 and 13.14). Thus, neither the declaration
of avariable of apartial view of atype, nor the creation by an allocator of an object of the partial view are
alowed before the full declaration of the type. Similarly, before the full declaration, the name of the partia
view cannot be used in ageneric_instantiation or in arepresentation item.

A private typeislimited if its declaration includes the reserved word limited; a private extension is limited
if its ancestor type is limited. If the partial view is nonlimited, then the full view shall be nonlimited. If a
tagged partial view islimited, then the full view shall be limited. On the other hand, if an untagged partial
view islimited, the full view may be limited or nonlimited.

If the partial view is tagged, then the full view shall be tagged. On the other hand, if the partia view is
untagged, then the full view may be tagged or untagged. In the case where the partial view is untagged and
the full view is tagged, no derivatives of the partial view are allowed within the immediate scope of the
partial view; derivatives of the full view are allowed.

The ancestor subtype of a private_extension_declaration is the subtype defined by the ancestor_-
subtype_indication; the ancestor type shall be a specific tagged type. The full view of a private extension
shall be derived (directly or indirectly) from the ancestor type. In addition to the places where Legality
Rules normally apply (see 12.3), the requirement that the ancestor be specific applies aso in the private
part of an instance of a generic unit.

If the declaration of a partia view includes a known_discriminant_part, then the full_type_declaration
shall have afully conforming (explicit) known_discriminant_part (see 6.3.1, ‘* Conformance Rules’). The
ancestor subtype may be unconstrained; the parent subtype of the full view is required to be constrained
(see 3.7).

If a private extension inherits known discriminants from the ancestor subtype, then the full view shall also
inherit its discriminants from the ancestor subtype, and the parent subtype of the full view shall be
constrained if and only if the ancestor subtype is constrained.

If a partial view has unknown discriminants, then the full_type_declaration may define a definite or an
indefinite subtype, with or without discriminants.

If apartial view has neither known nor unknown discriminants, then the full_type_declaration shall define
a definite subtype.

If the ancestor subtype of a private extension has constrained discriminants, then the parent subtype of the
full view shall impose a statically matching constraint on those discriminants.

Satic Semantics

A private_type_declaration declares a private type and its first subtype. Similarly, a private_extension_-
declaration declares a private extension and its first subtype.

A declaration of a partial view and the corresponding full_type_declaration define two views of a single
type. The declaration of a partial view together with the visible part define the operations that are available
to outside program units; the declaration of the full view together with the private part define other
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operations whose direct use is possible only within the declarative region of the package itself. Moreover,
within the scope of the declaration of the full view, the characteristics of the type are determined by the
full view; in particular, within its scope, the full view determines the classes that include the type, which
components, entries, and protected subprograms are visible, what attributes and other predefined
operations are allowed, and whether the first subtypeis static. See 7.3.1.

A private extension inherits components (including discriminants unless there is a new discriminant_part
specified) and user-defined primitive subprograms from its ancestor type, in the same way that a record
extension inherits components and user-defined primitive subprograms from its parent type (see 3.4).

Dynamic Semantics
The elaboration of a private_type_declaration creates a partial view of a type. The elaboration of a
private_extension_declaration elaborates the ancestor_subtype_indication, and creates a partial view of a
type.

NOTES
5 The partia view of atype as declared by a private_type_declaration is defined to be a composite view (in 3.2). The
full view of the type might or might not be composite. A private extension is aso composite, asisits full view.

6 Declaring a private type with an unknown_discriminant_part is a way of preventing clients from creating uninitialized
objects of the type; they are then forced to initialize each object by calling some operation declared in the visible part of
the package. If such a type is aso limited, then no objects of the type can be declared outside the scope of the
full_type_declaration, restricting all object creation to the package defining the type. This allows complete control over
al storage allocation for the type. Objects of such atype can still be passed as parameters, however.

7 The ancestor type specified in a private_extension_declaration and the parent type specified in the corresponding
declaration of arecord extension given in the private part need not be the same — the parent type of the full view can be
any descendant of the ancestor type. In this case, for a primitive subprogram that is inherited from the ancestor type and
not overridden, the formal parameter names and default expressions (if any) come from the corresponding primitive
subprogram of the specified ancestor type, while the body comes from the corresponding primitive subprogram of the
parent type of the full view. See 3.9.2.

Examples
Examples of private type declarations:
type Key is private;
type File_Nanme is limted private;
Example of a private extension declaration:
type List is new Ada. Finalization.Controlled with private;

7.3.1 Private Operations

For atype declared in the visible part of a package or generic package, certain operations on the type do
not become visible until later in the package — either in the private part or the body. Such private
operations are available only inside the declarative region of the package or generic package.

Satic Semantics

The predefined operators that exist for a given type are determined by the classes to which the type
belongs. For example, an integer type has a predefined "+" operator. In most cases, the predefined
operators of a type are declared immediately after the definition of the type; the exceptions are explained
below. Inherited subprograms are aso implicitly declared immediately after the definition of the type,
except as stated below.
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For a composite type, the characteristics (see 7.3) of the type are determined in part by the characteristics
of its component types. At the place where the composite type is declared, the only characteristics of
component types used are those characteristics visible at that place. If later immediately within the
declarative region in which the composite type is declared additional characteristics become visible for a
component type, then any corresponding characteristics become visible for the composite type. Any
additional predefined operators are implicitly declared at that place.

The corresponding rule applies to a type defined by a derived_type_definition, if there is a place
immediately within the declarative region in which the type is declared where additional characteristics of
its parent type become visible.

For example, an array type whose component type is limited private becomes nonlimited if the full view of
the component type is nonlimited and visible at some later place immediately within the declarative region
in which the array typeis declared. In such a case, the predefined "=" operator isimplicitly declared at that
place, and assignment is allowed after that place.

Inherited primitive subprograms follow a different rule. For a derived_type_definition, each inherited
primitive subprogram is implicitly declared at the earliest place, if any, immediately within the declarative
region in which the type_declaration occurs, but after the type_declaration, where the corresponding
declaration from the parent is visible. If there is no such place, then the inherited subprogram is not
declared at al. An inherited subprogram that is not declared at al cannot be named in a call and cannot be
overridden, but for atagged type, it is possible to dispatch to it.

For a private_extension_declaration, each inherited subprogram is declared immediately after the
private_extension_declaration if the corresponding declaration from the ancestor is visible at that place.
Otherwise, the inherited subprogram is not declared for the private extension, though it might be for the
full type.

The Class attribute is defined for tagged subtypes in 3.9. In addition, for every subtype S of an untagged
private type whose full view is tagged, the following attribute is defined:

SClass Denotes the class-wide subtype corresponding to the full view of S. This attribute is
alowed only from the beginning of the private part in which the full view is declared, until
the declaration of the full view. After the full view, the Class attribute of the full view can
be used.

NOTES

8 Because a partia view and a full view are two different views of one and the same type, outside of the defining
package the characteristics of the type are those defined by the visible part. Within these outside program units the type
is just a private type or private extension, and any language rule that applies only to another class of types does not
apply. The fact that the full declaration might implement a private type with a type of a particular class (for example, as
an array type) is relevant only within the declarative region of the package itself including any child units.

The consequences of this actual implementation are, however, valid everywhere. For example: any default initialization
of components takes place; the attribute Size provides the size of the full view; finaization is still done for controlled
components of the full view; task dependence rules still apply to components that are task objects.

9 Partial views provide assignment (unless the view is limited), membership tests, selected components for the selection
of discriminants and inherited components, qualification, and explicit conversion.

10 For a subtype S of a partia view, SSize is defined (see 13.3). For an object A of a partial view, the attributes A'Size
and A'Address are defined (see 13.3). The Position, First_Bit, and Last_Bit attributes are also defined for discriminants
and inherited components.
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Examples
Example of a type with private operations:

package Key_Manager is
type Key is private;
Nul | _Key : constant Key; -- adeferred constant declaration (see 7.4)
procedure Get_Key(K : out Key);
function "<" (X, Y : Key) return Bool ean;
private
type Key is new Natural;
Nul I _Key : constant Key := Key' First;
end Key_Manager;
package body Key_Manager is
Last _Key : Key := Null _Key;
procedure Get_Key(K : out Key) is
begin
Last _Key := Last_Key + 1;
K : = Last _Key;
end Get_Key;
function "<" (X, Y : Key) return Boolean is
begi n
return Natural (X) < Natural (Y);
end "<";
end Key_Manager;
NOTES
11 Notes on the example: Outside of the package Key_Manager, the operations available for objects of type Key include
assignment, the comparison for equality or inequality, the procedure Get_Key and the operator "<"; they do not include
other relational operators such as">=", or arithmetic operators.

The explicitly declared operator "<" hides the predefined operator "<" implicitly declared by the full_type_declaration.
Within the body of the function, an explicit conversion of X and Y to the subtype Natural is necessary to invoke the "<"
operator of the parent type. Alternatively, the result of the function could be written as not (X >=Y), since the operator
">="is not redefined.

The value of the variable Last_Key, declared in the package body, remains unchanged between calls of the procedure
Get_Key. (Seealsothe NOTES of 7.2.)

7.4 Deferred Constants

Deferred constant declarations may be used to declare constants in the visible part of a package, but with
the value of the constant given in the private part. They may also be used to declare constants imported
from other languages (see Annex B).

Legality Rules
A deferred constant declaration is an object_declaration with the reserved word constant but no
initiadlization expression. The constant declared by a deferred constant declaration is called a deferred
constant. A deferred constant declaration requires a completion, which shall be a full constant declaration
(called the full declaration of the deferred constant), or a pragma Import (see Annex B).

A deferred constant declaration that is completed by a full constant declaration shall occur immediately
within the visible part of a package_specification. For this case, the following additional rules apply to the
corresponding full declaration:

» Thefull declaration shall occur immediately within the private part of the same package;
» Thedeferred and full constants shall have the same type;

* |If the subtype defined by the subtype_indication in the deferred declaration is constrained, then
the subtype defined by the subtype_indication in the full declaration shall match it statically. On
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the other hand, if the subtype of the deferred constant is unconstrained, then the full declaration
is still allowed to impose a constraint. The constant itself will be constrained, like all constants;

« |f the deferred constant declaration includes the reserved word aliased, then the full declaration
shall aso.

A deferred constant declaration that is completed by a pragma Import need not appear in the visible part of
apackage_specification, and has no full constant declaration.

The completion of adeferred constant declaration shall occur before the constant is frozen (see 7.4).

Dynamic Semantics
The elaboration of a deferred constant declaration elaborates the subtype_indication or (only alowed in
the case of an imported constant) the array_type_definition.

NOTES
12 The full constant declaration for adeferred constant that is of a given private type or private extension is not alowed
before the corresponding full_type_declaration. This is a consequence of the freezing rules for types (see 13.14).

Examples
Examples of deferred constant declarations:

Nul | _Key : constant Key; -see7.31

CPU I dentifier : constant String(1..8);
pragna | nport (Assenbler, CPU ldentifier, Link_Name => "CPU ID");
-seeB.1l

7.5 Limited Types

A limited typeis (aview of) atype for which the assignment operation is not allowed. A nonlimited typeis
a(view of a) type for which the assignment operation is allowed.

Legality Rules
If a tagged record type has any limited components, then the reserved word limited shall appear in its
record_type_definition.

Satic Semantics
A typeislimited if it is adescendant of one of the following:
« atypewith the reserved word limited in its definition;
* atask or protected type;
» acomposite type with alimited component.
Otherwise, the typeis nonlimited.

There are no predefined equality operators for alimited type.

NOTES

13 Thefollowing are conseguences of the rules for limited types:
* Aninitiaization expression is not allowed in an object_declaration if the type of the object is limited.
* A default expression is not allowed in a component_declaration if the type of the record component is

limited.

* Aninitialized alocator is not alowed if the designated type is limited.
* A generic formal parameter of mode in must not be of alimited type.
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14 Aggregates are not available for alimited composite type. Concatenation is not available for alimited array type.

15 The rules do not exclude a default_expression for a formal parameter of a limited type; they do not exclude a
deferred constant of alimited type if the full declaration of the constant is of a nonlimited type.

16 Asillustrated in 7.3.1, an untagged limited type can become nonlimited under certain circumstances.

Examples
Example of a package with a limited type:

package | O Package is
type File_Name is limted private;

procedure Open (F : in out File_Nane);

i
procedure Cose(F : in out File_Name);
procedure Read (F : in File_Nanme; Item: out |nteger);
procedure Wite(F : in File_Name; Item: in |Integer);

private
type File_Narme is
limted record
Internal _Nane : Integer := O;
end record,;
end | O _Package;

package body | O _Package is

Limt : constant := 200;

type File_Descriptor is record ... end record;

Directory : array (1 .. Limt) of File_Descriptor;

procedure Open (F : in out File_Nane) is end;

procedure Close(F : in out File_Name) is ... end,

procedure Read (F : in File_Name; Item: out Integer) is end;

procedure Wite(F : in File_Nane; Item: in Integer) is ... end;
begi n

end | C_Package;

NOTES

17 Notes on the example: In the example above, an outside subprogram making use of 10_Package may obtain a file
name by calling Open and later use it in calls to Read and Write. Thus, outside the package, a file name obtained from
Open acts as a kind of password; itsinternal properties (such as containing a numeric value) are not known and no other
operations (such as addition or comparison of internal names) can be performed on afile name. Most importantly, clients
of the package cannot make copies of objects of type File_Name.

This exampleis characteristic of any case where complete control over the operations of atype is desired. Such packages
serve adua purpose. They prevent a user from making use of the internal structure of the type. They also implement the
notion of an encapsulated data type where the only operations on the type are those given in the package specification.

The fact that the full view of File_Name s explicitly declared limited means that parameter passing and function return
will always be by reference (see 6.2 and 6.5).

7.6 User-Defined Assignment and Finalization

Three kinds of actions are fundamental to the manipulation of objects. initialization, finalization, and
assignment. Every object is initialized, either explicitly or by default, after being created (for example, by
an object_declaration or allocator). Every object is finalized before being destroyed (for example, by
leaving a subprogram_body containing an object_declaration, or by a cal to an instance of
Unchecked Deallocation). An assignment operation is used as part of assignment_statements, explicit
initialization, parameter passing, and other operations.

Default definitions for these three fundamental operations are provided by the language, but a controlled
type gives the user additional control over parts of these operations. In particular, the user can define, for a
controlled type, an Initiaize procedure which is invoked immediately after the normal default initialization
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of a controlled object, a Finalize procedure which is invoked immediately before finadization of any of the
components of a controlled object, and an Adjust procedure which is invoked as the last step of an
assignment to a (nonlimited) controlled object.

Static Semantics
The following language-defined library package exists:

package Ada. Finalization is
pragna Preel aborat e(Fi nalization);
pragnma Renote_Types(Finalization);

type Controlled is abstract tagged private;

procedure Initialize (Qoject : in out Controlled);

procedur e Adj ust (Object : in out Controlled);

procedure Finalize (Qoject : in out Controlled);

type Limted_Controlled is abstract tagged linmited private;

procedure Initialize (Object : in out Linmted Controlled);

procedure Finalize (Object : in out Limted Controlled);
private

... -- not specified by the language
end Ada. Fi nalization;
A controlled type is a descendant of Controlled or Limited_Controlled. The (default) implementations of
Initiaize, Adjust, and Finalize have no effect. The predefined "=" operator of type Controlled always
returns True, since this operator is incorporated into the implementation of the predefined equality
operator of types derived from Controlled, as explained in 4.5.2. The type Limited Controlled is like
Controlled, except that it islimited and it lacks the primitive subprogram Adjust.

Dynamic Semantics
During the elaboration of an object_declaration, for every controlled subcomponent of the object that is
not assigned an initial value (as defined in 3.3.1), Initialize is called on that subcomponent. Similarly, if
the object asawholeis controlled and is not assigned an initia value, Initidizeis called on the object. The
same applies to the evaluation of an allocator, as explained in 4.8.

For an extension_aggregate whose ancestor_part is a subtype_mark, for each controlled subcomponent
of the ancestor part, either Initialize is called, or its initia value is assigned, as appropriate; if the type of
the ancestor part is itself controlled, the Initialize procedure of the ancestor type is called, unless that
Initialize procedure is abstract.

Initialize and other initialization operations are done in an arbitrary order, except as follows. Initidize is
applied to an object after initiaization of its subcomponents, if any (including both implicit initialization
and Initiaize cals). If an object has a component with an access discriminant constrained by a per-object
expression, Initialize is applied to this component after any components that do not have such
discriminants. For an object with several components with such a discriminant, Initialize is applied to them
in order of their component_declarations. For an allocator, any task activations follow &l cals on
Initialize.
When atarget object with any controlled partsis assigned a value, either when created or in a subsequent
assignment_statement, the assignment operation proceeds as follows:

* Thevalue of the target becomes the assigned value.

e Thevalue of the target is adjusted.

To adjust the value of a (nonlimited) composite object, the values of the components of the object are first
adjusted in an arbitrary order, and then, if the object is controlled, Adjust is called. Adjusting the value of
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an elementary object has no effect, nor does adjusting the value of a composite object with no controlled
parts.

For an assignment_statement, after the name and expression have been evaluated, and any conversion
(including constraint checking) has been done, an anonymous object is created, and the value is assigned
into it; that is, the assignment operation is applied. (Assignment includes value adjustment.) The target of
the assignment_statement is then finalized. The value of the anonymous object is then assigned into the
target of the assignment_statement. Finally, the anonymous object is finalized. As explained below, the
implementation may eliminate the intermediate anonymous object, so this description subsumes the one
givenin5.2, ‘‘ Assignment Statements’’.

Implementation Requirements

For an aggregate of a controlled type whose value is assigned, other than by an assignment_statement or
a return_statement, the implementation shall not create a separate anonymous object for the aggregate.
The aggregate value shall be constructed directly in the target of the assignment operation and Adjust is
not called on the target object.

Implementation Permissions
An implementation is allowed to relax the above rules (for nonlimited controlled types) in the following
ways.

» For an assignment_statement that assigns to an object the value of that same object, the
implementation need not do anything.

» For an assignment_statement for a noncontrolled type, the implementation may finalize and
assign each component of the variable separately (rather than finaizing the entire variable and
assigning the entire new value) unless a discriminant of the variable is changed by the
assignment.

e For an aggregate or function call whose value is assigned into a target object, the
implementation need not create a separate anonymous object if it can safely create the value of
the aggregate or function call directly in the target object. Similarly, for an assignment_-
statement, the implementation need not create an anonymous object if the value being assigned
is the result of evaluating a name denoting an object (the source object) whose storage cannot
overlap with the target. If the source object might overlap with the target object, then the
implementation can avoid the need for an intermediary anonymous object by exercising one of
the above permissions and perform the assignment one component at a time (for an overlapping
array assignment), or not at al (for an assgnment where the target and the source of the
assignment are the same object). Even if an anonymous object is created, the implementation
may move its value to the target object as part of the assignment without re-adjusting so long as
the anonymous object has no aliased subcomponents.

7.6.1 Completion and Finalization

This subclause defines completion and leaving of the execution of constructs and entities. A master is the
execution of a construct that includes finalization of local objects after it is complete (and after waiting for
any local tasks — see 9.3), but before leaving. Other constructs and entities are left immediately upon
completion.

Dynamic Semantics
The execution of a construct or entity is complete when the end of that execution has been reached, or
when a transfer of control (see 5.1) causes it to be abandoned. Completion due to reaching the end of
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execution, or due to the transfer of control of an exit_, return_, goto_, or requeue_statement or of the
selection of a terminate_alternative is normal completion. Completion is abnormal otherwise — when
control istransferred out of a construct due to abort or the raising of an exception.

After execution of a construct or entity is complete, it is left, meaning that execution continues with the
next action, as defined for the execution that is taking place. Leaving an execution happens immediately
after its completion, except in the case of a master: the execution of a task_body, a block_statement, a
subprogram_body, an entry_body, or an accept_statement. A master is finalized after it is complete, and
beforeit isleft.

For the finalization of a master, dependent tasks are first awaited, as explained in 9.3. Then each object
whose accessibility level is the same as that of the master is finalized if the object was successfully
initialized and still exists. These actions are performed whether the master is left by reaching the last
statement or via a transfer of control. When a transfer of control causes completion of an execution, each
included master isfinalized in order, from innermost outward.

For the finalization of an object:
« |f the object is of an elementary type, finaization has no effect;
« |f the object is of acontrolled type, the Finalize procedureis caled;
« |f the object is of aprotected type, the actions defined in 9.4 are performed,;

« If the object is of a composite type, then after performing the above actions, if any, every
component of the object is finalized in an arbitrary order, except as follows: if the object has a
component with an access discriminant constrained by a per-object expression, this component is
finalized before any components that do not have such discriminants; for an object with several
components with such a discriminant, they are finalized in the reverse of the order of their
component_declarations.

Immediately before an instance of Unchecked Deallocation reclaims the storage of an object, the object is
finalized. If an instance of Unchecked Deallocation is never applied to an object created by an allocator,
the object will still exist when the corresponding master completes, and it will be finalized then.

The order in which the finalization of a master performs finalization of objects is as follows: Objects
created by declarations in the master are finalized in the reverse order of their creation. For objects that
were created by allocators for an access type whose ultimate ancestor is declared in the master, thisrule is
applied as though each such object that still exists had been created in an arbitrary order at the first
freezing point (see 13.14) of the ultimate ancestor type.

The target of an assignment statement is finalized before copying in the new value, asexplained in 7.6.

If the object_name in an object_renaming_declaration, or the actual parameter for a generic formal in out
parameter in a generic_instantiation, denotes any part of an anonymous object created by a function call,
the anonymous object is not finalized until after it is no longer accessible via any name. Otherwise, an
anonymous object created by a function call or by an aggregate is finalized no later than the end of the
innermost enclosing declarative_item or statement; if that is a compound_statement, the object is
finalized before starting the execution of any statement within the compound_statement.

