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Reducing power consumption for server-class computers is important, since increased energy usage
causes more heat dissipation, greater cooling requirements, reduced computational density, and
higher operating costs. For a typical data center, storage accounts for 27% of energy consumption.
Conventional server-class RAIDs cannot easily reduce power because loads are balanced to use all
disks, even for light loads.

We have built the power-aware RAID (PARAID), which reduces energy use of commodity server-
class disks without specialized hardware. PARAID uses a skewed striping pattern to adapt to the
system load by varying the number of powered disks. By spinning disks down during light loads,
PARAID can reduce power consumption, while still meeting performance demands, by matching
the number of powered disks to the system load. Reliability is achieved by limiting disk power
cycles and using different RAID encoding schemes. Based on our five-disk prototype, PARAID
uses up to 34% less power than conventional RAIDs while achieving similar performance and
reliability.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management—Sec-
ondary storage; D.4.8 [Operating Systems]: Performance—Measurements

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Power savings, energy efficiency, RAID

This research was supported by NSF Grant CNS-0410896. Opinions, findings, and conclusions or
recommendations expressed in this document do not necessarily reflect the views of the NSF, FSU,
UCLA, Harvey Mudd College, or the U.S. Government.
Authors’ addresses: C. Weddle, M. Oldham, J. Qian, and A.-I.A. Wang, Department of Com-
puter Science, Florida State University, Tallahassee, FL 32306; email: {weddle, oldham, qian,
awang}@cs.fsu.edu; P. Reiher, Department of Computer Science, University of California, Los An-
geles, 405 Hilgard Ave., Los Angeles, CA 90095; email: reiher@cs.ucla.edu; G. Kuenning, Depart-
ment of Computer Science, Harvey Mudd College, 301 Platt Blvd., Claremont, CA 91711; email:
geoff@cs.hmc.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permission@acm.org.
C© 2007 ACM 1553-3077/2007/10-ART13 $5.00 DOI = 10.1145/1289720.1289721 http://doi.acm.org/
10.1145/1289720.1289721

ACM Transactions on Storage, Vol. 3, No. 3, Article 13, Publication date: October 2007.



P1: PSX
ACMJ334-07 ACM-TRANSACTION October 10, 2007 18:26

13:2 • C. Weddle et al.

ACM Reference Format:
Weddle, C., Oldham, M., Qian, J., Wang, A.-I. A., Reiher, P., and Kuenning, G. 2007. PARAID: A
gear-shifting power-aware RAID. ACM Trans. Storage 3, 3, Article 13 (October 2007), 33 pages.
DOI = 10.1145/1289720.1289721 http://doi.acm.org/10.1145/1289720.1289721.

1. INTRODUCTION

The disk remains a significant source of power usage in modern systems. In web
servers, disks typically account for 24% of the power usage; in proxy servers,
77% [Carrera et al. 2003; Huang et al. 2003]. Storage devices can account for as
much as 27% of the electricity cost in a typical data center [Zhu et al. 2004a].
The energy spent to operate disks also has a cascading effect on other operating
costs. Greater energy consumption leads to more heat dissipation, which in
turn leads to greater cooling requirements [Moore et al. 2005]. The combined
effect also limits the density of computer racks, which leads to more space
requirements and thus higher operating costs.

Data centers that use large amounts of energy tend to rely on RAID to store
much of their data, so improving the energy efficiency of RAID devices is a
promising energy reduction approach for such installations. Achieving power
savings on commodity server-class disks is challenging for many reasons, as
follows.

(1) RAID performance and reliability must be retained for a solution to be an
acceptable alternative.

(2) To reduce power, a server cannot rely on caching and powering-off disks
during idle times because such opportunities are not as frequent on servers
[Gurumurthi et al. 2003; Carrera et al. 2003; Zhu et al. 2004a].

(3) Conventional RAID balances the load across all disks in the array for max-
imized disk parallelism and performance [Patterson et al. 1988], which
means that all disks are spinning, even under a light load. To reduce power
consumption, we must create opportunities to power-off individual disks.

(4) Many legacy reliability encoding schemes rely on data and error-recovery
blocks distributed among disks in constrained ways to avoid correlated fail-
ures. A solution needs to retro-fit legacy reliability encoding schemes trans-
parently.

(5) Server-class disks are not designed for frequent power cycles, which reduce
life expectancy significantly. Therefore, a solution needs to use a limited
number of power cycles to achieve significant energy savings.

Some existing approaches use powered-down RAIDs for archives [Colarelli
and Grunwald 2002] or trade performance for energy savings [Pinheiro et al.
2001]. Some studies have exploited special hardware such as multispeed disks
[Carrera et al. 2003; Li et al. 2004; Zhu et al. 2005]. Although simulation studies
show promising energy savings, multispeed disks are still far from ubiquitous
in large-scale deployments [Li et al. 2004; Yao and Wang 2006]. With the aid
of nonvolatile RAM, approaches that use existing server-class drives have been
recently made available [Li et al. 2004; Yao and Wang 2006; Pinheiro et al. 2006],
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Fig. 1. UCLA Computer Science Department web server activity from August 11 through August
14, 2006.

but RAID reliability encoding constraints limit the number of spun-down drives
(e.g., one for RAID-5).

We have designed, implemented, and measured the power-aware RAID
(PARAID), which is deployable with commodity server-class disk drives with-
out special hardware. PARAID introduces a skewed striping pattern that allows
RAID devices to use just enough disks to meet the system load. PARAID can
vary the number of powered-on disks by “gear-shifting,” or switching among
sets of disks to reduce power consumption. Compared to a conventional 5-disk
RAID, PARAID can reduce power consumption by up to 34% while maintain-
ing comparable performance and reliability. Moreover, PARAID reuses different
RAID levels so that the underlying RAID technology can evolve independently.

Beyond the power savings obtained by PARAID, the process of creating a
real energy measurement framework produced some useful insights into the
general problem of measuring energy consumption and savings. These insights
are also discussed in this article.

2. OBSERVATIONS

Overprovisioned resources under RAID. Load balancing allows a conventional
RAID device to maximize disk parallelism and performance, and ensures that
no disk becomes a bottleneck. This uniformity simplifies data management and
allows all disks to be accessed in the same way. However, uniform striping is not
favorable for energy savings. Load balancing significantly reduces opportunities
to power-off disks because all disks in the array need to be powered to serve a
file, even if a RAID receives relatively light loads, when fewer powered disks
would be sufficient.

Cyclic fluctuating load. Many system loads display cyclic fluctuations [Chase
et al. 2001]. Figure 1 shows the web traffic gathered at the UCLA Computer
Science Department across one week. The load fluctuations roughly follow daily
cycles. Depending on the types of traffic, different systems may exhibit various
fluctuation patterns, with varying ranges of light to heavy loads [Iyengar et al.
2000].

We can exploit these patterns by varying the number of powered disks,
while still meeting performance needs and minimizing the number of power
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switches. A few strategically timed power cycles can achieve significant power
savings.

Unused storage space. Storage capacity is outgrowing demand for many com-
puting environments, and various large-scale installations report only 30% to
60% storage allocation [Asaro 2005; Gray 2005; Levin 2006]. Researchers have
been looking for creative ways to use the free storage (e.g., trading-off capacity
for performance [Yu et al. 2000] or storing every version of file updates [Santry
et al. 1999]).

