
Using Permuted States and Validated Simulation
to Analyze Conflict Rates in Optimistic Replication

An-I A. Wang

Computer Science Depar tment
Flor ida State University

Geoff H. Kuenning
Computer Science Depar tment

Harvey Mudd College

Peter Reiher
Computer Science Depar tment

University of California, Los Angeles

Keywords: permuted states, optimistic replication, conflict rates

Abstract
Optimistic replication provides high data availability in the
presence of network outages. Although widely deployed, this
relaxed consistency model introduces concurrent updates, whose
behavior is poorly understood due to the vast state space.

This paper introduces the notion of permuted states to
eliminate system states that are redundant and unreachable, which
can constitute the majority of states (4069 out of 4096 for four
replicas). With the aid of permuted states, we are for the first time
able to construct analytical models beyond the two-replica case.
By examining the analysis for 2 to 4 replicas, we can demystify the
process of forming identical conflicts—the most common conflict
type at high replication factors. Additionally, we have automated
and optimized the generation of permuted states, which allows us
to explore higher replication factors (up to 10 replicas) using
hybrid techniques. It also allows us to validate our results with
existing simulations based on actual replication mechanisms,
which previously were analytically validated with only one pair of
replicas.

Finally, we have discovered that update locality and bimodal
access patterns are the primary factors contributing to the
formation of identical conflicts.

1. INTRODUCTION
Optimistic replication is a tool to provide high data availability in
the presence of network outages. As an example, optimistic
replication allows multiple users to edit distant copies of the same
data simultaneously, even without network connectivity. Data
synchronization is achieved through a relaxed consistency model,
which guarantees convergence and the correctness of data in the
case of improper concurrent modifications, or conflicts. Common
applications of optimistic replication include document sharing,
banking, and reservation systems. Coda [13], Lotus Notes [6],
Ficus [11], Oracle 7 [1], Bayou [15], Ingres, Microsoft Briefcase,
and the Concurrent Version System are well-known research and
commercial systems that use optimistic replication.

Although widely deployed, this relaxed consistency model
introduces conflicts, whose behavior is not well understood.
Empirical and simulation experience has shown evidence that
conflicts occur infrequently at the level of aggregate statistics [7,
11, 17]. However, a theoretical result in the database literature
suggests that the proliferation of conflicts will prevent optimistic
replication from scaling [4]. To our knowledge, the current paper
presents the first analytical modeling and understanding of conflict
rates beyond two replicas, with analytical results validated by
simulations built with actual optimistic mechanisms.

We have overcome several challenges to be able to
characterize conflict rates analytically: (1) Defining the conflict
rate in the analytical model. (2) Leveraging symmetries,
permutations, and reachability to reduce the state space. (3)

Defining appropriate representations for automation and
optimization of the state reduction process. (4) Studying the
dominant conflict type (identical conflicts), via both analytical
methods and simulation.

The following summarizes our major findings: (1) Conflicts
are not directly captured by the system states. Since conflicts are
detected when two replicas synchronize, a conflict occurs during a
transition between two system states. Therefore, it is entirely
possible for a system to be in a state with many conflicting data
versions and without conflicts, as long as the system does not
synchronize. (2) By exploiting the redundancy of states via
permutation and removing unreachable states, we can reduce the
state space by 2 to 6 orders of magnitude for as few as 6 replicas.
(3) The temporal and spatial locality of updates interacts with
optimistic mechanisms, resulting in significant changes in the
number and types of conflicts.

In terms of methodology, our contributions include (1) a
compact system-state representation that eliminates unimportant
variation, (2) transition rules that can be used to automate
analytical modeling at high replication factors, and (3) a hash-table
heuristic for finding isomorphic states in this constrained problem
domain.

2. BACKGROUND
In distributed environments, where component failure is the norm,
replication provides high data availability by avoiding centralized,
single-point failures. Optimistic replication further allows
immediate access to any available replica of a data item, even
during network outages. The tradeoff is permitting concurrent
updates.

In many scenarios, this tradeoff is justifiable. First, for many
applications, the majority of concurrent data modifications can
proceed in parallel. With proper handling, the modifications can
be later merged automatically or manually without data loss.
Directories are an important example of this case. Independent file
creations can be applied to two replicas of a directory and merged
without causing problems [5]. Second, many applications (e.g.,
library database systems) can still provide meaningful service
without immediate propagation of new updates.

Diverging data content requires a reconciliation process to
bring replicas into synchronization, at some convenient time (e.g.,
when portable computers are temporarily connected to the
network). Typically, reconciliation takes place between two
replicas. Updates are tracked using either logging [13] or scanning
[10]. Conflicts occur when different replicas of the same file are
updated after the most recent reconciliation. Optimistic systems
often provide extensible application-specific libraries to resolve
the majority of conflicting updates automatically [9, 11]. The
remaining conflicts require user intervention.

2.1 Definition of Conflicts
There are three common definitions for conflicts. The first is an
update that conflicts with existing updates at any replica. This
definition assumes oracle knowledge, which is not practical to
measure in real systems.

The second definition is oriented toward the log-based
reconciliation approach. At reconciliation time, both replicas
replay logs of all updates since the last reconciliation between the
same replica pair. Whenever two updates to different replicas of
the same file are seen in the logs, a conflict is indicated.