If atransfer of control or raising of an exception occurs prior to performing afinalization of an anonymous
object, the anonymous object is finalized as part of the finalizations due to be performed for the object's
innermost enclosing master.
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Bounded (Run-Time) Errors

It is abounded error for acall on Finalize or Adjust that occurs as part of object finalization or assignment |14/1
to propagate an exception. The possible consequences depend on what action invoked the Finalize or
Adjust operation:

145

For a Finalize invoked as part of an assignment_statement, Program_Error is raised at that
point.

For an Adjust invoked as part of the initialization of a controlled object, other adjustments due to
be performed might or might not be performed, and then Program_Error is raised. During its
propagation, finalization might or might not be applied to objects whose Adjust failed. For an
Adjust invoked as part of an assignment statement, any other adjustments due to be performed
are performed, and then Program_Error israised.

For a Finalize invoked as part of a call on an instance of Unchecked_Deallocation, any other
finalizations due to be performed are performed, and then Program_Error is raised.

For a Finalize invoked as part of the finalization of the anonymous object created by a function
cal or aggregate, any other finaizations due to be performed are performed, and then
Program_Error israised.

For a Finalize invoked due to reaching the end of the execution of a master, any other
finalizations associated with the master are performed, and Program_Error is raised immediately
after leaving the master.

For a Finalize invoked by the transfer of control of an exit_, return_, goto_, or requeue_-
statement, Program_Error is raised no earlier than after the finaization of the master being
finalized when the exception occurred, and no later than the point where norma execution
would have continued. Any other finaizations due to be performed up to that point are
performed before raising Program_Error.

For a Finalize invoked by a transfer of control that is due to raising an exception, any other
finalizations due to be performed for the same master are performed; Program_Error is raised
immediately after leaving the master.

For a Finalize invoked by a transfer of control due to an abort or selection of a terminate
alternative, the exception isignored; any other finalizations due to be performed are performed.

NOTES

18 The rules of Section 10 imply that immediately prior to partition termination, Finalize operations are applied to
library-level controlled objects (including those created by allocators of library-level access types, except those already
finalized). This occurs after waiting for library-level tasks to terminate.

19 A constant is only constant between its initialization and finalization. Both initialization and finalization are allowed
to change the value of a constant.

20 Abort is deferred during certain operations related to controlled types, as explained in 9.8. Those rules prevent an
abort from causing a controlled object to be left in an ill-defined state.

21 The Finalize procedure is called upon finalization of a controlled object, even if Finalize was called earlier, either
explicitly or as part of an assignment; hence, if a controlled type is visibly controlled (implying that its Finalize primitive
is directly callable), or is nonlimited (implying that assignment is allowed), its Finalize procedure should be designed to
have noiill effect if it is applied a second time to the same object.
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Section 8: Visibility Rules

The rules defining the scope of declarations and the rules defining which identifiers, character_literals, and
operator_symbols are visible at (or from) various places in the text of the program are described in this
section. The formulation of these rules uses the notion of a declarative region.

As explained in Section 3, a declaration declares a view of an entity and associates a defining name with
that view. The view comprises an identification of the viewed entity, and possibly additiona properties. A
usage name denotes a declaration. It also denotes the view declared by that declaration, and denotes the
entity of that view. Thus, two different usage names might denote two different views of the same entity; in
this case they denote the same entity.

8.1 Declarative Region

Satic Semantics

For each of the following constructs, there is a portion of the program text called its declarative region,
within which nested declarations can occur:

* any declaration, other than that of an enumeration type, that is not a completion of a previous
declaration;

* ablock_statement;
* aloop_statement;
e anaccept_statement;

e an exception_handler.

The declarative region includes the text of the construct together with additional text determined
(recursively), asfollows:

» |If adeclaration isincluded, so isits completion, if any.

» If the declaration of a library unit (including Standard — see 10.1.1) is included, so are the
declarations of any child units (and their completions, by the previous rule). The child
declarations occur after the declaration.

» If abody_stub isincluded, so is the corresponding subunit.

» If atype_declaration is included, then so is a corresponding record_representation_clause, if
any.

The declarative region of a declaration is aso called the declarative region of any view or entity declared
by the declaration.

A declaration occurs immediately within a declarative region if this region is the innermost declarative
region that encloses the declaration (the immediately enclosing declarative region), not counting the
declarative region (if any) associated with the declaration itself.

A declaration is local to a declarative region if the declaration occurs immediately within the declarative
region. An entity islocal to adeclarative region if the entity is declared by a declaration that is locd to the
declarative region.
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A declaration is global to a declarative region if the declaration occurs immediately within another
declarative region that encloses the declarative region. An entity is global to a declarative region if the
entity is declared by adeclaration that is global to the declarative region.

NOTES

1 The children of aparent library unit are inside the parent's declarative region, even though they do not occur inside the
parent's declaration or body. This implies that one can use (for example) "P.Q" to refer to a child of P whose defining
nameis Q, and that after "use P;" Q can refer (directly) to that child.

2 Asexplained above and in 10.1.1, ** Compilation Units - Library Units"’, all library units are descendants of Standard,
and so are contained in the declarative region of Standard. They are not inside the declaration or body of Standard, but
they areinsideits declarative region.

3 For adeclarative region that comes in multiple parts, the text of the declarative region does not contain any text that
might appear between the parts. Thus, when a portion of a declarative region is said to extend from one place to another
in the declarative region, the portion does not contain any text that might appear between the parts of the declarative
region.

8.2 Scope of Declarations

For each declaration, the language rules define a certain portion of the program text called the scope of the
declaration. The scope of a declaration is aso caled the scope of any view or entity declared by the
declaration. Within the scope of an entity, and only there, there are places where it is lega to refer to the
declared entity. These places are defined by the rules of visibility and overloading.

Static Semantics

The immediate scope of a declaration is a portion of the declarative region immediately enclosing the
declaration. The immediate scope starts at the beginning of the declaration, except in the case of an
overloadable declaration, in which case the immediate scope starts just after the place where the profile of
the callable entity is determined (which is at the end of the _specification for the callable entity, or at the
end of the generic_instantiation if an instance). The immediate scope extends to the end of the declarative
region, with the following exceptions:

« Theimmediate scope of alibrary_item includes only its semantic dependents.

* The immediate scope of a declaration in the private part of a library unit does not include the
visible part of any public descendant of that library unit.

The visible part of (aview of) an entity is a portion of the text of its declaration containing declarations
that are visible from outside. The private part of (a view of) an entity that has a visible part contains all
declarations within the declaration of (the view of) the entity, except those in the visible part; these are not
visible from outside. Visible and private parts are defined only for these kinds of entities: callable entities,
other program units, and composite types.

* Thevisible part of aview of acallable entity isits profile.

e The visible part of a composite type other than a task or protected type consists of the
declarations of al components declared (explicitly or implicitly) within the type_declaration.

« The visible part of a generic unit includes the generic_formal_part. For a generic package, it
also includes the first list of basic_declarative_items of the package_specification. For a
generic subprogram, it aso includes the profile.

* Thevisble part of a package, task unit, or protected unit consists of declarations in the program
unit's declaration other than those following the reserved word private, if any; see 7.1 and 12.7
for packages, 9.1 for task units, and 9.4 for protected units.
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The scope of a declaration aways contains the immediate scope of the declaration. In addition, for agiven
declaration that occurs immediately within the visible part of an outer declaration, or is a public child of an
outer declaration, the scope of the given declaration extends to the end of the scope of the outer
declaration, except that the scope of alibrary_item includes only its semantic dependents.

The immediate scope of a declaration is also the immediate scope of the entity or view declared by the
declaration. Similarly, the scope of a declaration is aso the scope of the entity or view declared by the
declaration.

NOTES

4 There are notations for denoting visible declarations that are not directly visible. For example, parameter_-
specifications are in the visible part of a subprogram_declaration so that they can be used in named-notation calls
appearing outside the called subprogram. For another example, declarations of the visible part of a package can be
denoted by expanded names appearing outside the package, and can be made directly visible by a use_clause.

8.3 Visibility

The visibility rules, given below, determine which declarations are visible and directly visible at each place
within a program. The visibility rules apply to both explicit and implicit declarations.

Satic Semantics

A declaration is defined to be directly visible at places where a name consisting of only an identifier or
operator_symbol is sufficient to denote the declaration; that is, no selected_component notation or
specia context (such as preceding => in a named association) is necessary to denote the declaration. A
declaration is defined to be visible wherever it is directly visible, as well as at other places where some
name (such as aselected_component) can denote the declaration.

The syntactic category direct_name is used to indicate contexts where direct visibility is required. The
syntactic category selector_name is used to indicate contexts where visibility, but not direct visibility, is
required.

There are two kinds of direct visibility: immediate visibility and use-visibility. A declaration isimmediately
visible at a place if it is directly visible because the place is within its immediate scope. A declaration is
use-visibleif it isdirectly visible because of ause_clause (see 8.4). Both conditions can apply.

A declaration can be hidden, either from direct visibility, or from all visibility, within certain parts of its
scope. Where hidden from all visibility, it is not visible at al (neither using a direct_name nor a
selector_name). Where hidden from direct visibility, only direct visibility is lost; visibility using a
selector_name is till possible.

Two or more declarations are overloaded if they al have the same defining name and there is a place
wherethey are al directly visible.

The declarations of callable entities (including enumeration literals) are overloadable, meaning that
overloading is allowed for them.

Two declarations are homographs if they have the same defining name, and, if both are overloadable, their
profiles are type conformant. An inner declaration hides any outer homograph from direct visibility.

Two homographs are not generally alowed immediately within the same declarative region unless one
overrides the other (see Legality Rules below). The only declarations that are overridable are the implicit
declarations for predefined operators and inherited primitive subprograms. A declaration overrides another
homograph that occurs immediately within the same declarative region in the following cases:
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¢ A declaration that is not overridable overrides one that is overridable, regardless of which
declaration occurs first;

« Theimplicit declaration of an inherited operator overrides that of a predefined operator;

e An implicit declaration of an inherited subprogram overrides a previous implicit declaration of
an inherited subprogram.

e For an implicit declaration of a primitive subprogram in a generic unit, there is a copy of this
declaration in an instance. However, a whole new set of primitive subprograms is implicitly
declared for each type declared within the visible part of the instance. These new declarations
occur immediately after the type declaration, and override the copied ones. The copied ones can
be called only from within the instance; the new ones can be called only from outside the
instance, although for tagged types, the body of a new one can be executed by a cal to an old
one.

A declaration is visible within its scope, except where hidden from all visibility, asfollows:

e An overridden declaration is hidden from al visibility within the scope of the overriding
declaration.

e A declaration is hidden from all visibility until the end of the declaration, except:

« For arecord type or record extension, the declaration is hidden from al visibility only until
the reserved word record;

- For a package_declaration, task declaration, protected declaration, generic_package_-
declaration, or subprogram_body, the declaration is hidden from all visibility only until the
reserved word is of the declaration.

« |If the completion of a declaration is a declaration, then within the scope of the completion, the
first declaration is hidden from al visibility. Similarly, a discriminant_specification or
parameter_specification is hidden within the scope of a corresponding discriminant_-
specification or parameter_specification of a corresponding completion, or of a corresponding
accept_statement.

e The declaration of alibrary unit (including a library_unit_renaming_declaration) is hidden from
al visibility except at places that are within its declarative region or within the scope of a
with_clause that mentions it. For each declaration or renaming of a generic unit as a child of
some parent generic package, there is a corresponding declaration nested immediately within
each instance of the parent. Such a nested declaration is hidden from al visibility except at
places that are within the scope of awith_clause that mentions the child.

A declaration with a defining_identifier or defining_operator_symbol is immediately visible (and hence
directly visible) within itsimmediate scope except where hidden from direct visibility, as follows:

e A declaration is hidden from direct visibility within the immediate scope of a homograph of the
declaration, if the homograph occurs within an inner declarative region;

¢ A declaration is also hidden from direct visibility where hidden from all visibility.

Name Resolution Rules
A direct_name shall resolve to denote a directly visible declaration whose defining name is the same as

the direct_name. A selector_name shall resolve to denote a visible declaration whose defining name is
the same as the selector_name.

These rules on visibility and direct visibility do not apply in a context_clause, a parent_unit_name, or a
pragma that appears at the place of a compilation_unit. For those contexts, see the rules in 10.1.6,
““Environment-Level Visibility Rules’.
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Legality Rules

A non-overridable declaration is illegal if there is a homograph occurring immediately within the same
declarative region that is visible at the place of the declaration, and is not hidden from all visibility by the
non-overridable declaration. In addition, a type extension is illega if somewhere within its immediate
scope it has two visible components with the same name. Similarly, the context_clause for a subunit is
illegal if it mentions (in awith_clause) some library unit, and there is a homograph of the library unit that
is visible at the place of the corresponding stub, and the homograph and the mentioned library unit are
both declared immediately within the same declarative region. These rules aso apply to dispatching
operations declared in the visible part of an instance of a generic unit. However, they do not apply to other
overloadable declarations in an instance; such declarations may have type conformant profiles in the
instance, so long as the corresponding declarations in the generic were not type conformant.

NOTES
5 Visibility for compilation units follows from the definition of the environment in 10.1.4, except that it is necessary to
apply awith_clause to obtain visibility to alibrary_unit_declaration or library_unit_renaming_declaration.

6 In addition to the visibility rules given above, the meaning of the occurrence of a direct_name or selector_name at a
given place in the text can depend on the overloading rules (see 8.6).

7 Not al contexts where an identifier, character_literal, or operator_symbol are alowed require visibility of a
corresponding declaration. Contexts where visibility is not required are identified by using one of these three syntactic
categories directly in a syntax rule, rather than using direct_name or selector_name.

8.4 Use Clauses

A use_package_clause achieves direct visibility of declarations that appear in the visible part of a
package; ause_type_clause achieves direct visibility of the primitive operators of atype.

Syntax
use_clause ::= use_package_clause | use_type_clause
use_package_clause ::= use package name {, package name};
use_type_clause ::= usetype subtype_mark {, subtype_mark};

Legality Rules
A package name of ause_package_clause shall denote a package.

Satic Semantics

For each use_clause, there is a certain region of text caled the scope of the use_clause. For a
use_clause within a context_clause of a library_unit_declaration or library_unit_renaming_declaration,
the scope is the entire declarative region of the declaration. For ause_clause within a context_clause of a
body, the scope is the entire body and any subunits (including multiply nested subunits). The scope does
not include context_clauses themselves.

For a use_clause immediately within a declarative region, the scope is the portion of the declarative
region starting just after the use_clause and extending to the end of the declarative region. However, the
scope of ause_clause in the private part of a library unit does not include the visible part of any public
descendant of that library unit.

For each package denoted by a package name of a use_package_clause whose scope encloses a place,
each declaration that occurs immediately within the declarative region of the package is potentially use-
visible at this place if the declaration is visible at this place. For each type T or T'Class determined by a

151 15 June 2001 Visibility 8.3

| 2611

27
28

29



10

11

12

13

14

15

16

ISO/IEC 8652:1995(E) with COR.1:2000 — Ada Reference Manual

subtype_mark of a use_type_clause whose scope encloses a place, the declaration of each primitive

operator of type T is potentially use-visible at this place if its declaration is visible at this place.

A declaration isuse-visibleif it is potentially use-visible, except in these naming-conflict cases:

* A potentialy use-visible declaration is not use-visible if the place considered is within the
immediate scope of a homograph of the declaration.

« Potentially use-visible declarations that have the same identifier are not use-visible unless each
of them is an overloadable declaration.

Dynamic Semantics
The elaboration of ause_clause has no effect.

Examples
Example of a use clause in a context clause:
wi t h Ada. Cal endar; use Ada;
Example of a use type clause:
use type Rational _Nunbers.Rational; -- see7.1
Two_Thirds: Rational _Nunbers. Rational := 2/3;

8.5 Renaming Declarations

A renaming_declaration declares another name for an entity, such as an object, exception, package,
subprogram, entry, or generic unit. Alternatively, a subprogram_renaming_declaration can be the

completion of aprevious subprogram_declaration.

Syntax
renaming_declaration ::=
object_renaming_declaration
| exception_renaming_declaration
| package_renaming_declaration
| subprogram_renaming_declaration
| generic_renaming_declaration

Dynamic Semantics

The elaboration of a renaming_declaration evaluates the name that follows the reserved word renames
and thereby determines the view and entity denoted by this name (the renamed view and renamed entity).

A name that denotes the renaming_declaration denotes (a new view of) the renamed entity.
NOTES

8 Renaming may be used to resolve name conflicts and to act as a shorthand. Renaming with a different identifier or

operator_symbol does not hide the old name; the new name and the old name need not be visible at the same places.

9 A task or protected object that is declared by an explicit object_declaration can be renamed as an object. However, a
single task or protected object cannot be renamed since the corresponding type is anonymous (meaning it has no

nameable subtypes). For similar reasons, an object of an anonymous array or access type cannot be renamed.

10 A subtype defined without any additional constraint can be used to achieve the effect of renaming another subtype

(including atask or protected subtype) asin
subtype Mode is Ada. Text_I| O Fi | e_Mode;
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8.5.1 Object Renaming Declarations

An object_renaming_declaration is used to rename an object.

Syntax
object_renaming_declaration ::= defining_identifier : subtype_mark renames object_name;

Name Resolution Rules
The type of the object_name shall resolve to the type determined by the subtype_mark.

Legality Rules
The renamed entity shall be an object.

The renamed entity shall not be a subcomponent that depends on discriminants of a variable whose
nominal subtype is unconstrained, unless this subtype is indefinite, or the variable is aliased. A slice of an
array shal not be renamed if this restriction disallows renaming of the array. In addition to the places
where Legality Rules normally apply, these rules apply aso in the private part of an instance of a generic
unit. These rules also apply for a renaming that appears in the body of a generic unit, with the additional
requirement that even if the nominal subtype of the variable isindefinite, its type shall not be a descendant
of an untagged generic formal derived type.

Satic Semantics

An object_renaming_declaration declares a new view of the renamed object whose properties are
identical to those of the renamed view. Thus, the properties of the renamed object are not affected by the
renaming_declaration. In particular, its value and whether or not it is a constant are unaffected; similarly,
the constraints that apply to an object are not affected by renaming (any constraint implied by the
subtype_mark of the object_renaming_declaration isignored).

Examples
Example of renaming an object:
decl are
L : Person renanes Leftnost_ Person; -- see3.10.1
begi n

L. Age := L. Age + 1;
end;

8.5.2 Exception Renaming Declarations

An exception_renaming_declaration is used to rename an exception.

Syntax
exception_renaming_declaration ::= defining_identifier : exception renames exception_name;
Legality Rules
The renamed entity shall be an exception.

Satic Semantics
An exception_renaming_declaration declares a new view of the renamed exception.
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Examples
Example of renaming an exception:
ECF : exception renanes Ada.| O Exceptions. End_Error; --seeAl3

8.5.3 Package Renaming Declarations

A package_renaming_declaration is used to rename a package.

Syntax
package_renaming_declaration ::=
package defining_program_unit_name renames package_name;
Legality Rules
The renamed entity shall be a package.

Satic Semantics
A package_renaming_declaration declares a new view of the renamed package.

Examples
Example of renaming a package:
package TM renanes Tabl e_Manager;

8.5.4 Subprogram Renaming Declarations

A subprogram_renaming_declaration can serve as the completion of a subprogram_declaration; such a
renaming_declaration is called a renaming-as-body. A subprogram_renaming_declaration that is not a
completion is caled a renaming-as-declaration, and is used to rename a subprogram (possibly an
enumeration literal) or an entry.

Syntax
subprogram_renaming_declaration ::= subprogram_specification renames callable_entity _name;

Name Resolution Rules

The expected profile for the callable_entity_name isthe profile given in the subprogram_specification.

Legality Rules
The profile of a renaming-as-declaration shall be mode-conformant with that of the renamed callable
entity.

The profile of a renaming-as-body shall conform fully to that of the declaration it completes. If the
renaming-as-body completes that declaration before the subprogram it declares is frozen, the profile shall
be mode-conformant with that of the renamed callable entity and the subprogram it declares takes its
convention from the renamed subprogram; otherwise, the profile shall be subtype-conformant with that of
the renamed callable entity and the convention of the renamed subprogram shall not be Intrinsic. A
renaming-as-body isillegal if the declaration occurs before the subprogram whose declaration it completes
is frozen, and the renaming renames the subprogram itself, through one or more subprogram renaming
declarations, none of whose subprograms has been frozen.

A name that denotes a formal parameter of the subprogram_specification is not alowed within the
callable_entity name.
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Satic Semantics

A renaming-as-declaration declares a new view of the renamed entity. The profile of this new view takes 7
its subtypes, parameter modes, and calling convention from the original profile of the callable entity, while
taking the formal parameter names and default_expressions from the profile given in the
subprogram_renaming_declaration. The new view is afunction or procedure, never an entry.

Dynamic Semantics

For a call to a subprogram whose body is given as a renaming-as-body, the execution of the renaming-as- |7.1/1
body is equivalent to the execution of a subprogram_body that simply calls the renamed subprogram with
its formal parameters as the actual parameters and, if it is afunction, returns the value of the call.

For acall on arenaming of a dispatching subprogram that is overridden, if the overriding occurred before 8
the renaming, then the body executed is that of the overriding declaration, even if the overriding
declaration is not visible at the place of the renaming; otherwise, the inherited or predefined subprogram is
caled.