Additionally, many companies purchase storage with performance as the top
criterion. Therefore, they may need many disks for parallelism to aggregate
bandwidth, while the associated space is left largely unused. Further, admin-
istrators tend to purchase more space in advance to avoid frequent upgrades.
Unused storage can then be used opportunistically for data-block replication to
help reduce power consumption.

Performance versus energy optimizations. Performance benefits are realized
only when a system is under a heavy load, and may not result in an immediate
monetary return. Energy savings, however, are available at once and could, for
example, be invested in more computers. Also, unlike performance, which is pur-
chased in chunks as new machines are acquired, energy savings can be invested
immediately and compounded over computer lifetimes. Therefore, if a server
usually operates below its peak load, optimizing energy efficiency is attractive.

3. POWER-AWARE RAID

The main design issues for PARAID are how to skew disk striping to allow op-
portunities for energy savings, and how to preserve performance and reliability.

3.1 Skewed Striping for Energy Savings

PARAID exploits unused storage to replicate and stripe data blocks in a skewed
fashion so that disks can be organized into hierarchical overlapping sets of
RAIDs. Each set contains a different number of disks, and can serve all requests
via either its data blocks or replicated blocks. Each set is analogous to a gear in
automobiles, since different numbers of disks offer different levels of parallelism
and aggregate disk bandwidth.

The replicated blocks are soft states in the sense that they can be easily re-
produced. Thus, as storage demands rise, replicated blocks can be reclaimed by
reducing the number of gears. Unlike memory caches, these soft states persist
across reboots.

Figure 2 shows an example of replicated data blocks persisting in soft states
in the unused disk regions. By organizing disks into gears, PARAID can operate
in different modes. When operating in gear 1 with disks 1 and 2 powered, disks
3 and 4 can be powered off. As the load increases, PARAID upshifts into second
gear by powering up the third disk.

By adjusting the number of gears and of disks in each gear, PARAID provides
disk parallelism and bandwidth that can follow the fluctuating performance
demand curve closely throughout the day. By creating opportunities to spin-
down disk drives, PARAID conserves power.
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Fig. 2. Skewed striping of replicated blocks in soft state, creating three RAID gears over four disks.

While more gears can match the performance demand curve more closely, the
number of gears is constrained by the unused storage available and the need
for update propagation when switching gears. To minimize overhead, the gear
configuration also needs to consider the number of gears and gear switches.

3.2 Preserving Peak Performance

PARAID matches the peak performance of conventional RAIDs by preserving
the original disk layouts when operating at the highest gear. This constraint
also allows PARAID to introduce minimal disturbances to the data path when
the highest gear is in use.

In low gears, since PARAID offers less parallelism, the bandwidth offered is
less than that of a conventional RAID. Fortunately, the number of requests
affected by this performance degradation is significantly smaller compared
to those affected during peak hours. Also, as bandwidth demand increases,
PARAID will upshift the gear to increase disk parallelism.

PARAID also can potentially improve performance in low-gear settings. As
a gear downshifts, the transfer of data to the soft state from disks about to be
spun down warms up the cache, thus reducing the effect of seeking between
blocks stored in different gears.

3.3 Retaining Reliability

To retain conventional RAID reliability, PARAID must be able to tolerate disk
failures. To accomplish this goal, PARAID needs to supply the data redundancy
of conventional RAIDs and address the reduced life expectancy of server-class
disks due to power cycles.

PARAID is designed to be a device layer sitting between an arbitrary RAID
device and its physical devices. Thus, PARAID inherits the level of data re-
dundancy, striping granularity, and disk layout for the highest gear provided
by that RAID. For example, a PARAID device composed with a RAID-5 device
would still be able to rebuild a lost disk in the event of disk failure (the details
of failure recovery will be discussed in Section 4.4).

Because PARAID power-cycles disks to save energy, it must also address a
new reliability concern. Power-cycling reduces the MTTF of a disk, which is
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Fig. 3. PARAID system components.

designed for an expected number of cycles during its lifetime. For example, the
disks used in this work have a 20,000-power-cycle rating [Fujitsu 2007]. Every
time a disk is power-cycled, it comes closer to eventual failure.

PARAID limits the power-cycling of disks by inducing a bimodal distribu-
tion of busy and idle disks. Busier disks stay powered on, and more idle ones
often stay off, leaving a set of middle-range disks that are power-cycled more
frequently. PARAID can then prolong the MTTF of a PARAID device as a whole
by rotating the gear-membership role of the disks and balancing their current
number of power cycles.

Further, PARAID limits the number of disk power cycles used for gear shift-
ing. By rationing power cycles, PARAID can operate with an eye to targeted
life expectancy. For example, if the disks have a five-year life expectancy due to
the system upgrade policy and the disks are expected to tolerate 20,000 cycles,
then each disk in the array cannot be power-cycled more than 10 times a day.
Once any of the disks has reached the rationed number of power cycles for a
given period, PARAID can operate at the highest gear without energy savings.
The power-saving mode resumes at the next rationing period.

4. PARAID COMPONENTS

PARAID has four major components (i.e., a block handler, monitor, reliability
manager, and disk manager; see Figure 3) responsible for handling block I/Os,
replication, gear shifting, update propagation, and reliability.

4.1 Disk Layout and Data Flow

PARAID is a new device layer in the conventional software RAID multidevice
driver. The block handler under PARAID transparently remaps requests from a
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Table I. PARAID Disk Layout with One 4-Disk Gear and One 5-Disk Gear,
Each Running RAID-5.

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5
Gear 1 RAID-5 (1–4) 8 12 ((1–4), 8, 12)

16 20 (16, 20, )
Gear 2 RAID-5 1 2 3 4 (1–4)

5 6 7 (5–8) 8
9 10 (9–12) 11 12

13 (13–16) 14 15 16
(17–20) 17 18 19 20

Each table entry contains either a single block number or a parenthesized list, denoting a
parity block for the blocks in the list. “ ” means an empty block.

conventional RAID device and forwards them to other soft-state RAID devices
or individual disk devices.

PARAID currently delegates RAID regions to store replicated soft states
for individual gears. The highest gear reuses the original RAID level and
disk layout to preserve peak performance. When the highest gear is active,
PARAID forwards requests and replies with minimal disturbance to the data
path.

However, the data and parity blocks of D disks cannot be striped across fewer
disks to achieve the same level of redundancy. If we simply assigned the Dth
block to one of the still-powered disks, it would be possible for a single drive to
lose both a data block and a parity block from the same stripe, while the block
stored on the powered-off disk might be out-of-date.

To provide reliability, the soft-state replicated blocks stored in each gear
use the same RAID level. For example, consider a 5-disk RAID-5 (see Table I).
Gear 2 uses all 5 disks; gear 1 uses 4. When disk 5 is spun down, its blocks
must be stored on the remaining 4 disks. This is done by creating a 4-disk
soft-state RAID-5 partition; the data and parity blocks from disk 5 are stored
in this partition as if they were normal data blocks arriving directly from the
application. If necessary, the soft-state partition can be removed to recover
space whenever disk 5 is spinning.

The synchronization between disk 5 of gear 2 and the blocks in gear 1
resembles the data flow of RAID1+0. Disk 5 is “mirrored” using RAID-5
on gear 1, with synchronization performed during gear shifts. By using the
underlying RAID-5 code for disk layout and parity handling, the PARAID
code is drastically simplified as compared to trying to deal with those details
internally.

For all gears (including the case where all disks are powered), if either a read
or write request is sent to a powered disk, the disk simply serves the request.
If a request is sent to a powered-off disk, then PARAID will remap the request
to a replicated block stored on a powered disk. For writes, a remapped update
is later propagated to neighboring gears during gear shifts.

The required unused storage depends on the RAID level, number of gears,
and number of disks in each gear. For RAID-5, D > 3 disks, M gears with Gi

disks within the ith gear (1 ≤ i ≤ M ≤ (D – 3 + 1), 3 ≤ Gi < Gi+1 < GM = D),
the percentage storage consumption Si of the total RAID for the ith gear can
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be solved with M equations.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M∑
i=1

Si = 1(
M∑
j=i

S j

)
(Gi − Gi−1) = (

Gi−1 − 1
)

Si−1, i = 2..M
(1)

For a disk in the lowest gear (Figure 2, disk 1), the sum of the percentage usage
of disk space by each gear must be one. Also, for a gear (Figure 2, gear 2) to be
able to shift to a lower gear (Figure 2, gear 1), the lower gear must store all the
content of the disk(s) (Figure 2, disk 3) that are about to be spun down, with
their parity information created for the lower gear.

PARAID uses around (D – G1)/(D – 1) of the total RAID-5 storage to store
soft states. This estimate is largely based on the number of disks in the lowest
gear, not the number of gears or the number of disks in intermediate gears, so
the overhead of gear switching and the time spent in each gear will determine
optimal gear configurations.

The target percentage of energy savings for an active system (not specific to
RAID-5) is described by formula (2), where Pstandby is the power consumption
for a spun-down disk (which is typically not zero, for reasons described in the
performance section), and Pactive/idle is the average power consumption for either
a busy or idle disk to compute disk power-savings for busy or idle loads.

Power savings increase with more disks, fewer disks in the lowest gear, and
a higher Pactive/Pstandby ratio. Since spun-down disks still consume power, it
is better to install PARAID with large disks with unused space rather than
buying more disks later.

Percentage ener g y savings = 1 − (D − G1)Pstandby + G1 Pactive/idle

DPactive/idle
(2)

For this article, an upshift means switching from a gear with Gi disks to Gi+1
disks; a downshift, switching from a gear with Gi disks to Gi−1 disks. A gear
switch can be either an upshift or downshift.

4.2 Update Propagation

When a powered-off disk misses a write request, it must synchronize to replace
the stale data either when powered on or just before the stale information is
accessed. If there is a lot of stale data, fully synchronizing a disk can be slow.
The on-demand approach updates stale data only when it is accessed, allowing
the gear shift to take place much more swiftly, but the full synchronization
approach is simpler to build. The on-demand approach is not applicable for
downshifts, since PARAID needs to finish the propagation before spinning-down
drives.

The disk manager captures outstanding writes to powered-off disks. For full
synchronization, the disk manager reissues outstanding writes to the disk when
it is powered on, possibly rereading some data from replicated soft states stored
in the current gear.
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For on-demand synchronization, the PARAID block I/O handler uses a dirty-
block list. If a referenced dirty block is not cached, PARAID will retrieve the
block from the original gear and return it to the requestor. PARAID will then
write that block to the target-gear disks, effectively piggybacking the synchro-
nization step at access time.

The disk manager must track stale block locations for synchronization. This
list of dirty blocks is stored on disk in case of system failure and is replicated
in memory for fast access.

A failed disk can stop the gear-shifting process. Disks can also fail during
synchronization. However, the list of outstanding writes is maintained and
replicated with the same RAID mechanism throughout the disk failure and
recovery process. Once the failed disk recovers, synchronization can resume.

The choice of on-demand or full synchronization for upshifting is config-
urable. On-demand allows PARAID to be more responsive to sudden request
bursts, at the cost of tracking additional writes for unsynchronized disks. The
full synchronization approach may be preferable for few gear shifts and a read-
dominated workload, since the number of blocks to be synchronized is small.
The full synchronization method is also available for manual maintenance, such
as when an administrator would need to have a consistent system state before
pulling out a disk.

4.3 Asymmetric Gear-Shifting Policies

The disk manager performs shifts between gears. The PARAID monitor decides
when a shift is needed, and the disk manager then performs the actual power
cycles.

Switching to a higher gear is aggressive so that the PARAID device can re-
spond quickly to a sharp and sustained increase in workload. However, the algo-
rithm should be resilient to short bursts, or it will lead to little energy savings.
Downshifting needs to be done conservatively so that wild swings in system
activity will not: (1) mislead the PARAID device into a gear that cannot han-
dle the requests; or (2) cause rapid oscillations between gears and significantly
shorten the life expectancy of disks (or, considering disk power-cycle rationing,
quickly turn off the gear shifting behavior for the day, limiting possibilities for
power savings).

Upshifts. To decide when to upshift, the monitor must know whether the cur-
rent gear has reached a predetermined utilization threshold in terms of busy
RAID milliseconds within a time window. Interestingly, we could not check
the disk-busy status directly, since this probe would spin up a powered-down
disk. Instead, an active RAID device is marked busy from the point when a
request enters the RAID queue to when the completion callback function is
invoked. Since multiple RAID requests can overlap, should a request be com-
pleted with an elapsed time of t milliseconds, we mark the prior t milliseconds as
busy.

The threshold and time window are static but configurable, and are set to
80% (based on prior studies [Carrera et al. 2003]) and 32 seconds (based on
empirical experience), respectively. The intent is that within the time it takes
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to spin up the disk and propagate updates, the utilization threshold will not
reach 100%. The use of an online algorithm to set thresholds automatically will
be future work.

To track the system load, the monitor keeps a moving average of utilization
0 ≤ U ≤ 1 for each gear. The purpose of averaging is to filter out short bursts
of requests that are frequently seen in real-world workloads. The monitor also
keeps a moving standard deviation S. If the utilization plus its standard devi-
ation exceeds the threshold 0 ≤ T ≤ 1, an upshift is performed.

U + S > T (upshift condition) (3)

The addition of standard deviation makes upshift more aggressive; however,
since both the moving average and standard deviation lag behind the actual
load, the policy is more responsive to changes that lead to sustained activities.

Downshifts. To decide when to downshift, the utilization of the lower gear 0
≤ U ′ ≤ 1 needs to be computed as given next, with associated moving standard
deviation S ′. If their sum is below the threshold T, the lower gear can now
handle the resulting load, with associated fluctuations.

U ′ + S′ < T (downshift condition) (4)

A complication arises when each gear is stored in RAID with parity blocks.
Take Table I as an example. Suppose gear 2 contains a 5-disk RAID-5, and
the 5th disk is replicated in gear 1 with a 4-disk RAID-5. After a downshift
(i.e., spinning down the 5th disk), a write to blocks 1, 2, 3, 4, 8, 12, 16, and 20
will result in a parity update for gear 2, and another parity update for gear 1.
Therefore, to compute the downshift threshold, the monitor must track recent
write activity and inflate the percentage of write accesses Awrite to those blocks
by a weight W of 1.5x (specific to RAID-5, where writes to 1 data block and 1
parity block can be increased to 1 data block and 2 parity blocks). Otherwise,
the lower gear will be unable to handle the resulting load, and will shift back
up. Therefore, assuming a sufficiently large number of data blocks where the
discrete modulo effects of the parity block locations can be overlooked, U ′ is
computed with the following formula.