Bounded (Run-Time) Errors

If a subprogram directly or indirectly renames itself, then it is a bounded error to call that subprogram. |[s.11
Possible consequences are that Program_Error or Storage_Error is raised, or that the call resultsin infinite
recursion.

NOTES

11 A procedure can only be renamed as a procedure. A function whose defining_designator is either an identifier or an 9
operator_symbol can be renamed with either an identifier or an operator_symbol; for renaming as an operator, the
subprogram specification given in the renaming_declaration is subject to the rules given in 6.6 for operator declarations.
Enumeration literals can be renamed as functions; similarly, attribute_references that denote functions (such as
references to Succ and Pred) can be renamed as functions. An entry can only be renamed as a procedure; the new name

is only allowed to appear in contexts that allow a procedure name. An entry of a family can be renamed, but an entry
family cannot be renamed as awhole.

12 The operators of the root numeric types cannot be renamed because the types in the profile are anonymous, so the 10
corresponding specifications cannot be written; the same holds for certain attributes, such as Pos.

13 Calls with the new name of arenamed entry are procedure_call_statements and are not allowed at places where the 11
syntax requires an entry_call_statement in conditional_ and timed_entry_calls, nor in an asynchronous_select; similarly,
the Count attribute is not available for the new name.

14 The primitiveness of a renaming-as-declaration is determined by its profile, and by where it occurs, as for any 12
declaration of (a view of) a subprogram; primitiveness is not determined by the renamed view. In order to perform a
dispatching call, the subprogram name has to denote a primitive subprogram, not a non-primitive renaming of a
primitive subprogram.

Examples
Examples of subprogram renaming declarations: 13
procedure My_Wite(C : in Character) renanes Pool (K). Wite; -- see4.l13 14
function Real _Plus(Left, R ght : Real ) return Real renames "+"; 15
function Int_Plus (Left, Right : Integer) return Integer renames "+";
function Rouge return Col or renames Red; -- see35.1 16

function Rot return Col or renanmes Red;
function Rosso return Col or renames Rouge;

function Next(X : Color) return Color renanmes Col or' Succ; -- see35.1 17
Example of a subprogram renaming declaration with new parameter names: 18
function "*" (X, Y : Vector) return Real renames Dot_Product; -- see6.l 19
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Example of a subprogram renaming declaration with a new default expression:
function Mnimum(L : Link := Head) return Cell renames Mn_Cell; -- see6.1

8.5.5 Generic Renaming Declarations

A generic_renaming_declaration is used to rename a generic unit.

Syntax
generic_renaming_declaration ::=
generic package defining_program_unit_name renames generic_package _name;
| generic procedure defining_program_unit_name renames generic_procedure_name;
| generic function defining_program_unit_name renames generic_function_name;
Legality Rules

The renamed entity shall be a generic unit of the corresponding kind.

Satic Semantics
A generic_renaming_declaration declares a new view of the renamed generic unit.

NOTES

15 Although the properties of the new view are the same as those of the renamed view, the place where the
generic_renaming_declaration occurs may affect the legality of subsequent renamings and instantiations that denote the
generic_renaming_declaration, in particular if the renamed generic unit is alibrary unit (see 10.1.1).

Examples
Example of renaming a generic unit:
generic package Enum | O renanes Ada. Text_I| O Enuneration_|I O  --seeA10.10

8.6 The Context of Overload Resolution

Because declarations can be overloaded, it is possible for an occurrence of a usage name to have more than
one possible interpretation; in most cases, ambiguity is disallowed. This clause describes how the possible
interpretations resolve to the actua interpretation.

Certain rules of the language (the Name Resolution Rules) are considered ‘‘overloading rules’. If a
possible interpretation violates an overloading rule, it is assumed not to be the intended interpretation;
some other possible interpretation is assumed to be the actual interpretation. On the other hand, violations
of non-overloading rules do not affect which interpretation is chosen; instead, they cause the construct to
beillegal. To be legal, there usually has to be exactly one acceptable interpretation of a construct that is a
‘*complete context’’, not counting any nested complete contexts.

The syntax rules of the language and the visibility rules given in 8.3 determine the possible interpretations.
Most type checking rules (rules that require a particular type, or a particular class of types, for example)
are overloading rules. Various rules for the matching of formal and actual parameters are overloading
rules.

Name Resolution Rules

Overload resolution is applied separately to each complete context, not counting inner complete contexts.
Each of the following constructs is a complete context:

e A context_item.
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e A declarative_item or declaration.

* A statement.

* A pragma_argument_association.

» Theexpression of acase_statement.

An (overdl) interpretation of a complete context embodies its meaning, and includes the following
information about the constituents of the complete context, not including constituents of inner complete
contexts:

» for each congtituent of the complete context, to which syntactic categories it belongs, and by
which syntax rules; and

« for each usage name, which declaration it denotes (and, therefore, which view and which entity it
denotes); and

» for a complete context that is a declarative_item, whether or not it is a completion of a
declaration, and (if so) which declaration it completes.

A possible interpretation is one that obeys the syntax rules and the visibility rules. An acceptable
interpretation is a possible interpretation that obeys the overloading rules, that is, those rules that specify
an expected type or expected profile, or specify how a construct shall resolve or be interpreted.

The interpretation of a constituent of a complete context is determined from the overall interpretation of
the complete context as a whole. Thus, for example, ‘‘interpreted as a function_call,”’ means that the
construct's interpretation says that it belongs to the syntactic category function_call.

Each occurrence of a usage name denotes the declaration determined by its interpretation. It also denotes
the view declared by its denoted declaration, except in the following cases:

» If a usage name appears within the declarative region of a type_declaration and denotes that
same type_declaration, then it denotes the current instance of the type (rather than the type
itself). The current instance of atype is the object or value of the type that is associated with the
execution that evaluates the usage name.

« If ausage name appears within the declarative region of ageneric_declaration (but not within its
generic_formal_part) and it denotes that same generic_declaration, then it denotes the current
instance of the generic unit (rather than the generic unit itself). See also 12.3.

A usage name that denotes a view a so denotes the entity of that view.

The expected type for a given expression, name, or other construct determines, according to the type
resolution rules given below, the types considered for the construct during overload resolution. The type
resolution rules provide support for class-wide programming, universal numeric literals, dispatching
operations, and anonymous access types:

» If aconstruct is expected to be of any type in a class of types, or of the universal or class-wide
type for aclass, then the type of the construct shall resolveto atypein that class or to a universal
type that coversthe class.

» If the expected type for a construct is a specific type T, then the type of the construct shall
resolve either to T, or:

¢ to T'Class; or
» toauniversa typethat coversT; or

* when T is an anonymous access type (see 3.10) with designated type D, to an access-
to-variable type whose designated type is D'Class or is covered by D.
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In certain contexts, such asin a subprogram_renaming_declaration, the Name Resolution Rules define an
expected profile for a given name; in such cases, the name shall resolve to the name of a callable entity
whose profileis type conformant with the expected profile.

Legality Rules
When the expected type for a construct is required to be a single type in a given class, the type expected
for the construct shall be determinable solely from the context in which the construct appears, excluding
the construct itself, but using the requirement that it be in the given class; the type of the construct is then
this single expected type. Furthermore, the context shall not be one that expects any type in some class that
contains types of the given class; in particular, the construct shall not be the operand of atype_conversion.

A complete context shall have at least one acceptable interpretation; if there is exactly one, then that one is
chosen.

There is a preference for the primitive operators (and ranges) of the root numeric types root_integer and
root_real. In particular, if two acceptable interpretations of a constituent of a complete context differ only
in that oneisfor a primitive operator (or range) of the type root_integer or root_real, and the other is not,
the interpretation using the primitive operator (or range) of the root numeric typeis preferred.

For a complete context, if there is exactly one overall acceptable interpretation where each constituent's
interpretation is the same as or preferred (in the above sense) over those in al other overall acceptable
interpretations, then that one overall acceptable interpretation is chosen. Otherwise, the complete context is
ambiguous.

A complete context other than a pragma_argument_association shall not be ambiguous.

A complete context that is a pragma_argument_association is allowed to be ambiguous (unless otherwise
specified for the particular pragma), but only if every acceptable interpretation of the pragma argument is
as aname that statically denotes a callable entity. Such a name denotes all of the declarations determined
by itsinterpretations, and all of the views declared by these declarations.

NOTES

16 If a usage name has only one acceptable interpretation, then it denotes the corresponding entity. However, this does
not mean that the usage name is necessarily legal since other requirements exist which are not considered for overload
resolution; for example, the fact that an expression is static, whether an object is constant, mode and subtype
conformance rules, freezing rules, order of elaboration, and so on.

Similarly, subtypes are not considered for overload resolution (the violation of a constraint does not make a program
illegal but raises an exception during program execution).
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Section 9: Tasks and Synchronization

The execution of an Ada program consists of the execution of one or more tasks. Each task represents a
separate thread of control that proceeds independently and concurrently between the points where it
interacts with other tasks. The various forms of task interaction are described in this section, and include:

» theactivation and termination of atask;

» acall on aprotected subprogram of a protected object, providing exclusive read-write access, or
concurrent read-only access to shared data;

» acal on an entry, either of another task, allowing for synchronous communication with that task,
or of a protected object, allowing for asynchronous communication with one or more other tasks
using that same protected object;

» atimed operation, including a smple delay statement, a timed entry call or accept, or a timed
asynchronous select statement (see next item);

» an asynchronous transfer of control as part of an asynchronous select statement, where a task
stops what it is doing and begins execution at a different point in response to the completion of
an entry call or the expiration of adelay;

» an abort statement, allowing one task to cause the termination of another task.

In addition, tasks can communicate indirectly by reading and updating (unprotected) shared variables,
presuming the access is properly synchronized through some other kind of task interaction.

Satic Semantics

The properties of a task are defined by a corresponding task declaration and task_body, which together
define a program unit called atask unit.

Dynamic Semantics
Over time, tasks proceed through various states. A task isinitialy inactive; upon activation, and prior to its

termination it is either blocked (as part of some task interaction) or ready to run. While ready, a task
competes for the available execution resources that it requires to run.

NOTES

1 Concurrent task execution may be implemented on multicomputers, multiprocessors, or with interleaved execution on
asingle physical processor. On the other hand, whenever an implementation can determine that the required semantic
effects can be achieved when parts of the execution of a given task are performed by different physical processors acting
in parallel, it may choose to perform them in this way.

9.1 Task Units and Task Objects

A task unit is declared by a task declaration, which has a corresponding task_body. A task declaration
may be a task_type_declaration, in which case it declares a named task type; alternatively, it may be a
single_task_declaration, in which case it defines an anonymous task type, as well as declaring a hamed
task object of that type.

Syntax
task_type_declaration ::=
task type defining_identifier [known_discriminant_part] [is task_definition];
single_task_declaration ::=
task defining_identifier [is task_definition];
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task_definition ::=
{task_item}
[ private
{task_item}]
end [task_identifier]
task_item ::= entry_declaration | aspect_clause
task_body ::=
task body defining_identifier is
declarative_part
begin
handled_sequence_of_statements
end [task_identifier];
If atask_identifier appears at the end of atask_definition or task_body, it shall repeat the
defining_identifier.
Legality Rules

A task declaration requires a completion, which shal be a task_body, and every task_body shall be the
completion of some task declaration.

Static Semantics

A task_definition defines a task type and its first subtype. The first list of task_items of atask_definition,
together with the known_discriminant_part, if any, is called the visible part of the task unit. The optional
list of task_items after the reserved word privateis caled the private part of the task unit.

For atask declaration without atask_definition, atask_definition without task_items is assumed.

Dynamic Semantics
The elaboration of a task declaration elaborates the task_definition. The elaboration of a single_task_-
declaration also creates an object of an (anonymous) task type.

The elaboration of a task_definition creates the task type and its first subtype; it also includes the
elaboration of the entry_declarationsin the given order.

As part of the initialization of atask object, any aspect_clauses and any per-object constraints associated
with entry_declarations of the corresponding task_definition are elaborated in the given order.

The elaboration of atask_body has no effect other than to establish that tasks of the type can from then on
be activated without failing the Elaboration_Check.

The execution of atask_body isinvoked by the activation of atask of the corresponding type (see 9.2).

The content of atask object of agiven task type includes:
« Thevalues of the discriminants of the task object, if any;
« An entry queue for each entry of the task object;
* A representation of the state of the associated task.

NOTES
2 Within the declaration or body of a task unit, the name of the task unit denotes the current instance of the unit (see
8.6), rather than the first subtype of the corresponding task type (and thus the name cannot be used as a subtype_mark).

3 The notation of a selected_component can be used to denote a discriminant of a task (see 4.1.3). Within a task unit,
the name of adiscriminant of the task type denotes the corresponding discriminant of the current instance of the unit.
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4 A task type is a limited type (see 7.5), and hence has neither an assignment operation nor predefined equality
operators. If an application needs to store and exchange task identities, it can do so by defining an access type
designating the corresponding task objects and by using access values for identification purposes. Assignment is
available for such an access type as for any access type. Alternatively, if the implementation supports the Systems
Programming Annex, the Identity attribute can be used for task identification (see C.7).

Examples
Examples of declarations of task types:

task type Server is
entry Next_Work_ltem(W : in Work_ltem;
entry Shut_Down;

end Server;

task type Keyboard_Driver(ID: Keyboard_ID := New ID) is
entry Read (C: out Character);
entry Wite(C: in Character);

end Keyboard_Driver;

Examples of declarations of single tasks:

task Controller is
entry Request(Level)(D: Item; -- afamilyofentries
end Controller;

task Parser is
entry Next_Lexeme(L : in Lexical_Element);
entry Next_Action(A : out Parser_Action);

end;
task User; -- hasnoentries
Examples of task objects:
Agent . Server;
Tel etype : Keyboard_Driver(TTY_ID);
Pool :array(l .. 10) of Keyboard_Driver;

Example of access type designating task objects:

type Keyboard is access Keyboard_Driver;
Term nal : Keyboard : = new Keyboard_Driver(Term.|ID);

9.2 Task Execution - Task Activation

Dynamic Semantics
The execution of atask of agiven task type consists of the execution of the corresponding task_body. The
initial part of this execution is caled the activation of the task; it consists of the elaboration of the
declarative_part of the task_body. Should an exception be propagated by the eaboration of its
declarative_part, the activation of the task is defined to have failed, and it becomes a completed task.

A task object (which represents one task) can be created either as part of the elaboration of an object_-
declaration occurring immediately within some declarative region, or as part of the evaluation of an
allocator. All tasks created by the elaboration of object_declarations of a single declarative region
(including subcomponents of the declared objects) are activated together. Similarly, al tasks created by the
evaluation of a single allocator are activated together. The activation of a task is associated with the
innermost allocator or object_declaration that is responsible for its creation.

For tasks created by the elaboration of object_declarations of a given declarative region, the activations
are initiated within the context of the handled_sequence_of_statements (and its associated exception_-
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handlers if any — see 11.2), just prior to executing the statements of the _sequence. For a package
without an explicit body or an explicit handled_sequence_of_statements, an implicit body or an implicit
null_statement is assumed, as defined in 7.2.

For tasks created by the evaluation of an allocator, the activations areinitiated as the last step of evaluating
the allocator, after completing any initialization for the object created by the allocator, and prior to
returning the new access value.

The task that created the new tasks and initiated their activations (the activator) is blocked until all of these
activations complete (successfully or not). Once al of these activations are complete, if the activation of
any of the tasks has failed (due to the propagation of an exception), Tasking_Error is raised in the
activator, at the place at which it initiated the activations. Otherwise, the activator proceeds with its
execution normally. Any tasks that are aborted prior to completing their activation are ignored when
determining whether to raise Tasking_Error.

Should the task that created the new tasks never reach the point where it would initiate the activations (due
to an abort or the raising of an exception), the newly created tasks become terminated and are never
activated.

NOTES

5 An entry of atask can be called before the task has been activated.

6 If several tasks are activated together, the execution of any of these tasks need not await the end of the activation of
the other tasks.

7 A task can become completed during its activation either because of an exception or becauseit is aborted (see 9.8).

Examples
Example of task activation:
procedure P is
A, B : Server; -- elaborate the task objects A, B
C . Server; -- elaborate the task object C

begi n
-- thetasks A, B, C are activated together before the first statement

endi '

9.3 Task Dependence - Termination of Tasks

Dynamic Semantics
Each task (other than an environment task — see 10.2) depends on one or more masters (see 7.6.1), as
follows:

« |If thetask is created by the evaluation of an allocator for a given access type, it depends on each
master that includes the elaboration of the declaration of the ultimate ancestor of the given access
type.

« |If thetask is created by the elaboration of an object_declaration, it depends on each master that
includes this elaboration.

Furthermore, if a task depends on a given master, it is defined to depend on the task that executes the
master, and (recursively) on any master of that task.

A task is said to be completed when the execution of its corresponding task_body is completed. A task is
said to be terminated when any finalization of the task_body has been performed (see 7.6.1). The first step
of finalizing a master (including atask_body) is to wait for the termination of any tasks dependent on the
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master. The task executing the master is blocked until al the dependents have terminated. Any remaining
finalization is then performed and the master is left.

Completion of atask (and the corresponding task_body) can occur when the task is blocked at a select_-
statement with an open terminate_alternative (see 9.7.1); the open terminate_alternative is selected if
and only if the following conditions are satisfied:

» Thetask depends on some completed master;

» Each task that depends on the master considered is either already terminated or similarly blocked
at aselect_statement with an open terminate_alternative.

When both conditions are satisfied, the task considered becomes completed, together with al tasks that
depend on the master considered that are not yet completed.

NOTES
8 The full view of alimited private type can be atask type, or can have subcomponents of a task type. Creation of an
object of such atype creates dependences according to the full type.

9 An object_renaming_declaration defines a new view of an existing entity and hence creates no further dependence.

10 The rules given for the collective completion of a group of tasks al blocked on select_statements with open
terminate_alternatives ensure that the collective completion can occur only when there are no remaining active tasks that
could call one of the tasks being collectively completed.

11 If two or more tasks are blocked on select_statements with open terminate_alternatives, and become completed
collectively, their finalization actions proceed concurrently.

12 The completion of atask can occur due to any of the following:
« theraising of an exception during the elaboration of the declarative_part of the corresponding task_body;
« the completion of the handled_sequence_of_statements of the corresponding task_body;
« the selection of an open terminate_alternative of a select_statement in the corresponding task_body;
« theabort of the task.

Examples
Example of task dependence:

decl are
type G obal is access Server; - see9.l
A, B : Server;
G : dobal;
begi n
-- activation of Aand B
decl are
type Local is access Server;
X : dobal := new Server; -- activation of X.all
L : Local = new Server; -- activation of L.all
C : Server;
begi n
-- activation of C
G := X; -- both G and X designate the same task object

endi " - await termination of C and L.all (but not X.all)

endi " - await termination of A, B, and G.all

9.4 Protected Units and Protected Objects

A protected object provides coordinated access to shared data, through calls on its visible protected
operations, which can be protected subprograms or protected entries. A protected unit is declared by a
protected declaration, which has a corresponding protected_body. A protected declaration may be a
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protected_type_declaration, in which case it declares a named protected type; dternatively, it may be a
single_protected_declaration, in which case it defines an anonymous protected type, as well as declaring a
named protected object of that type.

Syntax
protected_type_declaration ::=
protected type defining_identifier [known_discriminant_part] is protected_definition;
single_protected_declaration ::=
protected defining_identifier is protected_definition;
protected_definition ::=
{ protected_operation_declaration }
[ private
{ protected_element_declaration } ]
end [protected_identifier]
protected_operation_declaration ::= subprogram_declaration
| entry_declaration
| aspect_clause
protected_element_declaration ::= protected_operation_declaration
| component_declaration
protected_body ::=
protected body defining_identifier is
{ protected_operation_item }
end [protected_identifier];
protected_operation_item ::= subprogram_declaration
| subprogram_body
| entry_body
| aspect_clause

If aprotected_identifier appears at the end of a protected_definition or protected_body, it shall repeat
the defining_identifier.

Legality Rules

A protected declaration requires a completion, which shall be a protected_body, and every protected_-
body shall be the completion of some protected declaration.

Satic Semantics

A protected_definition defines a protected type and its first subtype. The list of protected_operation_-
declarations of a protected_definition, together with the known_discriminant_part, if any, is called the
visible part of the protected unit. The optional list of protected_element_declarations after the reserved
word privateis called the private part of the protected unit.

Dynamic Semantics
The elaboration of a protected declaration elaborates the protected_definition. The elaboration of a
single_protected_declaration also creates an object of an (anonymous) protected type.

The elaboration of a protected_definition creates the protected type and its first subtype; it also includes
the elaboration of the component_declarations and protected_operation_declarations in the given order.

As part of theinitialization of a protected object, any per-object constraints (see 3.8) are elaborated.
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The elaboration of a protected_body has no other effect than to establish that protected operations of the
type can from then on be called without failing the Elaboration_Check.

The content of an object of a given protected type includes:

» The values of the components of the protected object, including (implicitly) an entry queue for
each entry declared for the protected object;

» A representation of the state of the execution resource associated with the protected object (one
such resource is associated with each protected object).

The execution resource associated with a protected object has to be acquired to read or update any
components of the protected object; it can be acquired (as part of a protected action — see 9.5.1) either for
concurrent read-only access, or for exclusive read-write access.

As the first step of the finalization of a protected object, each call remaining on any entry queue of the
object is removed from its queue and Program_Error is raised at the place of the corresponding entry_-
call_statement.

NOTES

13 Within the declaration or body of a protected unit, the name of the protected unit denotes the current instance of the
unit (see 8.6), rather than the first subtype of the corresponding protected type (and thus the name cannot be used as a
subtype_mark).

14 A selected_component can be used to denote a discriminant of a protected object (see 4.1.3). Within a protected
unit, the name of a discriminant of the protected type denotes the corresponding discriminant of the current instance of
the unit.

15 A protected type is a limited type (see 7.5), and hence has neither an assignment operation nor predefined equality
operators.

16 The bodies of the protected operations given in the protected_body define the actions that take place upon calls to the
protected operations.

17 The declarations in the private part are only visible within the private part and the body of the protected unit.

Examples
Example of declaration of protected type and corresponding body:

protected type Resource is

entry Sel ze;

procedur e Rel ease;
private

Busy : Bool ean : = Fal se;
end Resource;

protected body Resource is
entry Sei ze when not Busy is

begi n
Busy := True;
end Sel ze;
procedure Rel ease is
begi n
Busy : = Fal se;

end Rel ease;
end Resource;
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Example of a single protected declaration and corresponding body:

protected Shared_Array is
-- Index, Item, and Item_Array are global types

function Conponent (N : in Index) return ltem

procedure Set_Conponent(N : in Index; E: in Iten);
private

Table : ItemArray(lndex) := (others => Null_ltem;

end Shared_Array;

protected body Shared_Array is
function Conponent(N : in Index) return Itemis
begi n
return Tabl e(N);
end Conponent;

procedure Set_Conponent(N : in Index; E: in lten) is
begi n
Table(N) := E
end Set _Conponent ;
end Shared_Array;

Examples of protected objects:

Control : Resource;
Fl ags : array(l .. 100) of Resource;

9.5 Intertask Communication

The primary means for intertask communication is provided by calls on entries and protected subprograms.
Calls on protected subprograms allow coordinated access to shared data objects. Entry calls alow for
blocking the caller until a given condition is satisfied (namely, that the corresponding entry is open — see
9.5.3), and then communicating data or control information directly with another task or indirectly via a
shared protected object.

Static Semantics

Any call on an entry or on a protected subprogram identifies a target object for the operation, which is
either atask (for an entry call) or a protected object (for an entry call or a protected subprogram call). The
target object is considered an implicit parameter to the operation, and is determined by the operation name
(or prefix) used in the call on the operation, asfollows:

e If itisadirect_name or expanded name that denotes the declaration (or body) of the operation,
then the target object is implicitly specified to be the current instance of the task or protected unit
immediately enclosing the operation; such acall is defined to be an internal call;

« If it is a selected_component that is hot an expanded name, then the target object is explicitly
specified to be the task or protected object denoted by the prefix of the name; such a cal is
defined to be an external call;

« If the name or prefix is a dereference (implicit or explicit) of an access-to-protected-subprogram
value, then the target object is determined by the prefix of the Access attribute_reference that
produced the access value originally, and the call is defined to be an external call;

« |If the name or prefix denotes a subprogram_renaming_declaration, then the target object is as
determined by the name of the renamed entity.

A corresponding definition of target object applies to a requeue_statement (see 9.5.4), with a
corresponding distinction between an internal requeue and an external requeue.
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Dynamic Semantics
Within the body of a protected operation, the current instance (see 8.6) of the immediately enclosing
protected unit is determined by the target object specified (implicitly or explicitly) in the call (or requeue)
on the protected operation.

Any call on a protected procedure or entry of a target protected object is defined to be an update to the
object, asis arequeue on such an entry.

9.5.1 Protected Subprograms and Protected Actions

A protected subprogram is a subprogram declared immediately within a protected_definition. Protected
procedures provide exclusive read-write access to the data of a protected object; protected functions
provide concurrent read-only accessto the data.

Satic Semantics
Within the body of a protected function (or a function declared immediately within a protected_body), the
current instance of the enclosing protected unit is defined to be a constant (that is, its subcomponents may
be read but not updated). Within the body of a protected procedure (or a procedure declared immediately
within a protected_body), and within an entry_body, the current instance is defined to be a variable
(updating is permitted).

Dynamic Semantics
For the execution of a call on a protected subprogram, the evaluation of the name or prefix and of the
parameter associations, and any assigning back of in out or out parameters, proceeds as for a normal
subprogram call (see 6.4). If the call isan internal call (see 9.5), the body of the subprogram is executed as
for anormal subprogram call. If the call is an external call, then the body of the subprogram is executed as
part of a new protected action on the target protected object; the protected action completes after the body
of the subprogram is executed. A protected action can aso be started by an entry call (see 9.5.3).

A new protected action is not started on a protected object while another protected action on the same
protected object is underway, unless both actions are the result of a call on a protected function. This rule
is expressible in terms of the execution resource associated with the protected object:

» Sarting aprotected action on a protected object corresponds to acquiring the execution resource
associated with the protected object, either for concurrent read-only access if the protected action
isfor acall on aprotected function, or for exclusive read-write access otherwise;

» Completing the protected action corresponds to releasing the associated execution resource.

After performing an operation on a protected object other than a call on a protected function, but prior to
completing the associated protected action, the entry queues (if any) of the protected object are serviced
(see9.5.3).

Bounded (Run-Time) Errors

During a protected action, it is a bounded error to invoke an operation that is potentially blocking. The
following are defined to be potentially blocking operations:

* aselect_statement;
* anaccept_statement;
* anentry_call_statement;

* adelay_statement;
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e anabort_statement;
¢ task creation or activation;

« an externa call on a protected subprogram (or an external requeue) with the same target object
asthat of the protected action;

« acall on asubprogram whose body contains a potentially blocking operation.

If the bounded error is detected, Program_Error israised. If not detected, the bounded error might result in
deadlock or a (nested) protected action on the same target object.

Certain language-defined subprograms are potentially blocking. In particular, the subprograms of the
language-defined input-output packages that manipulate files (implicitly or explicitly) are potentialy
blocking. Other potentially blocking subprograms are identified where they are defined. When not
specified as potentially blocking, alanguage-defined subprogram is nonblocking.

NOTES

18 If two tasks both try to start a protected action on a protected object, and at most one is calling a protected function,
then only one of the tasks can proceed. Although the other task cannot proceed, it is not considered blocked, and it might
be consuming processing resources while it awaits its turn. There is no language-defined ordering or queuing presumed
for tasks competing to start a protected action — on a multiprocessor such tasks might use busy-waiting; for
monoprocessor considerations, see D.3, ‘*Priority Ceiling Locking’’.

19 The body of a protected unit may contain declarations and bodies for local subprograms. These are not visible
outside the protected unit.

20 Thebody of a protected function can contain internal calls on other protected functions, but not protected procedures,
because the current instance is a constant. On the other hand, the body of a protected procedure can contain internal calls
on both protected functions and procedures.

21 From within a protected action, an interna call on a protected subprogram, or an externa call on a protected
subprogram with a different target object is not considered a potentially blocking operation.

Examples
Examples of protected subprogram calls (see 9.4):

Shared_Array. Set _Conponent (N, E);
E : = Shared_Array. Conponent (M ;
Control . Rel ease;

9.5.2 Entries and Accept Statements

Entry_declarations, with the corresponding entry_bodies or accept_statements, are used to define
potentialy queued operations on tasks and protected objects.

Syntax
entry_declaration ::=
entry defining_identifier [(discrete_subtype_definition)] parameter_profile;

accept_statement ::=
accept entry_direct_name [(entry_index)] parameter_profile [do
handled_sequence_of_statements
end [entry_identifier]];

entry_index ::= expression
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entry_body ::=
entry defining_identifier entry_body_formal_part entry_barrier is
declarative_part
begin
handled_sequence_of_statements
end [entry_identifier];
entry_body_formal_part ::= [(entry_index_specification)] parameter_profile
entry_barrier ::= when condition
entry_index_specification ::= for defining_identifier in discrete_subtype_definition

If an entry_identifier appears at the end of an accept_statement, it shall repeat the entry_direct_-
name. If an entry_identifier appears at the end of an entry_body, it shall repeat the defining_-
identifier.

An entry_declaration is alowed only in a protected or task declaration.

Name Resolution Rules

In an accept_statement, the expected profile for the entry_direct_name is that of the entry_declaration;
the expected type for an entry_index is that of the subtype defined by the discrete_subtype_definition of
the corresponding entry_declaration.

Within the handled_sequence_of_statements of an accept_statement, if a selected_component has a
prefix that denotes the corresponding entry_declaration, then the entity denoted by the prefix is the
accept_statement, and the selected_component is interpreted as an expanded name (see 4.1.3); the
selector_name of the selected_component has to be the identifier for some forma parameter of the
accept_statement.

Legality Rules

An entry_declaration in a task declaration shall not contain a specification for an access parameter (see
3.10).

For an accept_statement, the innermost enclosing body shall be a task_body, and the entry_direct_name
shall denote an entry_declaration in the corresponding task declaration; the profile of the accept_-
statement shall conform fully to that of the corresponding entry_declaration. An accept_statement shall
have a parenthesized entry_index if and only if the corresponding entry_declaration has a discrete_-
subtype_definition.

An accept_statement shall not be within another accept_statement that corresponds to the same entry_-
declaration, nor within an asynchronous_select inner to the enclosing task_body.

An entry_declaration of a protected unit requires a completion, which shall be an entry_body, and every
entry_body shall be the completion of an entry_declaration of a protected unit. The profile of the entry_-
body shall conform fully to that of the corresponding declaration.

An entry_body_formal_part shall have an entry_index_specification if and only if the corresponding
entry_declaration has a discrete_subtype_definition. In this case, the discrete_subtype_definitions of the
entry_declaration and the entry_index_specification shall fully conform to one another (see 6.3.1).

A name that denotes a formal parameter of an entry_body is not allowed within the entry_barrier of the
entry_body.
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Satic Semantics

The parameter modes defined for parameters in the parameter_profile of an entry_declaration are the
same as for a subprogram_declaration and have the same meaning (see 6.2).

An entry_declaration with a discrete_subtype_definition (see 3.6) declares a family of distinct entries
having the same profile, with one such entry for each value of the entry index subtype defined by the
discrete_subtype_definition. A name for an entry of a family takes the form of an indexed_component,
where the prefix denotes the entry_declaration for the family, and the index value identifies the entry
within the family. The term single entry is used to refer to any entry other than an entry of an entry family.

In the entry_body for an entry family, the entry_index_specification declares a hamed constant whose
subtype is the entry index subtype defined by the corresponding entry_declaration; the value of the named
entry index identifies which entry of the family was called.

Dynamic Semantics
The elaboration of an entry_declaration for an entry family consists of the elaboration of the discrete_-
subtype_definition, as described in 3.8. The elaboration of an entry_declaration for a single entry has no
effect.

The actions to be performed when an entry is called are specified by the corresponding accept_statements
(if any) for an entry of atask unit, and by the corresponding entry_body for an entry of a protected unit.

For the execution of an accept_statement, the entry_inde, if any, is first evaluated and converted to the
entry index subtype; this index value identifies which entry of the family is to be accepted. Further
execution of the accept_statement is then blocked until a caller of the corresponding entry is selected (see
9.5.3), whereupon the handled_sequence_of_statements, if any, of the accept_statement is executed,
with the formal parameters associated with the corresponding actual parameters of the selected entry call.
Upon completion of the handled_sequence_of_statements, the accept_statement completes and is |eft.
When an exception is propagated from the handled_sequence_of_statements of an accept_statement,
the same exception is also raised by the execution of the corresponding entry_call_statement.

The above interaction between a calling task and an accepting task is called a rendezvous. After a
rendezvous, the two tasks continue their execution independently.

An entry_body is executed when the condition of the entry_barrier evaluates to True and a caller of the
corresponding single entry, or entry of the corresponding entry family, has been selected (see 9.5.3). For
the execution of the entry_body, the declarative_part of the entry_body is elaborated, and the handled_-
sequence_of_statements of the body is executed, as for the execution of a subprogram_body. The value
of the named entry index, if any, is determined by the value of the entry index specified in the entry_name
of the selected entry call (or intermediate requeue_statement — see 9.5.4).

NOTES
22 A task entry has corresponding accept_statements (zero or more), whereas a protected entry has a corresponding
entry_body (exactly one).

23 A conseguence of the rule regarding the allowed placements of accept_statements is that a task can execute
accept_statements only for its own entries.

24 A return_statement (see 6.5) or a requeue_statement (see 9.5.4) may be used to complete the execution of an
accept_statement or an entry_body.

25 The condition in the entry_barrier may reference anything visible except the formal parameters of the entry. This
includes the entry index (if any), the components (including discriminants) of the protected object, the Count attribute of
an entry of that protected object, and data global to the protected unit.
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The restriction against referencing the formal parameters within an entry_barrier ensures that all calls of the same entry
see the same barrier value. If it is necessary to look at the parameters of an entry call before deciding whether to handle
it, the entry_barrier can be ‘‘when True'’ and the caller can be requeued (on some private entry) when its parameters
indicate that it cannot be handled immediately.

Examples
Examples of entry declarations:
entry Read(V : out ltem;
entry Sei ze;
entry Request(Level)(D: Item; -- afamilyofentries

Examples of accept statements:
accept Shut_Down;

accept Read(V : out ltenm do
V := Local _Item
end Read;

accept Request(Low) (D : Itenm do

end Réquest ;

9.5.3 Entry Calls

An entry_call_statement (an entry call) can appear in various contexts. A smple entry call is a stand-
alone statement that represents an unconditional call on an entry of a target task or a protected object.
Entry calls can also appear as part of select_statements (see 9.7).

Syntax
entry_call_statement ::= entry_name [actual_parameter_part];

Name Resolution Rules

The entry_name given in an entry_call_statement shall resolve to denote an entry. The rules for
parameter associations are the same as for subprogram calls (see 6.4 and 6.4.1).

Satic Semantics

The entry_name of an entry_call_statement specifies (explicitly or implicitly) the target object of the call,
the entry or entry family, and the entry index, if any (see 9.5).

Dynamic Semantics
Under certain circumstances (detailed below), an entry of a task or protected object is checked to see
whether it is open or closed:

* Anentry of atask is open if the task is blocked on an accept_statement that corresponds to the
entry (see 9.5.2), or on a selective_accept (see 9.7.1) with an open accept_alternative that
corresponds to the entry; otherwiseit is closed.

» An entry of a protected object is open if the condition of the entry_barrier of the corresponding
entry_body evaluatesto True; otherwiseit is closed. If the evaluation of the condition propagates
an exception, the exception Program_Error is propagated to al current callers of all entries of the
protected object.

For the execution of an entry_call_statement, evaluation of the name and of the parameter associationsis
as for a subprogram call (see 6.4). The entry call isthen issued: For acall on an entry of a protected object,
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anew protected action is started on the object (see 9.5.1). The named entry is checked to seeiif it isopen; if
open, the entry call is said to be selected immediately, and the execution of the call proceeds as follows:

e For acdl on an open entry of a task, the accepting task becomes ready and continues the
execution of the corresponding accept_statement (see 9.5.2).

« For acal on an open entry of a protected object, the corresponding entry_body is executed (see
9.5.2) as part of the protected action.

If the accept_statement or entry_body completes other than by a requeue (see 9.5.4), return is made to the
caler (after servicing the entry queues — see below); any necessary assigning back of forma to actua
parameters occurs, as for a subprogram call (see 6.4.1); such assignments take place outside of any
protected action.

If the named entry is closed, the entry call is added to an entry queue (as part of the protected action, for a
call on a protected entry), and the call remains queued until it is selected or cancelled; there is a separate
(logicdl) entry queue for each entry of a given task or protected object (including each entry of an entry
family).

When a queued call is selected, it is removed from its entry queue. Selecting a queued call from a
particular entry queueis called servicing the entry queue. An entry with queued calls can be serviced under
the following circumstances:

* When the associated task reaches a corresponding accept_statement, or a selective_accept
with a corresponding open accept_alternative;

« If after performing, as part of a protected action on the associated protected object, an operation
on the object other than acall on aprotected function, the entry is checked and found to be open.

If there is at least one call on a queue corresponding to an open entry, then one such cal is selected
according to the entry queuing policy in effect (see below), and the corresponding accept_statement or
entry_body is executed as above for an entry call that is selected immediately.

The entry queuing policy controls selection among queued calls both for task and protected entry queues.
The default entry queuing policy is to select cals on a given entry queue in order of arrival. If calls from
two or more queues are simultaneoudly eligible for selection, the default entry queuing policy does not
specify which queueis serviced first. Other entry queuing policies can be specified by pragmas (see D.4).

For a protected object, the above servicing of entry queues continues until there are no open entries with
queued calls, at which point the protected action completes.

For an entry call that is added to a queue, and that is not the triggering_statement of an asynchronous_-
select (see 9.7.4), the calling task is blocked until the call is cancelled, or the cal is selected and a
corresponding accept_statement or entry_body completes without requeuing. In addition, the calling task
is blocked during arendezvous.

An attempt can be made to cancel an entry call upon an abort (see 9.8) and as part of certain forms of
select_statement (see 9.7.2, 9.7.3, and 9.7.4). The cancellation does not take place until a point (if any)
when the call is on some entry queue, and not protected from cancellation as part of a requeue (see 9.5.4);
a such a point, the call is removed from the entry queue and the call completes due to the cancellation.
The cancellation of a call on an entry of a protected object is a protected action, and as such cannot take
place while any other protected action is occurring on the protected object. Like any protected action, it
includes servicing of the entry queues (in case some entry barrier depends on a Count attribute).

A call on an entry of atask that has already completed its execution raises the exception Tasking_Error at
the point of the call; similarly, this exception israised at the point of the call if the called task completes its
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execution or becomes abnormal before accepting the call or completing the rendezvous (see 9.8). This
applies equally to asimple entry call and to an entry call as part of aselect_statement.

Implementation Permissions

An implementation may perform the sequence of steps of a protected action using any thread of control; it
need not be that of the task that started the protected action. If an entry_body completes without
requeuing, then the corresponding calling task may be made ready without waiting for the entire protected
action to compl ete.

When the entry of a protected object is checked to see whether it is open, the implementation need not
reevaluate the condition of the corresponding entry_barrier if no variable or attribute referenced by the
condition (directly or indirectly) has been atered by the execution (or cancellation) of a protected
procedure or entry call on the object since the condition was last evaluated.

An implementation may evaluate the conditions of all entry_barriers of a given protected object any time
any entry of the object is checked to seeif it is open.

When an attempt is made to cancel an entry call, the implementation need not make the attempt using the
thread of control of the task (or interrupt) that initiated the cancellation; in particular, it may use the thread
of control of the caller itself to attempt the cancellation, even if this might allow the entry call to be
selected in theinterim.

NOTES
26 If an exception is raised during the execution of an entry_body, it is propagated to the corresponding caller (see
11.4).

27 For acall on aprotected entry, the entry is checked to seeif it is open prior to queuing the call, and again thereafter if
its Count attribute (see 9.9) is referenced in some entry barrier.

28 In addition to simple entry calls, the language permits timed, conditional, and asynchronous entry calls (see 9.7.2,
9.7.3, and see 9.7.4).

29 The condition of an entry_barrier is allowed to be evaluated by an implementation more often than strictly necessary,
even if the evaluation might have side effects. On the other hand, an implementation need not reevaluate the condition if
nothing it references was updated by an intervening protected action on the protected object, even if the condition
references some global variable that might have been updated by an action performed from outside of a protected action.

Examples
Examples of entry calls:
Agent . Shut _Down; - see0.1
Par ser . Next _Lexene(E); - see9.l
Pool (5) . Read( Next _Char); - el
Control | er. Request (Low) (Sone_lten); - see9.l
Fl ags(3). Sei ze; - 294

9.5.4 Requeue Statements

A requeue_statement can be used to complete an accept_statement or entry_body, while redirecting the
corresponding entry call to a new (or the same) entry queue. Such a requeue can be performed with or
without allowing an intermediate cancellation of the call, due to an abort or the expiration of adelay.

Syntax
requeue_statement ::= requeue entry_name [with abort];
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Name Resolution Rules

The entry_name of arequeue_statement shall resolve to denote an entry (the target entry) that either has
no parameters, or that has a profile that is type conformant (see 6.3.1) with the profile of the innermost
enclosing entry_body or accept_statement.

Legality Rules

A requeue_statement shal be within a callable construct that is either an entry _body or an
accept_statement, and this construct shall be the innermost enclosing body or callable construct.

If the target entry has parameters, then its profile shall be subtype conformant with the profile of the
innermost enclosing callable construct.

In arequeue_statement of an accept_statement of some task unit, either the target object shall be a part
of aformal parameter of the accept_statement, or the accessibility level of the target object shall not be
equa to or staticaly deeper than any enclosing accept_statement of the task unit. In a requeue_-
statement of an entry_body of some protected unit, either the target object shall be a part of a formal
parameter of the entry_body, or the accessibility level of the target object shall not be statically deeper
than that of the entry_declaration.

Dynamic Semantics
The execution of a requeue_statement proceeds by first evaluating the entry_name, including the prefix
identifying the target task or protected object and the expression identifying the entry within an entry
family, if any. The entry_body or accept_statement enclosing the requeue_statement is then completed,
finalized, and left (see 7.6.1).

For the execution of a requeue on an entry of atarget task, after leaving the enclosing callable construct,
the named entry is checked to see if it is open and the requeued call is either selected immediately or
queued, asfor anormal entry call (see 9.5.3).

For the execution of arequeue on an entry of atarget protected object, after leaving the enclosing callable
construct:

« if the requeue is an internal requeue (that is, the requeue is back on an entry of the same
protected object — see 9.5), the call is added to the queue of the named entry and the ongoing
protected action continues (see 9.5.1);

« if therequeueisan externa requeue (that is, the target protected object is not implicitly the same
asthe current object — see 9.5), a protected action is started on the target object and proceeds as
for anormal entry call (see 9.5.3).