U ′ = U
Gi

Gi−1

[
Aread + Awrite

(
Gi−1(Gi−1 − 1)

Gi(Gi − 1)
(1 − W ) + W

)]
(5)

4.4 Reliability

The reliability manager rations power cycles and exchanges the roles of gear
memberships to prolong the life expectancy of the entire PARAID. The relia-
bility manager is also responsible for recovering a PARAID device upon disk
failure. When PARAID fails at the highest gear, the recovery is performed by
the RAID of the highest gear. When PARAID fails in other gears, the recovery
is first performed by the lowest gear containing the failed disk, since the par-
ity computed for the disks in that gear is sufficient to recover the soft states
stored on the failed disk. The recovered soft-state data then is propagated to
the next higher gear before recovering that gear, and so on. In the worst case,
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the number of bytes needing to be recovered for a single-drive failure is the size
of a single disk.

Although PARAID may take much longer to recover in the worst case due
to cascaded recoveries, the average recovery time can be potentially reduced
by recovering only modified content in the intermediate gears and frequent
switching to the highest gears. To illustrate, should a PARAID host read-only
content, recovery only involves switching to the highest gear and performing
the recovery with the underlying RAID once, since no cascaded update propaga-
tions are needed. With modified content, PARAID can selectively recover only
the modified stripes as well as stripes used to recover modified stripes at inter-
mediate gears, and propagate them to the highest gear where a full recovery
is performed. Assuming that 2% of disk content is modified per day [Kuenning
and Popek 1997] and that PARAID switches to the highest gear 10 times a day,
lightweight cascaded recovery is theoretically possible.

One might argue that PARAID can lengthen the recovery time, and thus
reduce the availability of PARAID. On the other hand, PARAID reduces power
consumption, and the associated heat reduction can extend drive life by about
1 percent per degree Celsius [Herbst 2007]. Therefore, the tradeoff requires
further studies which are beyond the scope of this article.

5. IMPLEMENTATION

PARAID was prototyped on Linux (2.6.5), which was chosen for its open source
and software RAID module. The block I/O handler, monitor, disk manager, and
reliability manager are built as kernel modules. A PARAID user administration
tool runs in user space to help manage the PARAID devices. For reliability, data
blocks for all gears are protected by the same RAID level. Although we have not
implemented drive rotations, our gear-shifting policies and the characteristics
of daily work cycles have limited the number of disk power-cycles quite well.
We have not implemented the mechanisms to recover only modified stripes in
intermediate gears to speedup cascaded recovery.

Linux uses the md (multiple device) device driver module to build software
RAIDs from multiple disks. For the PARAID block handler implementation, we
changed md to make it PARAID-aware. The driver’s data path is intercepted by
the PARAID device layer so that requests from conventional RAID are redi-
rected to the block queues of PARAID, which remaps and forwards requests to
other conventional RAID-device queues.

During initialization, the PARAID-aware md module starts a daemon that
provides heartbeats to the PARAID device and calls the monitor periodically to
decide when to gear-shift. The disk manager controls the power status of disks
through the disk device I/O control interface.

As an optimization, to limit the synchronization of content of a powered-off
disk only to updated content, the disk manager keeps a per-disk red-black tree
of references to outstanding blocks to be updated. This tree is changed when-
ever an update is made to a clean block on a powered-off disk. The upkeep of this
data structure is not CPU-intensive. Currently, the disk manager synchronizes
all modified blocks after bringing powered-off disks back online, by iterating
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through the tree for each disk and reissuing all outstanding writes. For each
block to be synchronized, the disk manager reads the block from the original
gear, and then writes it to the disks being brought back online. Once synchro-
nization is complete, the gear-shifting manager switches to the new gear. Note
that the red-black tree is only an optimization. In the case of losing this tree,
gear content will still be fully propagated. A new tree can be constructed once
PARAID gear switches to the highest gear.

Currently, PARAID serves requests from the current gear until the target
gear completes synchronization, a conservative method chosen for implemen-
tation ease and to assure that no block dependency is violated through update
ordering. In the future, we will explore using back pointers [Adb-El-Malek et al.
2005] to allow the new gear to be used during update propagation.

For the PARAID monitor, we currently use 32-second time windows to com-
pute moving averages of disk utilization. The choice of this time window is
somewhat arbitrary, but works well for our workloads and can tolerate traf-
fic bursts and dampen the rate of power cycles. Further investigation of the
gear-shifting triggering conditions will be future work.

The mkraid tool, commonly used by Linux to configure RAIDs, had to be
changed to handle making PARAID devices and the insertion of entries in
/etc/raidtab. Additional raidtab parameters had to be defined to be able to
specify the gears. PARAID contains 3,392 lines of modifications to the Linux
and Raidtools sourcecode. Since the PARAID logic is contained mostly in the
Linux Software RAID implementation, it should be portable to future Linux
kernel versions and software RAID implementations in other operating sys-
tems. We inserted four lines into raid0.c and raid5.c to set a flag to forward
the resulting I/O requests to PARAID.

6. PERFORMANCE EVALUATION

Since the study of energy-efficient approaches to RAIDs is relatively recent,
most prior work has been done analytically or via simulations. Analytical meth-
ods provide a fundamental understanding of systems. Simulation studies allow
for the exploration of a vast parameter space to understand system behav-
iors under a wide range of scenarios. Both analysis and simulation, however,
are limited in their validity by the degree to which their models match real-
world behavior. We chose implementation and empirical measurements to see
if we could overcome unforeseen physical obstacles and conceptual blind spots
to bring us one step closer to a deployable prototype. When we designed, im-
plemented, and evaluated PARAID, we discovered why an empirical study is
difficult for systems designed to save energy.

—Prototyping PARAID was the first barrier, since the system had to be stable
enough to withstand heavy benchmarking workloads.

—Commercial machines are not designed for energy measurements, so we had
to rewire drives, power supplies, and probes for power measurements.

—The conceptual behaviors of a system are far from close to its physical behav-
iors; therefore, we had to adjust our design along the way.
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—Most benchmarks and workload generators measure the peak performance
of a system at steady state, which is not applicable for measuring energy
savings, for which we need to capture daily workload fluctuations.

—For trace replays, since our physical system configuration was largely fixed,
we had to try to match different trace environments with our physical envi-
ronments in terms of the memory size, traffic volume, disk space consump-
tion, and so on.

—Although many research trace replay tools are available, more sophisticated
ones tend to involve kernel hooks and specific environments. Incompatibility
of kernel versions prevented us from leveraging many research tools.

—Finally, since the process cannot be easily automated and inexpen-
sively parallelized, measuring energy savings on a server was very time
consuming.