If the new entry named in the requeue_statement has formal parameters, then during the execution of the
accept_statement or entry_body corresponding to the new entry, the formal parameters denote the same
objects as did the corresponding formal parameters of the callable construct completed by the requeue. In
any case, no parameters are specified in arequeue_statement; any parameter passing isimplicit.

If the requeue_statement includes the reserved words with abort (it is arequeue-with-abort), then:

« if theoriginal entry call has been aborted (see 9.8), then the requeue acts as an abort completion
point for the call, and the call is cancelled and no requeue is performed,;

e if the origina entry call was timed (or conditional), then the original expiration time is the
expiration time for the requeued call.

If the reserved words with abort do not appear, then the call remains protected against cancellation while
queued as the result of the requeue_statement.
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NOTES

30 A requeueis permitted from a single entry to an entry of an entry family, or vice-versa. The entry index, if any, plays
no part in the subtype conformance check between the profiles of the two entries; an entry index is part of the
entry_name for an entry of afamily.

Examples

Examples of requeue statements:

requeue Request (Medium) with abort;
-- requeue on a member of an entry family of the current task, see 9.1

requeue Flags(l). Sei ze;
-- requeue on an entry of an array component, see 9.4

9.6 Delay Statements, Duration, and Time

A delay_statement is used to block further execution until a specified expiration time is reached. The
expiration time can be specified either as a particular point in time (in a delay_until_statement), or in
seconds from the current time (in a delay_relative_statement). The language-defined package Calendar
provides definitions for a type Time and associated operations, including a function Clock that returns the
current time.

Syntax
delay_statement ::= delay_until_statement | delay_relative_statement
delay_until_statement ::= delay until delay_expression;
delay_relative_statement ::= delay delay_expression;

Name Resolution Rules

The expected type for the delay expression in a delay_relative_statement is the predefined type
Duration. The delay_expression in adelay_until_statement is expected to be of any nonlimited type.

Legality Rules
There can be multiple time bases, each with a corresponding clock, and a corresponding time type. The
type of the delay_expression in a delay_until_statement shall be a time type — either the type Time
defined in the language-defined package Calendar (see below), or some other implementation-defined time
type (see D.8).

Satic Semantics

There is a predefined fixed point type named Duration, declared in the visible part of package Standard; a
value of type Duration is used to represent the length of an interval of time, expressed in seconds. The type
Duration is not specific to aparticular time base, but can be used with any time base.

A value of the type Time in package Calendar, or of some other implementation-defined time type,
represents a time as reported by a corresponding clock.

The following language-defined library package exists:

package Ada. Cal endar is
type Time is private;
subtype Year _Number i
subtype Mont h_Nunber i
subt ype Day_Nunber i
subtype Day_Duration i

Integer range 1901 .. 2099;
Integer range 1 .. 12;

Integer range 1 .. 31;
Duration range 0.0 .. 86_400. 0;

nununon
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function dock return Tineg;

function Year
function Month (Date : T
function Day (Date : T
function Seconds(Date : T

procedure Split (Date

(Date : T

ime) return Year_Nunber;
ime) return Month_Nunber;
ime) return Day_Nunber;

inme) return Day_Duration;

in Tine;

| 9.6 Deay Statements, Duration, and Time

Year out Year _Nunber;

Mont h out Mont h_Nunber;

Day out Day_Nunber;

Seconds : out Day_Duration);
function Time_O (Year Year _Nunber ;

Mont h Mont h_Nunber ;

Day Day_Nunber ;

Seconds : Day_Duration := 0.0)

return Tineg;

function "+" (Left : Ting; Right : Duration) return Tine;
function "+" (Left : Duration; R ght Time) return Tineg;

function "-" (Left : Ting; Ri ght Duration) return Tine;
function "-" (Left : Tineg; Ri ght Time) return Duration;

function "<" (Left, Right
function "<="(Left, Right

Ti me) return Bool ean;
Time) return Bool ean;

function ">" (Left, R ght Time) return Bool ean;
function ">="(Left, R ght Time) return Bool ean;
Time_Error exception;

private

... -- not specified by the language
end Ada. Cal endar;
Dynamic Semantics
For the execution of a delay statement, the delay expression is first evaluated. For a
delay_until_statement, the expiration time for the delay is the value of the delay_expression, in the time
base associated with the type of the expression. For a delay_relative_statement, the expiration time is
defined as the current time, in the time base associated with relative delays, plus the value of the
delay_expression converted to the type Duration, and then rounded up to the next clock tick. The time
base associated with relative delaysis as defined in D.9, ‘' Delay Accuracy’’ or isimplementation defined.

The task executing a delay_statement is blocked until the expiration time is reached, at which point it
becomes ready again. If the expiration time has already passed, the task is not blocked.

If an attempt is made to cancel the delay_statement (as part of an asynchronous_select or abort — see
9.7.4 and 9.8), the _statement is cancelled if the expiration time has not yet passed, thereby completing
the delay_statement.

The time base associated with the type Time of package Calendar is implementation defined. The function
Clock of package Calendar returns a value representing the current time for this time base. The
implementation-defined value of the named number System.Tick (see 13.7) is an approximation of the
length of the real-time interval during which the value of Calendar.Clock remains constant.

The functions Year, Month, Day, and Seconds return the corresponding values for a given value of the
type Time, as appropriate to an implementation-defined timezone; the procedure Split returns all four
corresponding values. Conversaly, the function Time_Of combines a year number, a month number, a day
number, and a duration, into a value of type Time. The operators "+" and "—" for addition and subtraction
of times and durations, and the relational operators for times, have the conventional meaning.
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If Time_Of is called with a seconds value of 86_400.0, the value returned is equal to the value of Time_Of
for the next day with a seconds vaue of 0.0. The value returned by the function Seconds or through the
Seconds parameter of the procedure Split is always less than 86_400.0.

The exception Time_Error is raised by the function Time_Of if the actual parameters do not form a proper
date. This exception is also raised by the operators "+" and "—" if the result is not representable in the type
Time or Duration, as appropriate. This exception is also raised by the functions Year, Month, Day, and
Seconds and the procedure Split if the year number of the given date is outside of the range of the subtype
Year_Number.

Implementation Requirements

The implementation of the type Duration shall allow representation of time intervals (both positive and
negative) up to at least 86400 seconds (one day); Duration'Small shall not be greater than twenty
milliseconds. The implementation of the type Time shal alow representation of all dates with year
numbers in the range of Year_Number; it may allow representation of other dates as well (both earlier and
later).

Implementation Permissions
An implementation may define additional time types (see D.8).
An implementation may raise Time_Error if the value of adelay_expression in adelay_until_statement of

a select_statement represents a time more than 90 days past the current time. The actua limit, if any, is
implementation-defined.

Implementation Advice
Whenever possible in an implementation, the value of Duration'Small should be no greater than 100
microseconds.

The time base for delay_relative_statements should be monotonic; it need not be the same time base as
used for Calendar.Clock.

NOTES
31 A delay_relative_statement with a negative value of the delay_expression is equivalent to one with a zero value.

32 A delay_statement may be executed by the environment task; consequently delay_statements may be executed as
part of the elaboration of alibrary_item or the execution of the main subprogram. Such statements delay the environment
task (see 10.2).

33 A delay_statement is an abort completion point and a potentially blocking operation, even if the task is not actually
blocked.

34 There is no necessary relationship between System.Tick (the resolution of the clock of package Calendar) and
Duration'Small (the small of type Duration).

35 Additional requirements associated with delay_statements are givenin D.9, ‘* Delay Accuracy’’.

Examples
Example of a relative delay statement:
del ay 3.0; --delay3.0seconds
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Example of a periodic task:

40 decl are
use Ada. Cal endar;
Next _Time : Tinme := Cock + Period;
-- Period is a global constant of type Duration
begi n
| oop -- repeated every Period seconds
del ay until Next_Tine;
... --perform some actions
Next _Time := Next_Time + Period;
end | oop;
end;

9.7 Select Statements

1 There are four forms of the select_statement. One form provides a selective wait for one or more
select_alternatives. Two provide timed and conditiona entry calls. The fourth provides asynchronous
transfer of control.

Syntax
2 select_statement ::=
selective_accept
| timed_entry_call
| conditional_entry_call
| asynchronous_select
Examples

3 Example of a select statement:

4 sel ect
accept Driver_Awake_Si gnal ;
or
del ay 30. 0*Seconds;
Stop_The_Trai n;
end sel ect;

9.7.1 Selective Accept

1 This form of the select_statement alows a combination of waiting for, and selecting from, one or more
dternatives. The selection may depend on conditions associated with each alternative of the
selective_accept.

Syntax

2 selective_accept ::=
select
[guard]
select_alternative
{or
[guard]
select_alternative }
[ ese
sequence_of_statements ]
end select;

3 guard ::= when condition =>
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select_alternative ::=
accept_alternative
| delay_alternative
| terminate_alternative
accept_alternative ::=
accept_statement [sequence_of_statements]

delay_alternative ::=
delay_statement [sequence_of_statements]

terminate_alternative ::= terminate;

A selective_accept shall contain at |east one accept_alternative. In addition, it can contain:
» aterminate_alternative (only one); or
e oneor moredelay_alternatives; or
» anelsepart (the reserved word else followed by asequence_of_statements).

These three possihilities are mutually exclusive.

Legality Rules
If a selective_accept contains more than one delay_alternative, then al shal be delay_relative_-
statements, or all shall be delay_until_statements for the same time type.

Dynamic Semantics

A select_alternative is said to be open if it is not immediately preceded by a guard, or if the condition of
its guard evaluatesto True. It is said to be closed otherwise.

For the execution of a selective_accept, any guard conditions are evaluated; open aternatives are thus
determined. For an open delay_alternative, the delay_expression is also evaluated. Similarly, for an open
accept_alternative for an entry of a family, the entry_index is also evaluated. These evaluations are
performed in an arbitrary order, except that a delay_expression or entry_index is not evaluated until after
evaluating the corresponding condition, if any. Selection and execution of one open aternative, or of the
else part, then completes the execution of the selective_accept; the rules for this selection are described
below.

Open accept_alternatives are first considered. Selection of one such aternative takes place immediately if
the corresponding entry already has queued calls. If several aternatives can thus be selected, one of them
is selected according to the entry queuing policy in effect (see 9.5.3 and D.4). When such an dternative is
selected, the selected call is removed from its entry queue and the handled_sequence_of_statements (if
any) of the corresponding accept_statement is executed; after the rendezvous completes any subsequent
sequence_of_statements of the aternative is executed. If no selection is immediately possible (in the
above sense) and there is no else part, the task blocks until an open alternative can be selected.

Selection of the other forms of alternative or of an else part is performed as follows:

* An open delay_alternative is selected when its expiration time is reached if no accept_-
alternative or other delay_alternative can be selected prior to the expiration time. If severa
delay_alternatives have this same expiration time, one of them is selected according to the
queuing policy in effect (see D.4); the default queuing policy chooses arbitrarily among the
delay_alternatives whose expiration time has passed.

» The else part is selected and its sequence_of_statements is executed if no accept_alternative
can immediately be selected; in particular, if al aternatives are closed.
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« An open terminate_alternative is selected if the conditions stated at the end of clause 9.3 are
satisfied.
The exception Program_Error israised if all alternatives are closed and there is no else part.

NOTES
36 A selective_accept is alowed to have several open delay_alternatives. A selective_accept is allowed to have several
open accept_alternatives for the same entry.

Examples

Example of a task body with a selective accept:

task body Server is
Current_Work_ltem: Work_ltem

begi n
| oop
sel ect
accept Next_Work_ltem(W : in Wrk_Item do
Current_Work Item:= W;
end;
Process_Work_lten{Current_Work_ltemn;
or
accept Shut_Down;
exit; -- Premature shut down requested
or
term nate; -- Normal shutdown at end of scope
end sel ect;
end | oop;
end Server;

9.7.2 Timed Entry Calls

A timed_entry_call issues an entry call that is cancelled if the call (or a requeue-with-abort of the call) is
not selected before the expiration timeis reached.

Syntax

timed_entry_call ::=
select
entry_call_alternative
or
delay_alternative
end select;
entry_call_alternative ::=
entry_call_statement [sequence_of_statements]

Dynamic Semantics
For the execution of atimed_entry_call, the entry_name and the actual parameters are evaluated, as for a
simple entry call (see 9.5.3). The expiration time (see 9.6) for the call is determined by evaluating the
delay_expression of the delay_alternative; the entry call is then issued.

If the call is queued (including due to a requeue-with-abort), and not selected before the expiration time is
reached, an attempt to cancel the call is made. If the call completes due to the cancellation, the optional
sequence_of_statements of the delay_alternative is executed; if the entry call completes normaly, the
optional sequence_of_statements of the entry_call_alternative is executed.
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Examples
6

Example of a timed entry call:
sel ect
Control | er. Request (Medi unm) (Sone_| ten);

or
del ay 45.0;
-- controller too busy, try something else

end sel ect;

9.7.3 Conditional Entry Calls
A conditional_entry_call issues an entry call that is then cancelled if it is not selected immediately (orifa 1

requeue-with-abort of the call is not selected immediately).

Syntax
2

conditional_entry_call ::=
select
entry_call_alternative

dse
sequence_of_statements

end select;
Dynamic Semantics
The execution of a conditional_entry_call is defined to be equivalent to the execution of atimed_entry - 3
call with a delay_alternative specifying an immediate expiration time and the same sequence_of_-

statements as given after the reserved word else.
4

NOTES
37 A conditional_entry_call may briefly increase the Count attribute of the entry, even if the conditiona call is not

selected.
Examples
5

Example of a conditional entry call:
procedure Spin(R : in Resource) is
begi n

| oop
sel ect
R. Sei ze;
return;

el se
nul l; -- busywaiting

end sel ect;
end | oop;
end;

9.7.4 Asynchronous Transfer of Control
An asynchronous select_statement provides asynchronous transfer of control upon completion of an entry

cal or the expiration of adelay.
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Syntax
asynchronous_select ::=
select
triggering_alternative
then abort
abortable_part
end select;

triggering_alternative ::= triggering_statement [sequence_of_statements]
triggering_statement ::= entry_call_statement | delay_statement
abortable_part ::= sequence_of_statements

Dynamic Semantics
For the execution of an asynchronous_select whose triggering_statement is an entry_call_statement, the
entry_name and actual parameters are evaluated as for a smple entry call (see 9.5.3), and the entry call is
issued. If the entry call is queued (or requeued-with-abort), then the abortable_part is executed. If the
entry call is selected immediately, and never requeued-with-abort, then the abortable_part is never started.

For the execution of an asynchronous_select whose triggering_statement is a delay_statement, the
delay_expression is evaluated and the expiration time is determined, as for a normal delay_statement. If
the expiration time has not already passed, the abortable_part is executed.

If the abortable_part completes and is left prior to completion of the triggering_statement, an attempt to
cancel the triggering_statement is made. If the attempt to cancel succeeds (see 9.5.3 and 9.6), the
asynchronous_select is complete.

If the triggering_statement completes other than due to cancellation, the abortable_part is aborted (if
started but not yet completed — see 9.8). If the triggering_statement completes normally, the optional
sequence_of_statements of the triggering_alternative is executed after the abortable_part is |eft.

Examples
Example of a main command loop for a command interpreter:

| oop
sel ect
Term nal . Wi t _For _I nterrupt;
Put _Li ne("Interrupted");
then abort
- - Thiswill be abandoned upon terminal interrupt
Put _Line("->");
Get _Li ne( Command, Last);
Process_Conmand( Conmand( 1. . Last));
end sel ect;
end | oop;

Example of a time-limited calculation:

sel ect

del ay 5.0;

Put _Li ne("Cal cul ati on does not converge");
then abort

- - Thiscalculation should finish in 5.0 seconds;

-- if not, it isassumed to diverge.

Horri bl y_Conpl i cat ed_Recursi ve_Function(X, Y);
end sel ect;
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9.8 Abort of a Task - Abort of a Sequence of Statements

An abort_statement causes one or more tasks to become abnormal, thus preventing any further interaction
with such tasks. The completion of the triggering_statement of an asynchronous_select causes a
sequence_of_statements to be aborted.

Syntax
abort_statement ::= abort task_name {, task_name};

Name Resolution Rules
Each task_name is expected to be of any task type; they need not al be of the same task type.

Dynamic Semantics
For the execution of an abort_statement, the given task_names are evaluated in an arbitrary order. Each

named task is then aborted, which consists of making the task abnormal and aborting the execution of the
corresponding task_body, unlessit is aready completed.

When the execution of a construct is aborted (including that of a task_body or of a sequence_of_-
statements), the execution of every construct included within the aborted execution is also aborted, except
for executions included within the execution of an abort-deferred operation; the execution of an abort-
deferred operation continues to completion without being affected by the abort; the following are the
abort-deferred operations:

» aprotected action;
» waiting for an entry call to complete (after having initiated the attempt to cancel it — see below);
» waliting for the termination of dependent tasks;

« the execution of an Initialize procedure as the last step of the default initialization of a controlled
object;

 the execution of a Finalize procedure as part of the finalization of a controlled object;
* an assignment operation to an object with a controlled part.
The last three of these are discussed further in 7.6.

When amaster is aborted, all tasks that depend on that master are aborted.

The order in which tasks become abnorma as the result of an abort_statement or the abort of a
sequence_of_statements is not specified by the language.

If the execution of an entry call is aborted, an immediate attempt is made to cancel the entry call (see
9.5.3). If the execution of a construct is aborted at a time when the execution is blocked, other than for an
entry call, at a point that is outside the execution of an abort-deferred operation, then the execution of the
construct completes immediately. For an abort due to an abort_statement, these immediate effects occur
before the execution of the abort_statement completes. Other than for these immediate cases, the
execution of a construct that is aborted does not necessarily complete before the abort_statement
completes. However, the execution of the aborted construct completes no later than its next abort
completion point (if any) that occurs outside of an abort-deferred operation; the following are abort
completion points for an execution:

* the point where the execution initiates the activation of another task;
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* theend of the activation of atask;

e the start or end of the execution of an entry cal, accept_statement, delay_statement, or
abort_statement;

e the start of the execution of a select_statement, or of the sequence_of statements of an
exception_handler.

Bounded (Run-Time) Errors

An attempt to execute an asynchronous_select as part of the execution of an abort-deferred operation is a
bounded error. Similarly, an attempt to create a task that depends on a master that is included entirely
within the execution of an abort-deferred operation is a bounded error. In both cases, Program_Error is
raised if the error is detected by the implementation; otherwise the operations proceed as they would
outside an abort-deferred operation, except that an abort of the abortable_part or the created task might or
might not have an effect.

Erroneous Execution

If an assignment operation completes prematurely due to an abort, the assignment is said to be disrupted;
the target of the assignment or its parts can become abnormal, and certain subsequent uses of the object
can be erroneous, as explained in 13.9.1.

NOTES

38 An abort_statement should be used only in situations requiring unconditional termination.

39 A task isalowed to abort any task it can name, including itself.

40 Additional requirements associated with abort are given in D.6, ** Preemptive Abort’’.

9.9 Task and Entry Attributes

Dynamic Semantics
For aprefix T that is of atask type (after any implicit dereference), the following attributes are defined:

T'Cdlable  Yieldsthe value True when the task denoted by T is callable, and False otherwise; atask is
calable unless it is completed or abnormal. The value of this attribute is of the predefined
type Boolean.

TTerminated Yieldsthe value Trueif the task denoted by T is terminated, and False otherwise. The value
of this attribute is of the predefined type Boolean.

For a prefix E that denotes an entry of a task or protected unit, the following attribute is defined. This
attribute is only allowed within the body of the task or protected unit, but excluding, in the case of an entry
of atask unit, within any program unit that is, itself, inner to the body of the task unit.

E'Count Yields the number of calls presently queued on the entry E of the current instance of the
unit. The value of this attribute is of the type universal_integer.

NOTES
41 For the Count attribute, the entry can be either a single entry or an entry of a family. The name of the entry or entry
family can be either adirect_name or an expanded name.

42 Within task units, algorithms interrogating the attribute E'Count should take precautions to alow for the increase of
the value of this attribute for incoming entry calls, and its decrease, for example with timed_entry_calls. Also, a
conditional_entry_call may briefly increase this value, even if the conditional call is not accepted.

43 Within protected units, algorithms interrogating the attribute E'Count in the entry_barrier for the entry E should take
precautions to alow for the evaluation of the condition of the barrier both before and after queuing a given caller.
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9.10 Shared Variables

Static Semantics
If two different objects, including nonoverlapping parts of the same object, are independently addressable,
they can be manipulated concurrently by two different tasks without synchronization. Normally, any two
nonoverlapping objects are independently addressable. However, if packing, record layout, or
Component_Size is specified for a given composite object, then it is implementation defined whether or
not two nonoverlapping parts of that composite object are independently addressable.

Dynamic Semantics
Separate tasks normally proceed independently and concurrently with one another. However, task
interactions can be used to synchronize the actions of two or more tasks to allow, for example, meaningful
communication by the direct updating and reading of variables shared between the tasks. The actions of
two different tasks are synchronized in this sense when an action of one task signals an action of the other
task; an action Al is defined to signal an action A2 under the following circumstances:

» If Al and A2 are part of the execution of the same task, and the language rules require A1l to be
performed before A2;

» If Al isthe action of an activator that initiates the activation of a task, and A2 is part of the
execution of the task that is activated;

» If Al is part of the activation of atask, and A2 is the action of waiting for completion of the
activation;

» If Alispart of the execution of atask, and A2 is the action of waiting for the termination of the
task;

« If Al is the termination of a task T, and A2 is either the evaluation of the expression
T'Terminated or a call to AdaTask_|dentification.Is_Terminated with an actual parameter that
identifies T (see C.7.1);

» If Alisthe action of issuing an entry call, and A2 is part of the corresponding execution of the
appropriate entry_body or accept_statement.

» If Al is part of the execution of an accept_statement or entry_body, and A2 is the action of
returning from the corresponding entry call;

« If Alispart of the execution of a protected procedure body or entry_body for a given protected
object, and A2 is part of alater execution of an entry_body for the same protected object;

» If Al signals some action that in turn signals A2.

Erroneous Execution

Given an action of assigning to an object, and an action of reading or updating a part of the same object (or
of a neighboring object if the two are not independently addressable), then the execution of the actions is
erroneous unless the actions are sequential. Two actions are sequentid if one of the following is true:

* One action signals the other;
» Both actions occur as part of the execution of the same task;

» Both actions occur as part of protected actions on the same protected object, and at most one of
the actionsis part of acall on a protected function of the protected object.

A pragma Atomic or Atomic_Components may also be used to ensure that certain reads and updates are
sequential — see C.6.

185 15 June 2001 Shared Variables 9.10 |

6.1/1

10

11

12

13

14

15



10

ISO/IEC 8652:1995(E) with COR.1:2000 — Ada Reference Manual

9.11 Example of Tasking and Synchronization

Examples

The following example defines a buffer protected object to smooth variations between the speed of output
of a producing task and the speed of input of some consuming task. For instance, the producing task might
have the following structure:

task Producer;

task body Producer is
Char : Character;
begi n
| oop
... ~-- produce the next character Char
Buffer. Wite(Char);
exit when Char = ASCl| . ECT;
end | oop;
end Producer;

and the consuming task might have the following structure:
task Consuner;

task body Consuner is
Char : Character;
begi n
| oop
Buf f er. Read( Char);
exit when Char = ASCl| . ECT;
... -- consume the character Char
end | oop;
end Consuner;

The buffer object contains an internal pool of characters managed in a round-robin fashion. The pool has
two indices, an In_Index denoting the space for the next input character and an Out_Index denoting the
space for the next output character.

protected Buffer is
entry Read (C : out Character);
entry Wite(C: in Character);

private

Pool : String(l .. 100);

Count : Natural := 0;

In_lIndex, Qut_Index : Positive := 1;
end Buffer;

protected body Buffer is
entry Wite(C: in Character)
when Count < Pool'Length iIs

begi n
Pool (I n_I ndex) := C
In_Index := (In_lndex nod Pool'Length) + 1;
Count .= Count + 1;

end Wite;

entry Read(C : out Character)
when Count > 0 is

begi n
C : = Pool (Qut_I ndex);
Qut _I ndex := (Qut_I ndex nod Pool ' Length) + 1;
Count .= Count - 1;

end Read;

end Buffer;
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Section 10: Program Structure and Compilation Issues

The overal structure of programs and the facilities for separate compilation are described in this section. A
program is a set of partitions, each of which may execute in a separate address space, possibly on a
separate computer.

As explained below, a partition is constructed from library units. Syntactically, the declaration of a library
unit is a library_item, as is the body of a library unit. An implementation may support a concept of a
program library (or simply, a ‘‘library’’), which contains library_items and their subunits. Library units
may be organized into a hierarchy of children, grandchildren, and so on.

This section has two clauses: 10.1, ‘‘Separate Compilation’’ discusses compile-time issues related to
separate compilation. 10.2, ‘* Program Execution’’ discusses issues related to what is traditionally known
as‘‘link time'’ and “‘run time’’ — building and executing partitions.

10.1 Separate Compilation

A program unit is either a package, a task unit, a protected unit, a protected entry, a generic unit, or an
explicitly declared subprogram other than an enumeration literal. Certain kinds of program units can be
separately compiled. Alternatively, they can appear physically nested within other program units.

The text of a program can be submitted to the compiler in one or more compilations. Each compilation isa
succession of compilation_units. A compilation_unit contains either the declaration, the body, or a
renaming of a program unit. The representation for acompilation is implementati on-defined.

A library unit is a separately compiled program unit, and is always a package, subprogram, or generic unit.
Library units may have other (logically nested) library units as children, and may have other program units
physically nested within them. A root library unit, together with its children and grandchildren and so on,
form a subsystem.

Implementation Permissions

An implementation may impose implementation-defined restrictions on compilations that contain multiple
compilation_units.

10.1.1 Compilation Units - Library Units

A library_item is a compilation unit that is the declaration, body, or renaming of alibrary unit. Each library
unit (except Standard) has a parent unit, which is a library package or generic library package. A library
unit is a child of its parent unit. The root library units are the children of the predefined library package
Standard.

Syntax
compilation ::= { compilation_unit}
compilation_unit ::=

context_clause library_item
| context_clause subunit

library_item ::= [private€] library_unit_declaration
| library_unit_body
| [private] library_unit_renaming_declaration
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library_unit_declaration ::=
subprogram_declaration | package_declaration

| generic_declaration | generic_instantiation
library_unit_renaming_declaration ::=

package_renaming_declaration
| generic_renaming_declaration
| subprogram_renaming_declaration
library_unit_body ::= subprogram_body | package_body
parent_unit_name ::= name

A library unit is a program unit that is declared by a library_item. When a program unit is a library unit,
the prefix *‘library’” is used to refer to it (or ‘*generic library’’ if generic), as well as to its declaration and
body, as in ‘“‘library procedure’, ‘‘library package_body’’, or ‘‘generic library package’. The term
compilation unit is used to refer to a compilation_unit. When the meaning is clear from context, theterm is
aso used to refer to the library_item of a compilation_unit or to the proper_body of a subunit (that is, the
compilation_unit without the context_clause and the separ ate (parent_unit_name)).

The parent declaration of alibrary_item (and of the library unit) is the declaration denoted by the parent_-
unit_name, if any, of the defining_program_unit_name of the library_item. If there is no parent_-
unit_name, the parent declaration is the declaration of Standard, the library_item is a root library_item,
and the library unit (renaming) is a root library unit (renaming). The declaration and body of Standard
itself have no parent declaration. The parent unit of a library_item or library unit is the library unit
declared by its parent declaration.

The children of a library unit occur immediately within the declarative region of the declaration of the
library unit. The ancestors of alibrary unit are itself, its parent, its parent's parent, and so on. (Standard is
an ancestor of every library unit.) The descendant relation is the inverse of the ancestor relation.

A library_unit_declaration or a library_unit_renaming_declaration is private if the declaration is
immediately preceded by the reserved word private; it is otherwise public. A library unit is private or
public according to its declaration. The public descendants of alibrary unit are the library unit itself, and
the public descendants of its public children. Its other descendants are private descendants.

Legality Rules
The parent unit of alibrary_item shall be alibrary package or generic library package.

If adefining_program_unit_name of a given declaration or body has a parent_unit_name, then the given
declaration or body shall be alibrary_item. The body of a program unit shall be alibrary_item if and only
if the declaration of the program unit is a library_item. In alibrary_unit_renaming_declaration, the (old)
name shall denote alibrary_item.

A parent_unit_name (which can be used within a defining_program_unit_name of a library_item and in
the separ ate clause of a subunit), and each of its prefixes, shall not denote arenaming_declaration. On the
other hand, a name that denotes a library_unit_renaming_declaration is alowed in a with_clause and
other places where the name of alibrary unit is allowed.

If alibrary package is an instance of a generic package, then every child of the library package shall either
beitself an instance or be arenaming of alibrary unit.

A child of a generic library package shall either be itself a generic unit or be a renaming of some other
child of the same generic unit. The renaming of a child of a generic package shall occur only within the
declarative region of the generic package.
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A child of a parent generic package shall be instantiated or renamed only within the declarative region of
the parent generic.

For each declaration or renaming of a generic unit as a child of some parent generic package, there is a
corresponding declaration nested immediately within each instance of the parent. This declaration is
visible only within the scope of awith_clause that mentions the child generic unit.

A library subprogram shall not override a primitive subprogram.

The defining name of a function that is a compilation unit shall not be an operator_symbol.

Satic Semantics

A subprogram_renaming_declaration that is a library_unit_renaming_declaration is a renaming-as-
declaration, not a renaming-as-body.

There are two kinds of dependences among compilation units:

The semantic dependences (see below) are the ones needed to check the compile-time rules
across compilation unit boundaries; a compilation unit depends semantically on the other
compilation units needed to determine its legality. The visibility rules are based on the semantic
dependences.

The elaboration dependences (see 10.2) determine the order of elaboration of library_items.

A library_item depends semantically upon its parent declaration. A subunit depends semantically upon its
parent body. A library_unit_body depends semantically upon the corresponding library_unit_declaration,
if any. A compilation unit depends semantically upon each library_item mentioned in a with_clause of the
compilation unit. In addition, if a given compilation unit contains an attribute_reference of atype defined
in another compilation unit, then the given compilation unit depends semantically upon the other
compilation unit. The semantic dependence relationship is transitive.

NOTES
1 A simple program may consist of a single compilation unit. A compilation need not have any compilation units; for
example, its text can consist of pragmas.

2 The designator of a library function cannot be an operator_symbol, but a nonlibrary renaming_declaration is allowed
to rename a library function as an operator. Within a partition, two library subprograms are required to have distinct
names and hence cannot overload each other. However, renaming_declarations are allowed to define overloaded names
for such subprograms, and a locally declared subprogram is alowed to overload a library subprogram. The expanded
name Standard.L can be used to denote a root library unit L (unless the declaration of Standard is hidden) since root
library unit declarations occur immediately within the declarative region of package Standard.

Examples

Examples of library units:

189

package Rational _Nunmbers.1Ois --publicchildof Rational_Numbers, see 7.1
procedure Put(R : in Rational);
procedure Get(R : out Rational);

end Rational _Nunbers.|Q

private procedure Rational _Nunmbers. Reduce(R : in out Rational);
-- private child of Rational_Numbers

wi th Rational _Nunbers. Reduce; -- refer to a private child
package body Rational _Nunbers is

end Rational _Nunbers;
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wi th Rational _Nunbers.| O use Rational _Nunbers;

with Ada. Text _i o; --seeA10
procedure Main is --aroot library procedure
R : Rational;
begi n
R :=5/3; -- construct a rational number, see 7.1
Ada. Text _| O Put (" The answer is: ");
IO Put(R);
Ada. Text _| O New_Li ne;
end Mai n;

with Rational Nunbers.|Q
package Rational _| O renanes Rational Nunmbers.|1 O
-- alibrary unit renaming declaration

Each of the above library_items can be submitted to the compiler separately.

10.1.2 Context Clauses - With Clauses

A context_clause is used to specify the library_items whose names are needed within a compilation unit.

Syntax
context_clause ::= { context_item}
context_item ::= with_clause | use_clause
with_clause ::= with library_unit_name {, library_unit_name};

Name Resolution Rules

The scope of a with_clause that appears on a library_unit_declaration or library_unit_renaming_-
declaration consists of the entire declarative region of the declaration, which includes all children and
subunits. The scope of a with_clause that appears on a body consists of the body, which includes al
subunits.

A library_item is mentioned in a with_clause if it is denoted by a library unit_name or a prefix in the
with_clause.

Outside its own declarative region, the declaration or renaming of a library unit can be visible only within
the scope of awith_clause that mentions it. The visibility of the declaration or renaming of a library unit
otherwise follows from its placement in the environment.

Legality Rules
If awith_clause of a given compilation_unit mentions a private child of some library unit, then the given

compilation_unit shall be either the declaration of a private descendant of that library unit or the body or
subunit of a (public or private) descendant of that library unit.

NOTES

3 A library_item mentioned in a with_clause of a compilation unit is visible within the compilation unit and hence acts
just like an ordinary declaration. Thus, within a compilation unit that mentions its declaration, the name of a library
package can be given in use_clauses and can be used to form expanded names, a library subprogram can be called, and
instances of a generic library unit can be declared. If a child of a parent generic package is mentioned in a with_clause,
then the corresponding declaration nested within each visible instance is visible within the compilation unit.
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10.1.3 Subunits of Compilation Units

Subunits are like child units, with these (important) differences: subunits support the separate compilation
of bodies only (not declarations); the parent contains a body_stub to indicate the existence and place of
each of its subunits; declarations appearing in the parent's body can be visible within the subunits.

Syntax
body_stub ::=
subprogram_body_stub | package_body_stub |task_body_stub | protected_body_stub
subprogram_body_stub ::= subprogram_specification is separ ate;
package_body_stub ::= package body defining_identifier is separ ate;
task_body_stub ::= task body defining_identifier is separ ate;
protected_body_stub ::= protected body defining_identifier is separ ate;
subunit ::= separ ate (parent_unit_name) proper_body

Legality Rules

The parent body of a subunit is the body of the program unit denoted by its parent_unit_name. The term
subunit is used to refer to a subunit and also to the proper_body of a subunit.

The parent body of a subunit shall be present in the current environment, and shall contain a corresponding
body_stub with the same defining_identifier as the subunit.

A package_body_stub shall be the completion of a package_declaration or generic_package._-
declaration; a task_body_stub shall be the completion of a task_declaration; a protected_body_stub
shall be the completion of a protected_declaration.

In contrast, a subprogram_body_stub need not be the completion of a previous declaration, in which case
the _stub declares the subprogram. If the _stub is a completion, it shal be the completion of a
subprogram_declaration or generic_subprogram_declaration. The profile of a subprogram_body_stub
that completes adeclaration shall conform fully to that of the declaration.

A subunit that corresponds to a body_stub shall be of the same kind (package_, subprogram_, task_, or
protected_) asthe body_stub. The profile of a subprogram_body subunit shall be fully conformant to that
of the corresponding body_stub.

A body_stub shall appear immediately within the declarative_part of a compilation unit body. This rule
does not apply within an instance of a generic unit.

The defining_identifiers of all body_stubs that appear immediately within a particular declarative_part
shall bedistinct.

Post-Compilation Rules
For each body_stub, there shall be a subunit containing the corresponding proper_body.

NOTES
4 Therulesin 10.1.4, *‘ The Compilation Process'’ say that a body_stub is equivalent to the corresponding proper_body.
Thisimplies:
« Visibility within a subunit is the visibility that would be obtained at the place of the corresponding
body_stub (within the parent body) if the context_clause of the subunit were appended to that of the parent
body.

« Theeffect of the elaboration of abody_stub is to elaborate the subunit.
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Examples
The package Parent isfirst written without subunits:

package Parent is
procedure Inner;
end Parent;

with Ada. Text |G
package body Parent is

Variable : String := "Hello, there.";
procedure Inner is
begi n
Ada. Text _| O Put _Li ne(Vari abl e);
end | nner;
end Parent;

The body of procedure Inner may be turned into a subunit by rewriting the package body as follows (with
the declaration of Parent remaining the same):

package body Parent is

Variable : String := "Hello, there.";
procedure | nner is separate;
end Parent;

with Ada. Text |1 Q
separ at e( Parent)
procedure Inner is
begi n
Ada. Text _I O Put _Li ne(Vari abl e);
end | nner;

10.1.4 The Compilation Process

Each compilation unit submitted to the compiler is compiled in the context of an environment
declarative_part (or simply, an environment), which is a conceptua declarative_part that forms the
outermost declarative region of the context of any compilation. At run time, an environment forms the
declarative_part of the body of the environment task of a partition (see 10.2, ‘‘ Program Execution’’).

The declarative_items of the environment are library_items appearing in an order such that there are no
forward semantic dependences. Each included subunit occurs in place of the corresponding stub. The
visibility rules apply asif the environment were the outermost declarative region, except that with_clauses
are needed to make declarations of library units visible (see 10.1.2).

The mechanisms for creating an environment and for adding and replacing compilation units within an
environment are implementation defined.

Name Resolution Rules

If alibrary_unit_body that is a subprogram_body is submitted to the compiler, it is interpreted only as a
completion if alibrary_unit_declaration with the same defining_program_unit_name aready exists in the
environment for a subprogram other than an instance of a generic subprogram or for a generic subprogram
(even if the profile of the body is not type conformant with that of the declaration); otherwise the
subprogram_body isinterpreted as both the declaration and body of alibrary subprogram.

Legality Rules
When a compilation unit is compiled, al compilation units upon which it depends semanticaly shall
aready exist in the environment; the set of these compilation units shall be consistent in the sense that the
new compilation unit shall not semantically depend (directly or indirectly) on two different versions of the
same compilation unit, nor on an earlier version of itself.
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Implementation Permissions

The implementation may require that a compilation unit be legal before inserting it into the environment.

When a compilation unit that declares or renames a library unit is added to the environment, the
implementation may remove from the environment any preexisting library_item with the same defining_-
program_unit_name. When a compilation unit that is a subunit or the body of alibrary unit is added to the
environment, the implementation may remove from the environment any preexisting version of the same
compilation unit. When a given compilation unit is removed from the environment, the implementation
may also remove any compilation unit that depends semantically upon the given one. If the given
compilation unit contains the body of a subprogram to which a pragma Inline applies, the implementation
may also remove any compilation unit containing a call to that subprogram.

NOTES
5 The rules of the language are enforced across compilation and compilation unit boundaries, just as they are enforced
within a single compilation unit.

6 An implementation may support a concept of a library, which contains library_items. If multiple libraries are
supported, the implementation has to define how a single environment is constructed when a compilation unit is
submitted to the compiler. Naming conflicts between different libraries might be resolved by treating each library as the
root of a hierarchy of child library units.

7 A compilation unit containing an instantiation of a separately compiled generic unit does not semantically depend on
the body of the generic unit. Therefore, replacing the generic body in the environment does not result in the removal of
the compilation unit containing the instantiation.

10.1.5 Pragmas and Program Units

This subclause discusses pragmas related to program units, library units, and compilations.

Name Resolution Rules

Certain pragmas are defined to be program unit pragmas. A name given as the argument of a program
unit pragma shall resolve to denote the declarations or renamings of one or more program units that occur
immediately within the declarative region or compilation in which the pragma immediately occurs, or it
shall resolve to denote the declaration of the immediately enclosing program unit (if any); the pragma
applies to the denoted program unit(s). If there are no names given as arguments, the pragma applies to
the immediately enclosing program unit.

Legality Rules
A program unit pragma shall appear in one of these places:

» At the place of a compilation_unit, in which case the pragma shall immediately follow in the
same compilation (except for other pragmas) a library_unit_declaration that is a subprogram_-
declaration, generic_subprogram_declaration, or generic_instantiation, and the pragma shall
have an argument that is aname denoting that declaration.

* Immediately within the declaration of a program unit and before any nested declaration (but not
within a generic formal part), in which case the argument, if any, shall be a direct_name that
denotes the immediately enclosing program unit declaration.

» At the place of a declaration other than the first, of a declarative_part or program unit
declaration, in which case the pragma shall have an argument, which shall be adirect_name that
denotes one or more of the following (and nothing else): a subprogram_declaration, ageneric_-
subprogram_declaration, or a generic_instantiation, of the same declarative_part or program
unit declaration.
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Certain program unit pragmas are defined to be library unit pragmas. The name, if any, in alibrary unit
pragma shall denote the declaration of alibrary unit.

Satic Semantics

A library unit pragma that appliesto a generic unit does not apply to its instances, unless a specific rule for
the pragma specifies the contrary.

Implementation Advice

When applied to a generic unit, a program unit pragma that is not a library unit pragma should apply to
each instance of the generic unit for which there is not an overriding pragma applied directly to the
instance.

Post-Compilation Rules

Certain pragmas are defined to be configuration pragmas;, they shal appear before the first
compilation_unit of a compilation. They are generaly used to select a partition-wide or system-wide
option. The pragma appliesto all compilation_units appearing in the compilation, unless there are none, in
which case it appliesto all future compilation_units compiled into the same environment.

Implementation Permissions

An implementation may place restrictions on configuration pragmas, so long as it allows them when the
environment contains no library_items other than those of the predefined environment.

10.1.6 Environment-Level Visibility Rules

The normal visibility rules do not apply within a parent_unit_name or a context_clause, nor within a
pragma that appears at the place of a compilation unit. The special visibility rules for those contexts are
given here.

Satic Semantics

Within the parent_unit_name at the beginning of a library_item, and within a with_clause, the only
declarations that are visible are those that are library_items of the environment, and the only declarations
that are directly visible are those that are root library_items of the environment. Notwithstanding the rules
of 4.1.3, an expanded name in a with_clause may consist of a prefix that denotes a generic package and a
selector_name that denotes a child of that generic package. (The child is necessarily a generic unit; see
10.1.1)

Within a use_clause or pragma that is within a context_clause, each library_item mentioned in a
previous with_clause of the same context_clause is visible, and each root library_item so mentioned is
directly visible. In addition, within such a use_clause, if a given declaration is visible or directly visible,
each declaration that occurs immediately within the given declaration's visible part is also visible. No other
declarations are visible or directly visible.

Within the parent_unit_name of a subunit, library_items are visible as they are in the parent_unit_name
of alibrary_item; in addition, the declaration corresponding to each body_stub in the environment is also
visible.

Within a pragma that appears at the place of a compilation unit, the immediately preceding library_item
and each of its ancestorsis visible. The ancestor root library_item isdirectly visible.
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10.2 Program Execution

An Adaprogram consists of a set of partitions, which can execute in parallel with one another, possibly in
a separate address space, and possibly on a separate computer.

Post-Compilation Rules

A partition is a program or part of a program that can be invoked from outside the Ada implementation.
For example, on many systems, a partition might be an executable file generated by the system linker. The
user can explicitly assign library units to a partition. The assignment is done in an implementation-defined
manner. The compilation units included in a partition are those of the explicitly assigned library units, as
well as other compilation units needed by those library units. The compilation units needed by a given
compilation unit are determined as follows (unless specified otherwise via an implementation-defined
pragma, or by some other implementation-defined means):

» A compilation unit needs itsdlf;

» If a compilation unit is needed, then so are any compilation units upon which it depends
semantically;

 If alibrary_unit_declaration is needed, then so is any corresponding library_unit_body;
» |If acompilation unit with stubs is needed, then so are any corresponding subunits.