Considering these challenges, we document the experimental settings we used
to obtain our results. We demonstrate the power savings and performance char-
acteristics of PARAID by replaying a web trace (Section 6.1) and the Cello99
trace [HP Labs 2007] (Section 7). The web workload contains 98% reads and
is representative of a very large class of useful workloads. The Cello99 work-
load is I/O-intensive, and contains 58% reads. We used the PostMark bench-
mark [Katcher 1997] (Section 8) to demonstrate PARAID’s performance under
peak load. To demonstrate that PARAID can reuse different RAID levels, it
was configured with RAID-0 for the web workload, and RAID-5 for the Cello99
workload. The PostMark benchmark stresses the gear-shifting overhead. All ex-
periments were conducted five times. Error curves were removed from graphs
for clarity. Generally, the standard deviations are within 5% of the measured
values, with the exception of latency and bandwidth, which tend to be highly
variable.

6.1 Web Trace Replay Framework

The measurement framework consisted of a Windows XP client and a Linux
2.6.5 server. The client performed trace playback and lightweight gathering of
measurement results, and the server hosted a web server running on a RAID
storage device [Fujitsu 2007] (Table II and Figure 4). On the server, one disk
was used for bootstrapping and five were used to experiment with different
RAIDs. The client and server were connected directly by a CAT-6 crossover
cable to avoid interference from extraneous network traffic.

To measure power consumption, we used an Agilent 34970A digital multime-
ter. Each disk probe was connected to the multimeter on a unique channel, and
the multimeter sent averaged data to the client once per second per channel
via a universal serial bus.

To measure the power consumed by a given disk, we inserted a 0.1-� resistor
in series in the power-supply line (see Figure 5). The multimeter measured the
voltage drop across the resistor, Vr . The current I through the resistor (which is
also the current used by the disk) can be calculated as Vr/R. Given the voltage
drop across the disk Vd , its power consumption is then Vd times I (this assumes
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Table II. Hardware Specifications

Server Client
Processor Intel Xeon 2.8 Ghz Intel Pentium 4 2.8 Ghz
Memory 512 Mbytes 1 Gbytes
Network Gigabit Ethernet Gigabit Ethernet
Disks [Fujitsu 2007] Fujitsu MAP3367 36.7Gbytes Seagate Barracuda

15K RPM SCSI Ultra 320 ST3160023AS 160 Gbytes
8MB on-disk cache 1 disk for 7200 RPM SATA
booting 5 disks for RAID
experiments

Power consumption:
9.6 W (active)
6.5 W idle (spinning)
2.9 W standby (spun-down,
empirically measured)

multimeter

USB cable

BOOT

client

server

power
supply

12v & 5v
power

power
measurement

probes

SCSI
cable

crossover
cable

Disk 3

Disk 2

Disk 1

Disk 0

Disk 4

Fig. 4. The measurement framework.

a relatively slow variation in a disk’s power requirements, which fortunately
turned out to be the case).

In the measurement system, we removed each disk from the server and
introduced a resistor into its +12V and +5V power lines. The +12V line supplied
power to the spindle motor; the +5V line provided power to the disk electronics.
The SCSI cable was connected directly to the motherboard, allowing the cable
to maintain the same performance as if the disks were connected to the SCSI
hot swappable backplane in the server.

On the client, the Agilent multimeter software logged the data using Mi-
crosoft Excel XP. The multithreaded trace driver, implemented in Java 1.5, was
designed to replay web access log traces and collect performance numbers. As-
sociated requests generated from the same IP address are each handled by a
separate thread to emulate users clicking through webpages. The trace driver
also collected server-side and end-to-end performance numbers.

The server hosted an Apache 2.0.52 web server on top of an ext2 file system
operating over a RAID storage device that is described in Table II.
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Fig. 6. Energy consumption characteristics of PARAID versus conventional RAIDs.

6.2 Web Server Workload

Workload characteristics affect PARAID’s ability to save energy. Under a con-
stant high load, PARAID will not have opportunities to downshift and save
energy. Under a constant light load, trivial techniques like turning everything
on and off can be used to save energy (see Figure 6). In practice, though, work-
loads tend to show cyclic fluctuations. The chosen workload needs to capture
these fluctuations to demonstrate PARAID’s energy savings.

We chose a web server workload from the UCLA Computer Science De-
partment. Since the web content is stored in a decentralized fashion via NFS
mounts, we only report the hardware configuration of the top-level web server,
which is a Sun Ultra-2 with 256Mbytes of RAM, 200 Mhz UltraSPARC I CPU,
one 2Gbyte system disk and one 18Gbyte external SCSI disk, running Apache
1.3.27. Activity was captured from August 10 to August 16, 2006. Various NFS
file systems contained approximately 32Gbytes of data and ∼500K files. We
recreated the file system based on the referenced files in the trace. For each
full path referenced, every directory in the full path and the file was created
according to the order of replay. The file blocks stored on the web server were
refilled with random bits. Also, the replay did not include dynamic file content,
which accounts for the relatively few references in this trace.

We chose a 30-hour segment of the whole trace starting from 6 PM, August 12,
2006. The duration included around 95,000 requests, with 4.2Gbytes of data,
of which 255Mbytes are unique. Although the workload is light, it captures
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the essence of read-mostly cyclic loads and sheds light on PARAID system
behaviors, gear-shifting overhead, and the practical implementation limits on
power savings.

6.3 Web Trace Replay Experimental Settings

PARAID was compared with a RAID-0 device. The PARAID device used 5 disks,
with 2 disks in gear 1 and 5 in gear 2. Both client and server were rebooted before
each experiment and PARAID was configured to start with the lowest gear, with
gear content prepopulated. The client replayed trace log entries to the server.
Due to the hardware mismatch and light trace workload, the collected trace
was accelerated at different speeds to illustrate the range of possible savings
with different levels of workloads. Experiments included a 256x speedup, which
is close to a zero-think-time model, translating to 241 requests/second. With
this reference point, we lowered the speedup factor to 128x and 64x, which
correspond to 121 and 60 requests/second. All three loads offer few opportunities
for the entire 5-disk RAID to be power-switched as a whole. Timing dependent
on human interactions, such as the time between user mouse clicks on links
(i.e., reference intervals by the same IP), was not accelerated.

6.4 Power Savings

Figure 7 compares the power consumption of PARAID and RAID-0. Due to the
effects of averaging, power spikes are not visible.

PARAID demonstrates a 34% overall savings (ratios of areas under the
curves) at 64x. The results approximately match the 33 to 42% range based
on Eq. (2), indicating that further load reduction will yield limited energy ben-
efits. However, turning off 3 out of 5 drives achieves nowhere near 60% en-
ergy savings, neither for PARAID nor other RAID systems that save power by
spinning-down disks. Powering off a disk only stops it from spinning its platter
and therefore only the 12V line is shut off. Power is still needed for the 5V line
that powered the electronics, so that it can listen for a power-up command and
pass commands along the daisy-chained SCSI cable.

Based on our measurements, spinning up a disk can consume 20 to 24W. Also,
a spun-down disk still consumes 2.9W, noticeably higher than the 1.0W to 2.5W
extracted from various datasheets and used in many simulations [Gurumurthi
et al. 2003; Huang et al. 2003; Pinheiro and Bianchini 2004; Zhu et al. 2004,
2004b, 2005]. The results show that variations in physical characteristics can
change the expected energy savings significantly. In our case, if we replace our
Fujitsu [2007] with the commonly cited IBM Ultrastar 36Z15 [IBM 2007], we
anticipate an additional 5% of energy savings.