The user can optionally designate (in an implementation-defined manner) one subprogram as the main
subprogram for the partition. A main subprogram, if specified, shall be a subprogram.

Each partition has an anonymous environment task, which is an implicit outermost task whose execution
elaborates the library_items of the environment declarative_part, and then calls the main subprogram, if
thereisone. A partition's execution is that of its tasks.

The order of elaboration of library units is determined primarily by the elaboration dependences. There is
an elaboration dependence of a given library_item upon ancther if the given library_item or any of its
subunits depends semantically on the other library_item. In addition, if a given library_item or any of its
subunits has a pragma Elaborate or Elaborate All that mentions another library unit, then there is an
elaboration dependence of the given library_item upon the body of the other library unit, and, for
Elaborate_All only, upon each library_item needed by the declaration of the other library unit.

The environment task for a partition has the following structure:
task Environment_Task;

task body Environment_Task i s
... (1) -- Theenvironment declarative_part
- - (that is, the sequence of library_items) goes here.
begi n
... (2) -- Call themain subprogram, if thereisone.
end Environment_Task;
The environment declarative_part at (1) is a sequence of declarative_items consisting of copies of the
library_items included in the partition. The order of elaboration of library_items is the order in which they

appear in the environment declarative_part:

e The order of dl included library_items is such that there are no forward elaboration
dependences.

* Any included library_unit_declaration to which a pragma Elaborate Body applies is
immediately followed by its library_unit_body, if included.
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« All library_items declared pure occur before any that are not declared pure.
e All preelaborated library_items occur before any that are not preelaborated.

There shall be a total order of the library _items that obeys the above rules. The order is otherwise
implementation defined.

The full expanded names of the library units and subunitsincluded in a given partition shall be distinct.

The sequence_of_statements of the environment task (see (2) above) consists of either:

e A cdl to the main subprogram, if the partition has one. If the main subprogram has parameters,
they are passed; where the actuals come from is implementation defined. What happens to the
result of amain function is also implementation defined.

or:
e A null_statement, if there is no main subprogram.

The mechanisms for building and running partitions are implementation defined. These might be combined
into one operation, as, for example, in dynamic linking, or ‘‘load-and-go’’ systems.

Dynamic Semantics
The execution of a program consists of the execution of a set of partitions. Further details are
implementation defined. The execution of a partition starts with the execution of its environment task, ends
when the environment task terminates, and includes the executions of all tasks of the partition. The
execution of the (implicit) task_body of the environment task acts as a master for all other tasks created as
part of the execution of the partition. When the environment task completes (normally or abnormally), it
waits for the termination of all such tasks, and then finalizes any remaining objects of the partition.

Bounded (Run-Time) Errors

Once the environment task has awaited the termination of al other tasks of the partition, any further
attempt to create a task (during finalization) is a bounded error, and may result in the raising of
Program_Error either upon creation or activation of the task. If such atask is activated, it is not specified
whether the task is awaited prior to termination of the environment task.

Implementation Requirements

The implementation shall ensure that all compilation units included in a partition are consistent with one
another, and are legal according to the rules of the language.

Implementation Permissions

Thekind of partition described in this clause is known as an active partition. An implementation is allowed
to support other kinds of partitions, with implementation-defined semantics.

An implementation may restrict the kinds of subprograms it supports as main subprograms. However, an
implementation is required to support al main subprograms that are public parameterless library
procedures.

If the environment task completes abnormally, the implementation may abort any dependent tasks.

NOTES

8 An implementation may provide inter-partition communication mechanism(s) via special packages and pragmas.
Standard pragmas for distribution and methods for specifying inter-partition communication are defined in Annex E,
‘‘Distributed Systems'’. If no such mechanisms are provided, then each partition is isolated from all others, and behaves
asaprogram in and of itself.
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9 Partitions are not required to run in separate address spaces. For example, an implementation might support dynamic
linking via the partition concept.

10 An order of elaboration of library_items that is consistent with the partial ordering defined above does not always
ensure that each library_unit_body is elaborated before any other compilation unit whose elaboration necessitates that the
library_unit_body be aready elaborated. (In particular, there is no requirement that the body of a library unit be
elaborated as soon as possible after the library_unit_declaration is elaborated, unless the pragmas in subclause 10.2.1 are
used.)

11 A partition (active or otherwise) need not have a main subprogram. In such a case, all the work done by the partition
would be done by elaboration of various library_items, and by tasks created by that elaboration. Passive partitions, which
cannot have main subprograms, are defined in Annex E, *‘ Distributed Systems’’.

10.2.1 Elaboration Control

This subclause defines pragmas that help control the elaboration order of library_items.

Syntax
The form of apragma Preelaborate is as follows:
pragma Preelaborate] (library_unit_name)];
A pragma Preelaborateis alibrary unit pragma.

Legality Rules
An elaborable construct is preelaborable unless its elaboration performs any of the following actions:
» Theexecution of astatement other than anull_statement.
* A call to asubprogram other than a static function.

» The evaluation of a primary that is a name of an object, unless the name is a static expression,
or statically denotes a discriminant of an enclosing type.

» The creation of a default-initialized object (including a component) of a descendant of a private
type, private extension, controlled type, task type, or protected type with entry_declarations;
similarly the evaluation of an extension_aggregate with an ancestor subtype_mark denoting a
subtype of such atype.

A generic body is preelaborable only if elaboration of a corresponding instance body would not perform
any such actions, presuming that the actual for each formal private type (or extension) is a private type (or
extension), and the actual for each formal subprogram is a user-defined subprogram.

If apragma Preelaborate (or pragma Pure — see below) appliesto alibrary unit, then it is preelaborated.
If alibrary unit is preelaborated, then its declaration, if any, and body, if any, are elaborated prior to all
non-preelaborated library_items of the partition. The declaration and body of a preelaborated library unit,
and all subunits that are elaborated as part of elaborating the library unit, shall be preelaborable. In
addition to the places where Legality Rules normally apply (see 12.3), this rule applies aso in the private
part of an instance of a generic unit. In addition, al compilation units of a preelaborated library unit shall
depend semantically only on compilation units of other preelaborated library units.

Implementation Advice
In an implementation, a type declared in a preelaborated package should have the same representation in
every elaboration of a given version of the package, whether the elaborations occur in distinct executions
of the same program, or in executions of distinct programs or partitions that include the given version.
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Syntax
The form of apragma Pureis as follows:
pragma Pure] (library_unit_name)];
A pragma Pureisalibrary unit pragma.
Legality Rules

A purelibrary_item is a preglaborable library_item that does not contain the declaration of any variable or
named access type, except within a subprogram, generic subprogram, task unit, or protected unit.

A pragma Pureis used to declare that alibrary unit is pure. If a pragma Pure applies to alibrary unit, then
its compilation units shall be pure, and they shall depend semantically only on compilation units of other
library unitsthat are declared pure.

Implementation Permissions

If alibrary unit is declared pure, then the implementation is permitted to omit a call on a library-level
subprogram of the library unit if the results are not needed after the call. Similarly, it may omit such a call
and simply reuse the results produced by an earlier call on the same subprogram, provided that none of the
parameters are of alimited type, and the addresses and values of all by-reference actual parameters, and the
values of all by-copy-in actual parameters, are the same as they were at the earlier cal. This permission
applies even if the subprogram produces other side effects when called.

Syntax
The form of apragma Elaborate, Elaborate All, or Elaborate Body is as follows:
pragma Elaborate(library_unit_name{, library_unit_name});
pragma Elaborate All(library_unit_name{, library_unit_name});
pragma Elaborate Body[(library_unit_name)];
A pragma Elaborate or Elaborate All isonly allowed within a context_clause.
A pragma Elaborate Body isalibrary unit pragma.

Legality Rules
If apragma Elaborate_Body applies to a declaration, then the declaration requires a completion (a body).

Satic Semantics
A pragma Elaborate specifies that the body of the named library unit is elaborated before the current
library_item. A pragma Elaborate_All specifies that each library_item that is needed by the named library
unit declaration is elaborated before the current library_item. A pragma Elaborate_Body specifies that the
body of the library unit is elaborated immediately after its declaration.

NOTES
12 A preelaborated library unit is allowed to have non-preelaborable children.

13 A library unit that is declared pure is allowed to have impure children.
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Section 11: Exceptions

This section defines the facilities for dealing with errors or other exceptiona situations that arise during
program execution. An exception represents a kind of exceptional situation; an occurrence of such a
situation (at run time) is called an exception occurrence. To raise an exception is to abandon normal
program execution so as to draw attention to the fact that the corresponding situation has arisen.
Performing some actions in response to the arising of an exception is called handling the exception.

An exception_declaration declares a name for an exception. An exception is raised initialy either by a
raise_statement or by the failure of a language-defined check. When an exception arises, control can be
transferred to a user-provided exception_handler at the end of a handled_sequence_of_statements, or it
can be propagated to a dynamically enclosing execution.

11.1 Exception Declarations

An exception_declaration declares a name for an exception.

Syntax
exception_declaration ::= defining_identifier_list : exception;

Satic Semantics

Each single exception_declaration declares a name for a different exception. If a generic unit includes an
exception_declaration, the exception_declarations implicitly generated by different instantiations of the
generic unit refer to distinct exceptions (but al have the same defining_identifier). The particular exception
denoted by an exception name is determined at compilation time and is the same regardliess of how many
times the exception_declaration is elaborated.

The predefined exceptions are the ones declared in the declaration of package Standard: Constraint_Error,
Program_Error, Storage_Error, and Tasking_Error; one of them is raised when a language-defined check
fails.

Dynamic Semantics
The elaboration of an exception_declaration has no effect.

The execution of any construct raises Storage Error if there is insufficient storage for that execution. The
amount of storage needed for the execution of constructs is unspecified.

Examples
Examples of user-defined exception declarations:

Si ngul ar : exception;
Error ;. exception;
Overflow, Underflow : exception;

11.2 Exception Handlers

The response to one or more exceptions is specified by an exception_handler.
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handled_sequence_of_statements ::=
sequence_of_statements
[exception
exception_handler
{exception_handler}]

exception_handler ::=

Syntax

when [choice_parameter_specification:] exception_choice {| exception_choice} =>

sequence_of_statements

choice_parameter_specification ::= defining_identifier

exception_choice ::= exception_name | others

Legality Rules
A choice with an exception_name covers the named exception. A choice with others covers al exceptions
not named by previous choices of the same handled_sequence_of_statements. Two choices in different
exception_handlers of the same handled_sequence_of_statements shall not cover the same exception.

A choice with others is adlowed only for the last handler of a handled_sequence_of_statements and as

the only choice of that handler.

An exception_name of a choice shall not denote an exception declared in ageneric formal package.

Satic Semantics

A choice_parameter_specification declares a choice parameter, which is a constant object of type
Exception_Occurrence (see 11.4.1). During the handling of an exception occurrence, the choice parameter,

if any, of the handler represents the exception occurrence that is being handled.

Dynamic Semantics
The execution of a handled_sequence_of_statements consists of the execution of the sequence_of -
statements. The optional handlers are used to handle any exceptions that are propagated by the

sequence_of_statements,

Examples

Example of an exception handler:
begi n

Open(File, In_File, "input.txt");

exception
when E : Name_Error =>

Put (" Cannot open input file :
Put _Li ne( Excepti on_Message(E));

rai se;
end;

11.3 Raise Statements

A raise_statement raises an exception.

raise_statement ::= raise [exception_name];

| 11.2 Exception Handlers
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--see A8.2
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Legality Rules
The name, if any, in a raise_statement shal denote an exception. A raise_statement with no

exception_name (that is, are-raise statement) shall be within a handler, but not within a body enclosed by
that handler.

Dynamic Semantics
To raise an exception is to raise a new occurrence of that exception, as explained in 11.4. For the
execution of araise_statement with an exception_name, the named exception is raised. For the execution
of areraise statement, the exception occurrence that caused transfer of control to the innermost enclosing
handler israised again.

Examples
Examples of raise statements:
rai se Ada.| O Exceptions. Name_Error; - seeAl3
rai se; -- re-raise the current exception

11.4 Exception Handling

When an exception occurrenceis raised, normal program execution is abandoned and control is transferred
to an applicable exception_handler, if any. To handle an exception occurrence is to respond to the
exceptiona event. To propagate an exception occurrence is to raise it again in another context; that is, to
fail to respond to the exceptional event in the present context.

Dynamic Semantics
Within a given task, if the execution of construct a is defined by this International Standard to consist (in
part) of the execution of construct b, then while b is executing, the execution of a is said to dynamically
enclose the execution of b. The innermost dynamically enclosing execution of a given execution is the
dynamically enclosing execution that started most recently.

When an exception occurrence is raised by the execution of a given construct, the rest of the execution of
that construct is abandoned; that is, any portions of the execution that have not yet taken place are not
performed. The construct isfirst completed, and then left, as explained in 7.6.1. Then:

« If the construct is atask_body, the exception does not propagate further;

» If the construct is the sequence_of_statements of a handled_sequence_of_statements that
has a handler with a choice covering the exception, the occurrence is handled by that handler;

» Otherwise, the occurrence is propagated to the innermost dynamically enclosing execution,
which means that the occurrenceis raised again in that context.

When an occurrence is handled by a given handler, the choice_parameter_specification, if any, is first
elaborated, which creates the choice parameter and initializes it to the occurrence. Then, the
sequence_of_statements of the handler is executed; this execution replaces the abandoned portion of the
execution of the sequence_of_statements.

NOTES
1 Note that exceptions raised in a declarative_part of a body are not handled by the handlers of the handled_-
sequence_of_statements of that body.
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11.4.1 The Package Exceptions

Static Semantics
The following language-defined library package exists:

package Ada. Exceptions is
type Exception_ld is private;
Null _Id : constant Exception_|d;
function Exception_Nanme(ld : Exception_ld) return String;

type Exception_Cccurrence is limted private, )
type Exception_Cccurrence_Access is access all Exception_Cccurrence;
Nul | _Cccurrence : constant Exception_Cccurrence;

procedure Raise_Exception(E : in Exception_|d;

Nbssage ©in String :="");
functi on Exception_Message(X : Except| on_Cccurrence) return String;
procedure Rerai se_Q:currence(X in Exception_Cccurrence);

function Exception_ldentity(X : Exception_Cccurrence)
return Exception_Id;
function Exception_Nanme(X : Exception_Cccurrence) return String;
- - Same as Exception_Name(Exception_|dentity(X)).
function Exception_Information(X : Exception_Cccurrence) return String;

procedure Save_Cccurrence(Target : out Exception_Cccurrence;
Source : in Exception_Cccurrence);
function Save_Cccurrence(Source : Exception_Cccurrence)
return Exception_QCccurrence_Access;
private
.. -- not specified by the language
end Ada. Excepti ons;
Each distinct exception is represented by a distinct value of type Exception_Id. Null_ld does not represent
any exception, and is the default initial value of type Exception_ld. Each occurrence of an exception is
represented by a value of type Exception_Occurrence. Null_Occurrence does not represent any exception

occurrence, and is the default initial value of type Exception_Occurrence.

For a prefix E that denotes an exception, the following attribute is defined:

E'ldentity E'ldentity returns the unique identity of the exception. The type of this attribute is
Exception_Id.

Raise_Exception raises a new occurrence of the identified exception. In this case, Exception_Message
returns the Message parameter of Raise Exception. For a raise_statement with an exception_name,
Exception_Message returns implementation-defined information about the exception occurrence.
Reraise_Occurrence reraises the specified exception occurrence.

Exception_Identity returns the identity of the exception of the occurrence.

The Exception_Name functions return the full expanded name of the exception, in upper case, starting
with a root library unit. For an exception declared immediately within package Standard, the defining_-
identifier is returned. The result is implementation defined if the exception is declared within an unnamed
block statement.

Exception_Information returns implementation-defined information about the exception occurrence.

Raise_Exception and Reraise Occurrence have no effect in the case of Null_ld or Null_Occurrence.
Exception_Message, Exception_Identity, Exception_Name, and Exception_Information raise
Constraint_Error for aNull_Id or Null_Occurrence.
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The Save_Occurrence procedure copies the Source to the Target. The Save_Occurrence function uses an
allocator of type Exception_Occurrence_Access to create a new object, copies the Source to this new
object, and returns an access value designating this new object; the result may be deallocated using an
instance of Unchecked Deallocation.

Implementation Requirements

The implementation of the Write attribute (see 13.13.2) of Exception_Occurrence shall support writing a
representation of an exception occurrence to a stream; the implementation of the Read attribute of
Exception_Occurrence shall support reconstructing an exception occurrence from a stream (including one
written in a different partition).

Implementation Permissions

An implementation of Exception_Name in a space-constrained environment may return the defining_-
identifier instead of the full expanded name.

The string returned by Exception_Message may be truncated (to no less than 200 characters) by the
Save Occurrence procedure (not the function), the Reraise_Occurrence procedure, and the reraise
Statement.

Implementation Advice

Exception_Message (by default) and Exception_Information should produce information useful for
debugging. Exception_Message should be short (about one line), whereas Exception_Information can be
long. Exception_M essage should not include the Exception_Name. Exception_Information should include
both the Exception_Name and the Exception_Message.

11.4.2 Example of Exception Handling

Examples
Exception handling may be used to separate the detection of an error from the response to that error:

wi th Ada. Excepti ons;
use Ada;
package File_Systemis
type File_Handle is limted private;

Fil e_Not _Found : exception;
procedure Open(F : in out File_Handle; Name : String);
- - raises File_Not_Found if named file does not exist

End_Of _File : exception;
procedure Read(F : in out File_Handle; Data : out Data_Type);
- - raises End_Of_Fileif thefileis not open

end Fil e_System

package body File_Systemis
procedure Open(F : in out File_Handle; Name : String) is
begin
if File_Exists(Name) then

el se
Except i ons. Rai se_Exception(File_Not_Found' ldentity,
"File not found: " & Nane & ".");
end if;
end Open;
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7 procedure Read(F : in out File_Handle; Data : out Data Type) is
begi n
if F.Current_Position <= F.Last_Position then

el se

raise End_ O _File;
end if;
end Read;
8 .
9 end File_System
10 with Ada. Text _I1Q

with Ada. Excepti ons;
with File_System use File_System

use Ada;
procedure Main is
begi n
... -- call operationsin File_System
exception

when End O _File =>
Cl ose(Sonme_File);
when Not _Found_Error : File_Not_Found =>
Text _I O Put _Li ne( Excepti ons. Excepti on_Message( Not _Found_Error));
when The_Error : others =>
Text _I O Put _Li ne("Unknown error:");
if Verbosity_Desired then
Text _I O Put _Li ne( Excepti ons. Excepti on_I nfornation(The_Error));
el se
Text _I| O Put _Li ne( Excepti ons. Excepti on_Nane(The_Error));
Text _| O Put _Li ne( Excepti ons. Excepti on_Message(The_Error));
end if;
raise;
end Main;

1 In the above example, the File_System package contains information about detecting certain exceptional
situations, but it does not specify how to handle those situations. Procedure Main specifies how to handle
them; other clients of File_System might have different handlers, even though the exceptional situations
arise from the same basic causes.

[

11.5 Suppressing Checks

A pragma Suppress gives permission to an implementation to omit certain language-defined checks.

[

A language-defined check (or simply, a ‘‘check’’) is one of the situations defined by this International
Standard that requires a check to be made at run time to determine whether some condition istrue. A check
fails when the condition being checked is false, causing an exception to be raised.

N

Syntax
3 The form of apragma Suppressis asfollows:
4 pragma Suppress(identifier [, [On =>] name]);
5 A pragma Suppressis alowed only immediately within adeclarative_part, immediately within a

package_specification, or as a configuration pragma.

Legality Rules
6  Theidentifier shall be the name of a check. The name (if present) shall statically denote some entity.
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For a pragma Suppress that is immediately within a package_specification and includes a name, the
name shal denote an entity (or severa overloaded subprograms) declared immediately within the
package_specification.

Satic Semantics

A pragma Suppress gives permission to an implementation to omit the named check from the place of the
pragma to the end of the innermost enclosing declarative region, or, if the pragma is given in a package_-
specification and includes a name, to the end of the scope of the named entity. If the pragma includes a
name, the permission applies only to checks performed on the named entity, or, for a subtype, on objects
and values of its type. Otherwise, the permission applies to al entities. If permission has been given to
suppress a given check, the check is said to be suppressed.

The following are the language-defined checks:

» The following checks correspond to situations in which the exception Constraint_Error is raised
upon failure.

Access Check
When evaluating a dereference (explicit or implicit), check that the value of the name
is not null. When passing an actua parameter to a formal access parameter, check that
the value of the actua parameter is not null. When evduating a
discriminant_association for an access discriminant, check that the vaue of the
discriminant is not null.

Discriminant_Check
Check that the discriminants of a composite value have the values imposed by a
discriminant constraint. Also, when accessing a record component, check that it exists
for the current discriminant values.

Division_Check
Check that the second operand is not zero for the operations/, rem and mod.

Index_Check
Check that the bounds of an array value are equal to the corresponding bounds of an
index constraint. Also, when accessing a component of an array object, check for each
dimension that the given index value belongs to the range defined by the bounds of the
array object. Also, when accessing a slice of an array object, check that the given
discrete range is compatible with the range defined by the bounds of the array object.

Length_Check
Check that two arrays have matching components, in the case of array subtype
conversions, and logical operators for arrays of boolean components.

Overflow_Check
Check that a scalar value is within the base range of its type, in cases where the
implementation chooses to raise an exception instead of returning the correct
mathematical result.