Table III summarizes the overall PARAID energy savings.
The second observation is that the traffic pattern observed in the web log

does not correlate well with the disk power consumption. Although this finding
reveals more about the nature of caching than the energy benefits of PARAID,
it does suggest the value of further investigations into the relationship between
server-level and after-cache device-level activities.
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Table III. Percent Energy Saved for
Web Replay

Speed-up Power savings
256x (241 req/sec) 10%
128x (121 req/sec) 28%
64x (60 req/sec) 34%
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Fig. 7. Power consumption for web replay.
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Fig. 8. Latency for web replay.

6.5 Performance

Latency. Figure 8 shows the CDFs of per-request latency, which measures the
time from the last byte of the request sent from the client to the first byte of
data received at the client.

As expected, when playing back the trace at high speed, PARAID
spent more time at the high gear and used the original RAID-5 disk
layout, and the latency CDFs matched closely. The average latency is
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Table IV. PARAID Gear-Switching Statistics for Web Replay

256x 128x 64x
Number of gear switches 15.2 8.0 2.0
% time spent in low gear 52% 88% 98%
% extra I/Os for update propagations 0.63% 0.37% 0.21%

within 2.7% (∼840ms). The data path overhead of PARAID is negligible
(see Section 8).

When the load was light at 64x, PARAID spent most of the time at the
lower gear. PARAID-0 had to use 2 disks to consolidate requests for 5 disks.
As a result, the average latency of PARAID-0 was 80ms compared to 33ms for
RAID-0. However, a web end-user should not notice the response time difference
during light loads.

Bandwidth. Figure 9 shows the bandwidth over time, which measures the
number of bytes transferred in a 30-minute interval, divided by the time the
client spent waiting for any request to complete within the same interval.

As expected, when PARAID operates mostly in low gear, having fewer ac-
tive disks leads to lower bandwidth numbers during light loads (Figure 9(c)):
24MB/sec as opposed to 31MB/sec for RAID-0. However, during the time inter-
vals when PARAID operates in high gear, the peak load bandwidth matches well
with the original RAID (within 1.3% of 32MB/sec). Note that due to time-based
data alignment and averaging effects, Figure 9(a) only shows a close band-
width match when PARAID’s high-gear performance dominates within a time
bracket. Section 7 will also explore request-based alignment to demonstrate
bandwidth matching.

Gear-switching statistics. Table IV summarizes various PARAID gear-
switching statistics for the web replay experiment. Clearly, PARAID spends
more time in the low gear as the intensity of workload decreases with the re-
play speed. Also, each gear switch introduces up to 0.1% extra system I/Os.
Interestingly, frequent gear switches can reduce the per-switch cost down to
0.041%, since less time is available for updates to accumulate at a given gear.

7. HP CELLO99 REPLAY

The HP Cello99 trace [HP Labs 2007] is an SCSI-controller-level trace collected
by the HP Storage Research Lab from January 14 to December 31, 1999. The
Cello99 data represents IO-intensive activity with writes, which is in contrast
to the read-mostly UCLA web trace with lighter traffic. The traced machine
had 4 PA-RISC CPUs, and some devices were md devices, so we had to extract a
trace that neither overwhelmed our system nor produced too little traffic. The
spc formatted trace file was generated from the Cello99 data using SRT2txt,
a program that comes with the HP Cello99 data. The generated trace file was
further trimmed so that only the activity associated with lun 2 was used. Also,
we looked for traces with cyclic behaviors. The extracted trace contains 50 hours
beginning on September 12, 1999, consisting of ∼1.5 million requests totaling
12GB (stored in 110K unique blocks).
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Fig. 9. Bandwidth for web replay.

7.1 Cello99 Experimental Settings

PARAID was compared this time with a RAID-5 device. We used a 3-disk gear
and 5-disk gear, each reusing the RAID-5 disk layout and reliability mecha-
nisms. The Cello99 trace was replayed on the server at 128x, 64x, and 32x
speedup factors to vary the intensity of workloads, corresponding to 1020, 548,
and 274 requests/second. The energy measurement framework is the same as
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Fig. 10. Power consumption for Cello99.

depicted in Figure 4. The server was rebooted before each run, with PARAID
configured to start in the lowest gear.

7.2 Power Savings

Figure 10 compares the power consumptions of PARAID and RAID-5. PARAID
demonstrates a single-point-in-time savings of 30% at 128x speedup (∼13 hours
into the replay) and 13% overall power savings at 32x speedup. Eq. (2) suggests
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Table V. Percent Energy Saved for
Cello99

Speed-up Power savings
128x (1024 req/sec) 3.5%
64x (548 req/sec) 8.2%
32x (274 req/sec) 13%

a power-saving range of 22 to 28%. Adjusted by the time spent at high gear (no
energy savings), PARAID should have saved 17 to 22% at 32x, 14 to 18% at 64x,
and 10 to 13% at 128x. Based on Table V, PARAID gear switches, update prop-
agations, and the additional parity computation incur about 4–10% of energy
overhead, a future goal for optimization. Nevertheless, despite the heavy load
of 270–1000 requests/second, PARAID can still conserve up to 13% of power.

Figure 11 shows how gears are shifted based on the current gear utilization,
defined as the percentage of busy seconds within a 32-second window, and on
adjusted utilization as if the workload were using the low gear. PARAID con-
solidates the load spread among 5 disks to 3 disks, so that disks 4 and 5 can be
spun off while disks 1 to 3 can operate at 10–40% utilization. The graph also
reconfirms the lack of opportunities to power-switch the entire RAID for power
savings.

7.3 Performance

Completion time. Figure 12 shows the CDFs of completion time (from the time of
PARAID forwarding a request to the moment the corresponding complete call-
back function is invoked). Latency is more difficult to measure, since blocks are
served out of order and individual blocks from various disks need to be demul-
tiplexed to the corresponding multiblock request to gather latency information.
Therefore, completion time, which is also the worst-case bound for latency, is
used.

Unlike the latency CDFs from the web trace, the completion time CDFs of
Cello99 showed very similar trends between PARAID and RAID-5. Figure 12
only presents the high 90th percentile in order to see the details of the CDF
curves. At 32x, since PARAID spends more time at the lower gear, its latency
is 26% slower than RAID-5 (1.8ms versus 1.4ms).

To better understand PARAID’s performance, we examined the composition
of the I/O requests. Although only 51% of bytes are accessed at high gear, they
account for 97% of unique bytes. During light-load periods such as that between
the 6th and 27th hours, only 29Mbytes of unique data were referenced. Given
that each powered disk can use 5 Mbytes of on-disk cache, the bandwidth degra-
dation of PARAID at low gear is significantly dampened by low-level caches.
Therefore, the shape of completion time CDFs is dominated by the high-gear
operation, which uses the same RAID-5.

Figure 13 shows bandwidth comparisons between PARAID and RAID-5. Note
that these graphs are aligned by request numbers to emphasize that 60% of
requests that occur during the peak load have the same bandwidth. Whenever
PARAID is at high gear, the peak bandwidth is within 1% of RAID-5 (23MB/sec).
The low average bandwidth at high-load periods reflects small average request
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Fig. 11. Gear utilization for Cello99 replay. Utilization measures the percentage of busy time of
the current gear. Adjusted utilization measures the percentage of busy time of the low gear if the
workload is applied to the low gear.

sizes. During periods of light loads, the high bandwidth of both PARAID and
RAID-5 reaffirms the enhanced role of low-level caches during light loads. Since
PARAID did not use the SCSI controller, which contains additional cache, the
bandwidth degradation of PARAID at low gear is likely to be further dampened.
When PARAID operates at low replay speed and spends most of its time in low
gear, the average bandwidth degrades as expected (12MB/s versus 21MB/s for
RAID-5).
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Fig. 12. Completion time for Cello99.

Gear-switching statistics. Table VI summarizes various PARAID gear-
switching statistics for the Cello99 replay experiment. Again, PARAID spends
more time in low gear with reduced workload with decreasing playback speed.
Due to heavy updates, each gear switch needs to incur an extra 1.3% to 3.9% of
system I/Os. Fortunately, gear shifting occurs either before the system becomes
highly loaded or when it is about to downshift due to an upcoming period of
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Fig. 13. Bandwidth for Cello99.

light loads. Therefore, these extra I/Os can be effectively absorbed by PARAID
with spare I/O capacity which would otherwise be left unused.

8. POSTMARK BENCHMARK

The PostMark synthetic benchmark generates ISP-style workloads that stress
a storage device’s peak performance for its read- and write-intensive activity
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Table VI. PARAID Gear-Switching Statistics for Cello99

128x 64x 32x
Number of gear switches 6.0 5.6 5.4
% time spent in low gear 47% 74% 88%
% extra I/Os for update propagations 8.0% 15% 21%
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Fig. 14. PostMark results for a RAID-5 device compared to a PARAID device starting in the highest
gear and starting in the lowest gear.

[Katcher 1997]. Running PostMark with PARAID starting at the lowest gear
can be indicative of the overhead and latency of gear shifts during a request
burst. The PostMark benchmark was run directly on the server. PARAID
propagated updates synchronously during gear shifts.

Figure 14 presents PostMark results comparing the elapsed times of RAID 5,
PARAID starting with the highest gear, and PARAID starting with the lowest
gear under three different benchmark configurations.

For different PostMark configurations, PARAID starting with the highest
gear demonstrates performance similar to RAID 5, which reflects the preserved
layout of the underlying RAID and minimal disturbances to the md data path.
Figure 15 shows that, as expected, PARAID does not save energy at the highest
gear. PARAID’s energy savings come primarily from low-gear settings.

Figure 14 also compares the performance of RAID-5 with PARAID starting
in the lowest gear. It demonstrates how the current upshift policy prevents
PARAID from being responsive to short bursts. The slowdown factor is about
13% due to upshift overhead. The most responsive approach is to upshift when-
ever a burst is encountered. However, this would cause too many gear shifts
throughout a day. Our observations suggest that daily cyclic workloads cause
few gear shifts, so this overhead is unnoticeable. We plan to explore online al-
gorithms to improve PARAID’s responsiveness to burst loads while minimizing
the number of gear shifts.

Table VII demonstrates that PARAID in either configuration incurs similar
CPU and system overhead when compared to RAID-5.
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Table VII. PostMark CPU and System Overhead for
RAID-5, PARAID Starting in Highest Gear and PARAID

Starting in the Lowest Gear

Mean% CPU Mean% System
RAID-5 3.24% 41.18%
PARAID high gear 3.11% 41.60%
PARAID low gear 3.08% 41.93%

The experiment contains 20K files and 100K transactions.
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Fig. 15. The PostMark power consumption results for a RAID-5 device compared to a PARAID
device starting in the highest gear and starting in the lowest gear. The experiment contains 20K
files and 100K transactions.

9. RELATED WORK

Most energy reduction studies have addressed mobile computing [Douglis et al.
1995; Helmbold et al. 1996]. Recently, energy reduction for servers has also
generated interest. Various approaches range from the hardware and RAID
levels to the file system and server levels.

Reducing power consumption in hard disks. Carrera et al. [2003] suggest
using hypothetical two-speed disks. During periods of high load, the disk
runs at maximum speed and power. During periods of light load, the disk
spins at a lower speed and possibly idles. The authors report simulated disk
energy-savings between 15% to 22% for web servers and proxy servers, with
throughput degradation of less than 5%. DRPM [Gurumurthi et al. 2003]
assumes that disks with additional speed settings are available for power-
performance tradeoffs.

FS2 [Huang et al. 2005] replicates blocks on a single disk to improve perfor-
mance and reduce energy consumption via reducing seek time. FS2 reports up
to 34% improvement in performance. The computed disk power consumption
for per disk access also shows a 71% reduction. Since FS2 does not attempt to
spin-down disks, and since PARAID has spare storage for disks in high gears
due to skewed striping (see Figure 2), FS2 can be used on disks in high gears
to extend PARAID’s power savings.
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PCAP [Gniady et al. 2006] uses program counters to predict when a disk
can be powered down. This approach mainly addresses laptop or desktop
environments. In data server environments, aggregate workload fluctuations
are a more suitable indicator of when to turn off disks.

Energy-efficient RAIDs. Hibernator [Zhu et al. 2005] aims to reduce the en-
ergy consumption of RAIDs without degrading performance through the use
of multispeed disks. According to demand, data blocks are placed at different
tiers of disks spinning at various speeds. A novel disk-block distribution scheme
moves disk content among tiers to match disk speeds. When performance
guarantees are violated, Hibernator spins disks at full speed to meet the de-
mand. In simulation, Hibernator shows up to 65% energy savings.

Unlike Hibernator, PARAID is designed for existing server-class disks, and
the minimum deployment granularity can be a small RAID on a typical server.
Also, legacy systems can deploy PARAID via a software patch. As one conse-
quence, some PARAID disks running at the lowest gear have few power-saving
options. The future ubiquity of multispeed disks will allow PARAID to explore
further energy savings when running at the lowest gear.

MAID [Colarelli and Grunwald 2002] assumes that the majority of data is
being kept primarily for archival purposes, and its energy savings are based
on the migration of this inactive majority to rarely used disks that fill a role
similar to tape archives. PARAID, on the other hand, assumes that all data
must be available at a high speed at all times. PARAID’s techniques could be
used on MAID’s relatively few active disks to further improve the performance
of that system.

Popular data concentration (PDC) [Pinheiro and Bianchini 2004] saves en-
ergy by observing the relative popularity of data. PDC puts the most popular
data on the first disk, the second most popular on the second disk, etc. Disks
are powered off in PDC based on an idleness threshold. Without striping, PDC
does not exploit disk parallelism.

In the absence of disk striping, the power-aware cache-management policy
(PA-LRU) [Zhu et al. 2004a] saves power by caching data blocks from less ac-
tive disks. Lengthening the access interval for less active disks allows them to
be powered off for longer durations. Partition-based cache-management policy
(PB-LRU) [Zhu et al. 2004b] divides the cache into separate partitions for each
disk. Each partition is managed separately by a replacement algorithm such
as LRU. Similar to PA-LRU, PB-LRU provides energy savings of 16%.

EERAID [Li et al. 2004] and its variant RIMAC [Yao and Wang 2006] assume
the use of a nonvolatile cache at the disk-controller level and the knowledge of
cache content to conserve energy in RAIDs. Both lengthen disk idle periods by
using a nonvolatile disk-controller cache to delay writes and computing parity
or data-block content on-the-fly. Both spin down at most one disk for RAID-5,
which limits their power savings.