Range_Check
Check that a scaar vaue satisfies a range constraint. Also, for the elaboration of a
subtype_indication, check that the constraint (if present) is compatible with the
subtype denoted by the subtype_mark. Also, for an aggregate, check that an index or
discriminant value belongs to the corresponding subtype. Also, check that when the
result of an operation yields an array, the value of each component belongs to the
component subtype.
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18 Tag_Check
Check that operand tags in a dispatching call are al equal. Check for the correct tag on
tagged type conversions, for an assignment_statement, and when returning a tagged

limited object from a function.
19 » The following checks correspond to situations in which the exception Program_Error is raised
upon failure.
20 Elaboration_Check

When a subprogram or protected entry is called, atask activation is accomplished, or a
generic instantiation is elaborated, check that the body of the corresponding unit has

aready been elaborated.
21 Accessibility_Check
Check the accessibility level of an entity or view.
22 » The following check corresponds to situations in which the exception Storage Error is raised
upon failure.
23 Storage Check

Check that evaluation of an allocator does not require more space than is available for
a storage pool. Check that the space available for a task or subprogram has not been

exceeded.
24 » Thefollowing check correspondsto all situationsin which any predefined exception is raised.
25 All_Checks

Represents the union of all checks; suppressing All_Checks suppresses all checks.

Erroneous Execution

26 |f agiven check has been suppressed, and the corresponding error situation occurs, the execution of the
program is erroneous.

Implementation Permissions

27 Animplementation is alowed to place restrictions on Suppress pragmas. An implementation is allowed to
add additional check names, with implementation-defined semantics. When Overflow_Check has been
suppressed, an implementation may also suppress an unspecified subset of the Range_Checks.

Implementation Advice

8 Theimplementation should minimize the code executed for checks that have been suppressed.

N

NOTES
29 2 Thereis no guarantee that a suppressed check is actually removed; hence a pragma Suppress should be used only for
efficiency reasons.
Examples
30 Examples of suppressing checks:

31 pragnma Suppr ess( Range_Check) ;
pragna Suppress( | ndex_Check, On => Table);

11.6 Exceptions and Optimization

‘e

[

This clause gives permission to the implementation to perform certain
necessarily preserve the canonical semantics.

optimizations’ that do not
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Dynamic Semantics

The rest of this International Standard (outside this clause) defines the canonical semantics of the 2
language. The canonical semantics of a given (legal) program determines a set of possible external effects
that can result from the execution of the program with given inputs.

As explained in 1.1.3, “*Conformity of an Implementation with the Standard’’, the external effect of a 3
program is defined in terms of its interactions with its external environment. Hence, the implementation

can perform any internal actions whatsoever, in any order or in parallel, so long as the external effect of the
execution of the program is one that is alowed by the canonical semantics, or by the rules of this clause.

Implementation Permissions
The following additional permissions are granted to the implementation: 4

* An implementation need not aways raise an exception when a language-defined check fails. 5

Instead, the operation that failed the check can ssimply yield an undefined result. The exception
need be raised by the implementation only if, in the absence of raising it, the value of this
undefined result would have some effect on the external interactions of the program. In
determining this, the implementation shall not presume that an undefined result has a value that
belongs to its subtype, nor even to the base range of its type, if scalar. Having removed the raise
of the exception, the canonical semantics will in general alow the implementation to omit the
code for the check, and some or all of the operation itself.

» If an exception is raised due to the failure of a language-defined check, then upon reaching the 6
corresponding exception_handler (or the termination of the task, if none), the externa
interactions that have occurred need reflect only that the exception was raised somewhere within
the execution of the sequence_of_statements with the handler (or the task_body), possibly
earlier (or later if the interactions are independent of the result of the checked operation) than
that defined by the canonical semantics, but not within the execution of some abort-deferred
operation or independent subprogram that does not dynamically enclose the execution of the
construct whose check failed. An independent subprogram is one that is defined outside the
library unit containing the construct whose check failed, and has no Inline pragma applied to it.
Any assignment that occurred outside of such abort-deferred operations or independent
subprograms can be disrupted by the raising of the exception, causing the object or its parts to
become abnormal, and certain subsequent uses of the object to be erroneous, as explained in
13.9.1.

NOTES
3 The permissions granted by this clause can have an effect on the semantics of a program only if the program fails a 7
language-defined check.
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Section 12: Generic Units

A generic unit is a program unit that is either a generic subprogram or a generic package. A generic unit is
a template, which can be parameterized, and from which corresponding (nongeneric) subprograms or
packages can be obtained. The resulting program units are said to be instances of the original generic unit.

A generic unit is declared by a generic_declaration. This form of declaration has a generic_formal_part
declaring any generic formal parameters. An instance of a generic unit is obtained as the result of a
generic_instantiation with appropriate generic actua parameters for the generic formal parameters. An
instance of a generic subprogram is a subprogram. An instance of a generic package is a package.

Generic units are templates. As templates they do not have the properties that are specific to their
nongeneric counterparts. For example, a generic subprogram can be instantiated but it cannot be called. In
contrast, an instance of a generic subprogram is a (nongeneric) subprogram; hence, this instance can be
called but it cannot be used to produce further instances.

12.1 Generic Declarations

A generic_declaration declares a generic unit, which is either a generic subprogram or a generic package.
A generic_declaration includes a generic_formal_part declaring any generic formal parameters. A generic
formal parameter can be an object; aternatively (unlike a parameter of a subprogram), it can be a type, a
subprogram, or a package.

Syntax
generic_declaration ::= generic_subprogram_declaration | generic_package_declaration

generic_subprogram_declaration ::=
generic_formal_part subprogram_specification;

generic_package_declaration ::=

generic_formal_part package_specification;
generic_formal_part ::= generic { generic_formal_parameter_declaration | use_clause}
generic_formal_parameter_declaration ::=

formal_object_declaration

| formal_type_declaration

| formal_subprogram_declaration

| formal_package_declaration
The only form of subtype_indication allowed within ageneric_formal_part is a subtype_mark (that

is, the subtype_indication shall not include an explicit constraint). The defining name of a generic
subprogram shall be an identifier (not an operator_symbol).

Satic Semantics
A generic_declaration declares a generic unit — a generic package, generic procedure or generic function,
as appropriate.

An entity isageneric formal entity if it is declared by a generic_formal_parameter_declaration. ‘* Generic
formal,”” or simply ‘‘formal,”’ is used as a prefix in referring to objects, subtypes (and types), functions,
procedures and packages, that are generic formal entities, as well as to their respective declarations.
Examples: ‘‘generic formal procedure’’ or a*‘‘formal integer type declaration.”’
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Dynamic Semantics

The elaboration of ageneric_declaration has no effect.

NOTES
1 Outside a generic unit a name that denotes the generic_declaration denotes the generic unit. In contrast, within the
declarative region of the generic unit, aname that denotes the generic_declaration denotes the current instance.

2 Within ageneric subprogram_body, the name of this program unit acts as the name of a subprogram. Hence this name
can be overloaded, and it can appear in arecursive call of the current instance. For the same reason, this name cannot
appear after the reserved word new in a (recursive) generic_instantiation.

3 A default_expression or default_name appearing in a generic_formal_part is not evaluated during elaboration of the
generic_formal_part; instead, it is evaluated when used. (The usua visibility rules apply to any name used in a default:
the denoted declaration therefore has to be visible at the place of the expression.)

Examples
Examples of generic formal parts:
generic - - parameterless
generic
Size : Natural; -- formal object
generic
Length : Integer := 200; - - formal object with a default expression
Area : Integer := Length*Length; -- formal objectwith a default expression
generic
type Item is private; - - formal type
type Index is (<>); - - formal type
type Row is array(lndex range <>) of Item -- formal type
wth function "<"(X, Y : Item) return Bool ean; - - formal subprogram

Examples of generic declarations declaring generic subprograms Exchange and Squaring:

generic
type Elemis private;
procedure Exchange(U, V : in out Elen;

generic
type Itemis private;
with function "*"(U, V: Item return ltemis <>

function Squaring(X : Item) return Item

Example of a generic declaration declaring a generic package:

generic
type Item is private;
type Vector is array (Positive range <>) of Item
wth function Sum(X, Y : Item) return Item
package On_Vectors is
function Sum (A, B : Vector) return Vector;
function Sigma(A : Vector) return Item
Length_Error : exception;
end On_Vectors;
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12.2 Generic Bodies

The body of a generic unit (a generic body) is a template for the instance bodies. The syntax of a generic
body isidentica to that of a nongeneric body.

Dynamic Semantics
The elaboration of a generic body has no other effect than to establish that the generic unit can from then
on be instantiated without failing the Elaboration_Check. If the generic body is a child of a generic
package, then its elaboration establishes that each corresponding declaration nested in an instance of the
parent (see 10.1.1) can from then on be instantiated without failing the Elaboration_Check.

NOTES
4 The syntax of generic subprograms implies that a generic subprogram body is aways the completion of a declaration.

Examples
Example of a generic procedure body:
procedure Exchange(U, V : in out Elen) is -- seel2l
T: Elem -- thegenericformal type
begi n
T:=U
u:=YV,
V=T,
end Exchange;
Example of a generic function body:
function Squaring(X : Item) return Itemis -- seel2l
begi n
return X*X; -- theformal operator "*"
end Squari ng;
Example of a generic package body:
package body On_Vectors is -- seel2l
function Sum(A, B : Vector) return Vector is
Result : Vector (A Range); -- theformal type Vector
Bi as : constant Integer := B First - A First;

begi n
if A Length /= B Length then
rai se Length_Error;
end if;

for Nin A Range | oop
Resul t (N) := Sun{A(N), B(N + Bias)); -- theformal function Sum
end | oop;
return Result;
end Sum

function Sigma(A : Vector) return Itemis
Total : Item:= A(A First); -- theformal typeltem

begi n
for Nin AFirst + 1 .. A Last |oop

Total := Sum(Total, A(N)); -- theformal function Sum

end | oop;
return Total;

end Signg;

end On_Vectors;
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12.3 Generic Instantiation

An instance of a generic unit is declared by ageneric_instantiation.

Syntax
generic_instantiation ::=
package defining_program_unit_name is

new generic_package name [generic_actual_part];
| procedur e defining_program_unit_name is

new generic_procedure_name [generic_actual_part];
| function defining_designator is

new generic_function_name [generic_actual_part];

generic_actual_part ::=
(generic_association {, generic_association})
generic_association ::=
[generic_formal_parameter_selector_name =>] explicit_generic_actual_parameter
explicit_generic_actual_parameter ::= expression | variable_name
| subprogram _name | entry_name | subtype_mark
| package_instance_name
A generic_association is named or positional according to whether or not the generic_formal_-

parameter _selector_name is specified. Any positional associations shall precede any named
associations.

The generic actual parameter is either the explicit_generic_actual_parameter given in a generic_-
parameter_association for each formal, or the corresponding default_expression or default_name if no
generic_parameter_association is given for the formal. When the meaning is clear from context, the term
‘‘generic actual,” or simply ‘‘actual,”’ is used as a synonym for ‘‘ generic actual parameter’’ and also for
the view denoted by one, or the value of one.

Legality Rules
In a generic_instantiation for a particular kind of program unit (package, procedure, or function), the

name shall denote a generic unit of the corresponding kind (generic package, generic procedure, or generic
function, respectively).

The generic_formal_parameter_selector_name of a generic_association shal denote a
generic_formal_parameter_declaration of the generic unit being instantiated. If two or more formal
subprograms have the same defining name, then named associations are not allowed for the corresponding
actuals.

A generic_instantiation shall contain a most one generic_association for each formal. Each formal
without an association shall have a default_expression or subprogram_default.

In ageneric unit Legality Rules are enforced at compile time of the generic_declaration and generic body,
given the properties of the formals. In the visible part and forma part of an instance, Legality Rules are
enforced at compile time of the generic_instantiation, given the properties of the actuals. In other parts of
an instance, Legality Rules are not enforced; this rule does not apply when a given rule explicitly specifies
otherwise.
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Satic Semantics

A generic_instantiation declares an instance; it is equivalent to the instance declaration (a package._-
declaration or subprogram_declaration) immediately followed by the instance body, both at the place of
the instantiation.

Theinstance is a copy of the text of the template. Each use of a forma parameter becomes (in the copy) a
use of the actual, as explained below. An instance of a generic package is a package, that of a generic
procedureis a procedure, and that of a generic function isafunction.

The interpretation of each construct within a generic declaration or body is determined using the
overloading rules when that generic declaration or body is compiled. In an instance, the interpretation of
each (copied) construct is the same, except in the case of a name that denotes the generic_declaration or
some declaration within the generic unit; the corresponding name in the instance then denotes the
corresponding copy of the denoted declaration. The overloading rules do not apply in the instance.

In an instance, a generic_formal_parameter_declaration declares a view whose properties are identical to
those of the actual, except as specified in 12.4, ‘‘Formal Objects’ and 12.6, ‘‘Formal Subprograms'’.
Similarly, for a declaration within a generic_formal_parameter_declaration, the corresponding
declaration in an instance declares a view whose properties are identical to the corresponding declaration
within the declaration of the actual.

Implicit declarations are also copied, and a name that denotes an implicit declaration in the generic denotes
the corresponding copy in the instance. However, for a type declared within the visible part of the generic,
awhole new set of primitive subprogramsis implicitly declared for use outside the instance, and may differ
from the copied set if the properties of the type in some way depend on the properties of some actual type
specified in the instantiation. For example, if the type in the generic is derived from a formal private type,
then in the instance the type will inherit subprograms from the corresponding actua type.

These new implicit declarations occur immediately after the type declaration in the instance, and override
the copied ones. The copied ones can be called only from within the instance; the new ones can be called
only from outside the instance, although for tagged types, the body of a new one can be executed by a call
to an old one.

In the visible part of an instance, an explicit declaration overrides an implicit declaration if they are
homographs, as described in 8.3. On the other hand, an explicit declaration in the private part of an
instance overrides an implicit declaration in the instance, only if the corresponding explicit declaration in
the generic overrides a corresponding implicit declaration in the generic. Corresponding rules apply to the
other kinds of overriding described in 8.3.

Post-Compilation Rules

Recursive generic instantiation is not allowed in the following sense: if a given generic unit includes an
instantiation of a second generic unit, then the instance generated by this instantiation shall not include an
instance of the first generic unit (whether this instance is generated directly, or indirectly by intermediate
instantiations).

Dynamic Semantics
For the elaboration of a generic_instantiation, each generic_association is first evaluated. If a default is
used, an implicit generic_association is assumed for this rule. These evaluations are done in an arbitrary
order, except that the evaluation for adefault actual takes place after the evaluation for another actual if the
default includes a name that denotes the other one. Finally, the instance declaration and body are
elaborated.
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For the evaluation of a generic_association the generic actual parameter is evaluated. Additiona actions
are performed in the case of aformal object of modein (see 12.4).

NOTES

5 If aformal typeis not tagged, then the type is treated as an untagged type within the generic body. Deriving from such
atypein ageneric body is permitted; the new type does not get a new tag value, even if the actual is tagged. Overriding
operations for such a derived type cannot be dispatched to from outside the instance.

Examples
Examples of generic instantiations (see 12.1):
procedure Swap i s new Exchange(El em => | nteger);

procedure Swap i s new Exchange(Character); - - Swap isoverloaded
function Square i s new Squaring(lnteger); - - "*" of Integer used by default
function Square is new Squaring(ltem=> Matrix, "*" => Matrix_Product);
function Square is new Squaring(Matrix, Mtrix_Product); -- sameasprevious

package Int_Vectors is new On_Vectors(lnteger, Table, "+");

Examples of uses of instantiated units:

Swap(A, B);
A := Square(A);

T: Table(l .. 5) := (10, 20, 30, 40, 50);

N : Integer := Int_Vectors.Sigma(T); -- 150 (seel12.2, ‘' Generic Bodies' for the body of
Sigma)

use I nt_Vectors;

M: Integer := Sigma(T); -- 150

12.4 Formal Objects

A generic formal object can be used to pass avalue or variable to a generic unit.

Syntax

formal_object_declaration ::=
defining_identifier_list : mode subtype_mark [:= default_expression];

Name Resolution Rules

The expected type for the default_expression, if any, of aformal object is the type of the formal object.

For ageneric formal object of mode in, the expected type for the actua is the type of the formal.

For ageneric formal object of mode in out, the type of the actual shall resolve to the type of the formal.
Legality Rules

If a generic formal object has a default_expression, then the mode shall be in (either explicitly or by
default); otherwise, its mode shall be either in or in out.

For a generic formal object of mode in, the actua shall be an expression. For a generic formal object of
mode in out, the actual shall be aname that denotes a variable for which renaming is allowed (see 8.5.1).

The type of ageneric formal object of mode in shall be nonlimited.

Satic Semantics

A formal_object_declaration declares a generic formal object. The default mode isin. For aformal object
of mode in, the nominal subtype is the one denoted by the subtype_mark in the declaration of the formal.
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For a formal object of mode in out, its type is determined by the subtype_mark in the declaration; its
nominal subtype is nonstatic, even if the subtype_mark denotes a static subtype.

In an instance, a formal_object_declaration of mode in declares a new stand-alone constant object whose
initialization expression is the actual, whereas a formal_object_declaration of mode in out declares a view
whose properties are identical to those of the actual.

Dynamic Semantics
For the evaluation of a generic_association for a formal object of mode in, a constant object is created,
the value of the actual parameter is converted to the nominal subtype of the formal object, and assigned to
the object, including any value adjustment — see 7.6.

NOTES

6 The constraints that apply to a generic formal object of mode in out are those of the corresponding generic actua
parameter (not those implied by the subtype_mark that appears in the formal_object_declaration). Therefore, to avoid
confusion, it is recommended that the name of afirst subtype be used for the declaration of such aformal object.

12.5 Formal Types

A generic formal subtype can be used to pass to a generic unit a subtype whose type isin a certain class of
types.

Syntax

formal_type_declaration ::=
type defining_identifier[discriminant_part] is formal_type_definition;
formal_type_definition ::=
formal_private_type_definition
| formal_derived_type_definition
| formal_discrete_type_definition
| formal_signed_integer_type_definition
| formal_modular_type_definition
| formal_floating_point_definition
| formal_ordinary_fixed_point_definition
| formal_decimal_fixed_point_definition
| formal_array_type_definition
| formal_access_type_definition

Legality Rules
For a generic formal subtype, the actual shall be a subtype_mark; it denotes the (generic) actual subtype.

Satic Semantics

A formal_type_declaration declares a (generic) formal type, and its first subtype, the (generic) formal
subtype.

The form of a formal_type_definition determines a class to which the forma type belongs. For a
formal_private_type_definition the reserved words tagged and limited indicate the class (see 12.5.1). For
a formal_derived_type_definition the class is the derivation class rooted at the ancestor type. For other
formal types, the name of the syntactic category indicates the class; a formal_discrete_type_definition
defines a discrete type, and so on.
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Legality Rules
The actual type shall bein the class determined for the formal.

Satic Semantics

The formal type aso belongs to each class that contains the determined class. The primitive subprograms
of the type are as for any type in the determined class. For aformal type other than aformal derived type,
these are the predefined operators of the type. For an elementary formal type, the predefined operators are
implicitly declared immediately after the declaration of the formal type. For a composite formal type, the
predefined operators are implicitly declared either immediately after the declaration of the formal type, or
later in its immediate scope according to the rules of 7.3.1. In an instance, the copy of such an implicit
declaration declares a view of the predefined operator of the actual type, even if this operator has been
overridden for the actual type. The rules specific to formal derived typesare givenin 12.5.1.

NOTES
7 Generic formal types, like al types, are not named. Instead, a name can denote a generic formal subtype. Within a
generic unit, ageneric formal typeis considered as being distinct from al other (formal or nonformal) types.

8 A discriminant_part is allowed only for certain kinds of types, and therefore only for certain kinds of generic formal
types. See 3.7.

Examples
Examples of generic formal types:

type Itemis private;
type Buffer(Length : Natural) is linmted private;

type Enum is (<>);

type Int is range <>;
type Angle is delta <>;
type Mass is digits <>

type Table is array (Enum) of Iltem

Example of a generic formal part declaring a formal integer type:

generic
type Rank is range <>;
First : Rank := Rank'First;
Second : Rank := First + 1; -- theoperator "+" of the type Rank

12.5.1 Formal Private and Derived Types

The class determined for a formal private type can be either limited or nonlimited, and either tagged or
untagged; no more specific class is known for such a type. The class determined for a formal derived type
isthe derivation class rooted at the ancestor type.

Syntax
formal_private_type_definition ::= [[abstract] tagged] [limited] private
formal_derived_type_definition ::= [abstract] new subtype_mark [with private]

Legality Rules

If a generic formal type declaration has a known_discriminant_part, then it shall not include a
default_expression for a discriminant.

The ancestor subtype of a forma derived type is the subtype denoted by the subtype_mark of the
formal_derived_type_definition. For a formal derived type declaration, the reserved words with private
shall appear if and only if the ancestor typeis atagged type; in this case the formal derived typeisaprivate
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extension of the ancestor type and the ancestor shall not be a class-wide type. Similarly, the optional
reserved word abstract shall appear only if the ancestor typeis a tagged type.

If the formal subtype is definite, then the actual subtype shall also be definite.

For a generic formal derived type with no discriminant_part:

» If the ancestor subtype is constrained, the actual subtype shall be constrained, and shal be
statically compatible with the ancestor;

« If the ancestor subtype is an unconstrained access or composite subtype, the actual subtype shall
be unconstrained.

« If the ancestor subtype is an unconstrained discriminated subtype, then the actual shall have the
same number of discriminants, and each discriminant of the actual shall correspond to a
discriminant of the ancestor, in the sense of 3.7.

The declaration of aforma