Pinheiro et al. [2006] generalize RIMAC to erasure encoding schemes and
demonstrate energy savings up to 61% in simulated tests. This approach defines
and separates primary from redundant data and stores them on separate disks.
Then, the system makes redundant data unavailable at times to save energy.
Writes are buffered via nonvolatile RAM.
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Energy-aware storage systems. BlueFS [Nightingale and Flinn 2004], a dis-
tributed file system, uses a flexible cache hierarchy to decide when and where
to access data based on the energy characteristics of each device. Through em-
pirical measurements, BlueFS achieved a 55% reduction in file system energy
usage. Adding PARAID to BlueFS can further improve energy benefits.

The Conquest-2 file system [Xu et al. 2003] uses nonvolatile RAM to store
small files to save the energy consumed by disks. PARAID can be readily used
as a counterpart to serve large files while conserving energy.

Saving power in server clusters. Chase et al. [2001] and Pinheiro et al. [2001]
have developed methods for energy-conscious server switching to improve the
efficiency of server clusters at low request loads. They have reported energy
reductions ranging from 29% to 43% for web server workloads.

PARAID can be combined with the server paradigm so that overprovisioned
servers used to cushion highly bursty loads or prepowered to anticipate load
increases can turn off many PARAID drives. Since powering-on disks is faster
than booting servers, PARAID incurs less latency to respond to traffic bursts.

When traffic loads involve a mixture of reads and writes, disk switching in
PARAID provides localized data movement and reduces stress on the network
infrastructure. Also, PARAID can be deployed on individual machines without
distributed coordination.

Other alternatives. Instead of implementing PARAID, one might use HP Au-
toRAID’s reconfiguring ability to emulate PARAID’s behavior [Wilkes et al.
1995]. However, one fundamental difference is that reconfiguring a RAID with
D disks to D – 1 disks under AutoRAID requires restriping all content stored
on D disks, while PARAID can restripe the content from a partial stripe, in this
case 1 disk.

10. ONGOING WORK

PARAID is still a work in progress. First, although PARAID exploits cyclic fluc-
tuations of workload to conserve energy, our experience with workloads sug-
gests that it is difficult to predict the level of benefit based on traffic volume,
the number of requests, number of unique bytes, peak-to-trough traffic ratios,
and percentage of reads and writes. We are interested in measuring PARAID
with diverse workloads to develop further understandings of PARAID’s behav-
ior. Also, we plan to test PARAID with other types of workloads, such as online
transaction processing [UMass Trace Repository 2007].

Currently, PARAID is not optimized. The selection of the number of gears,
number of disks in each gear, and gear-shifting policies are somewhat arbitrary.
Since empirical measurement is unsuitable for exploring a large parameter
space, we are constructing a PARAID-validated simulation for this purpose,
which will allow more exploration of parameters. At the same time, we are
investigating analytical approaches to develop online algorithms with provable
optimality.

We will modify our disk synchronization scheme to explore asynchronous up-
date propagation, allowing newly powered-on drives to serve requests immedi-
ately. We plan to implement selective recovery schemes for intermediate gears
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to speed-up cascaded recovery (currently, PARAID-5 as used in this article,
recovers 2.7x slower than RAID-5), and also to incorporate the SMART tools
[SANTools 2007] for disk health monitoring, allowing more informed decisions
on rationing power cycles. Moreover, we will add rotation of the gear member-
ship of disks. Finally, we plan to mirror a PARAID server on FSU’s department
server for live testing, deploy PARAID in a real-world environment, and com-
pare PARAID with other energy-saving alternatives.

11. LEASONS LEARNED

The idea of PARAID was born as a simple concept to mimic the analogy of gear-
shifting, which conserves fuel in vehicles. However, turning this concept into a
kernel component for practical deployment has been much more difficult than
we anticipated.

First, our early design and prototype of PARAID involved cloning and mod-
ifying RAID-0. As a result, we had to bear the burden of inventing replication-
based reliability mechanisms to match different RAID levels. Our second-
generation design can reuse the RAID encoding scheme, making the evolution
of new RAID levels independent of PARAID. Although the resulting energy
savings and performance characteristics were comparable in both implemen-
tations, PARAID’s structural complexity, development time, and deployment
potential improved in the new design.

Second, measuring energy consumption is difficult because of data-alignment
problems and a lack of integrated tools. With continuous logging, aligning
datasets is largely manual. For multithreaded experiments and physical disks,
the alignment of datasets near the end of the experiment was significantly
poorer than at the beginning. Early results obtained from averages were not ex-
plicable, since unaligned square waves can be averaged into nonsquare shapes.

Third, measuring systems under normal loads is harder than under peak
loads. Replaying traces as quickly as possible was not an option, and we had to
explore different speedup factors to see how PARAID reacts to loads changes.
Since server loads have constant streams of requests, we cannot simply skip
idle periods [Peek and Flinn 2005] because such opportunities are relatively
infrequent. Worse, in our system consolidated workloads are handled by fewer
powered-on components with less parallelism, further lengthening the mea-
surement time.

Fourth, modern systems are complex. As modern hardware and operating
systems use more complex optimizations, our perception of system behaviors
increasingly deviates from their actual behaviors. Memory caching can reduce
disk activity, while file systems can increase the burstiness of RAID traffic
arrivals due to delayed write-back policies. Disks are powered with spikes of
current, making it difficult to compute power consumption as the areas under
the spike. Disk drives can still consume a significant amount of power even
when they are spun down.

Fifth, matching the trace environment to our benchmarking environment
is difficult. If we use a memory size larger than that of the traced machine,
we may encounter very light disk activity. The opposite can saturate the disks
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and achieve no power savings. Cyclic workload patterns before the cache may
poorly reflect those after the cache. Additionally, traces might not have been
made using RAIDs, some traces might be old, and the RAID geometry might
not match our hardware settings. The base system might have multiple CPUs,
which makes it difficult to judge whether a single modern CPU is powerful
enough. Although the research community is well aware of these problems, the
solutions still seem to be achieved largely by trial and error.

12. CONCLUSIONS

PARAID is a storage system designed to save energy for large computing in-
stallations that currently rely upon RAID systems to provide fast, reliable data
storage. PARAID reuses standard RAID levels without special hardware, while
decreasing their energy use by up to 34%. Since PARAID is not currently opti-
mized, and since we measured only 5 drives (among which at least 2 are always
powered), we believe that an optimized version of PARAID with many disks
could achieve significantly greater energy savings.

A second important conclusion arises from the research described in this arti-
cle. Actual implementation and measurement of energy-saving systems is vital,
since many complex factors, such as caching policies, memory pressure, buffered
writes, file-system-specific disk layouts, disk arm scheduling, and many phys-
ical characteristics of disk drives are difficult to capture fully and simultane-
ously validate using only simulation. Also, implementations need to address
compatibility with legacy systems, the use of commodity hardware, and empir-
ical evaluation techniques, all of which are necessary for practical deployments.

Unfortunately, our research also shows that there are considerable chal-
lenges to performing such experiments. We overcame several unforeseen diffi-
culties in obtaining our test results, and had to invent techniques to do so. This
experience suggests the value of developing standard methods of measuring the
energy consumption of computer systems and their components under various
conditions. We believe this is another fruitful area for study.
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