The third definition is related to the scanning approach, in
which a reconciliation-time scan detects updates and resolves
conflicts. The difference from the second definition is that
multiple updates are collapsed into one and will thus result in the
report of only a single conflict. (In practice, most log-based
systems optimize out multiple updates to save storage, which also
causes conflicts to collapse. Thus, most real systems use the third
definition.)

For the remainder of this paper, we will use the third
definition. Without the loss of generality of our results, we will
also assume bidirectional propagation of data at reconciliation time
and deterministic resolution of conflicts.

2.2 Importance and Challenges of Analytical
Modeling
Analytical modeling is important to understand the behavior of
replication systems. In particular, a concise analytical form that
can predict whether conflicts can be bounded under the worst
scenario is invaluable for resource provisioning. An analytical
model is also preferable for validating the correctness of
simulations. Otherwise, even a trivial error in a simulation based
on a single-point validation (i.e. two replicas) can go undetected
and lead to very misleading conclusions for distributed systems.

Analytical modeling of the conflict rate is difficult for three
reasons: First, the state space is exponential. By state, we mean
the global system state. A state captures the relationship between
any replica pair, so we can determine whether two replicas are the
same or in conflict, and whether one replica has a more recent
update or an older version of the data. Since conflicts are defined
pairwise, two conflicting replicas might not be in conflict with a
third. Therefore, each replica needs to track its update and conflict
status relative to all other replicas. If each replica needs 2 states to
indicate whether it is modified, a pairwise relationship needs 4
states. For R peer-to-peer replicas with

2

)1(−RR pairwise

relationships, we need
() ��

���� −
2

1

4
RR

 states. Even for 3 replicas, we
need 64 states, which is prohibitive to track without automation.

Second, conflict resolution itself may lead to further conflicts,
or metaconflicts. To illustrate, suppose we have many replicas of
three conflicting data versions, X, Y, and Z. Pairwise synchroniza-
tions can result in versions XY, YZ, and XZ. Now, each meta-
version is in conflict with three other versions. (e.g., XY is in con-
flict with Z, YZ, and XZ). Effectively, the original 3-way conflict
has evolved into a 4-way conflict due to conflict resolutions.
Therefore, the final conflict count is dependent on how data are
propagated, in addition to the initial number of conflicting updates.

Third, a prior simulation study [16] suggests that a single
class of metaconflicts—identical conflicts—accounts for the
majority of conflicts at large replication factors. To illustrate,

suppose users K and L independently update separate replicas. K
propagates her updates to user M; L to N. When K and L
reconcile, they detect a conflict and resolve it by generating an
update to create version KL. Similarly, M and N detect a conflict
and create MN. Now, when KL and MN reconcile, we have an
identical conflict, since the content of KL and MN is the same.
Unfortunately, the base case for identical conflicts involves 4
replicas, or 4,096 states, making it difficult to characterize their
causes using existing analytical methods.

3. PERMUTED STATES
How do we visualize the problem so that the number of states is
tractable, at least for the 4-replica case? Although 4 replicas may
sound limiting, the analysis for the 4-replica case contains 4,092
more states than the 2-replica case, which is a giant leap in the
analytical sense. As we will see, the 4-replica case also introduces
critically important behaviors (such as conflict-resolution loops)
that are characteristic of much larger systems, and do not appear in
smaller cases.

Our solution is to transform the problem and analyze it in the
domain of combinatorics. We use an event-based model in which
time is measured in terms of “ interesting” system events (updates
and reconciliations).

Figure 1 illustrates the system states for two replicas, with λ
as the probability of having an update at either replica, and µ as the
probability having a pair-wise reconciliation process, respectively,
as the next system event. We use a Poisson interarrival model. At
each state, the outbound update probabilities sum to λ, and the
outbound reconciliation probabilities sum to µ. Finally, the sum of
outbound λ and µ at each state is 1.

This analysis assumes uniform update and reconciliation
probabilities across all replicas, which is necessary to make the
analysis tractable. However, the resulting model can be used to
cross-validate simulations at moderate replication factors.
(Previously, simulations are analytically validated for only two
replicas.) The validated simulations can then be reconfigured to
account for nonuniform access patterns to explore higher
replication factors.

Each replica is represented by a dot. In the starting state
(shaded), two replicas are identical, represented via a horizontal
line connecting the two. If reconciliation occurs, the replicas
remain identical, so the starting state transitions back to itself.

Figure 1: The state-transition diagram for two replicas. The
shaded circle is the starting state, where replicas are identical. In
the rightmost state is the conflict state, where replicas are in
conflict. The solid lines mark various transitions among states,
and the dashed line marks a conflict-reporting transition. Note
that a conflict is not reported until the system transitions back to
the starting state as the result of reconciling between two
conflicting replicas.

λ

µ

µ

λ/2

µ (conflict reported)

λ λ/2

If one of the replicas is updated, we move to the middle state,

where the update-receiving replica dominates the subordinate one.
This relationship is represented by a non-horizontal line, where the
upper replica dominates the lower one. Note that regardless of
which is updated, we are guaranteed to transition from the starting
state to the middle state. By decoupling the state of the system
from the labeling of individual replicas, each state effectively
captures all isomorphic system states resulted from permuting the
replica identifications. We refer to this type of state representation
as permuted states.

In the case of reconciliation between a dominating replica and
its subordinate, the content of the dominating replica will replace
that of the subordinate, and then both replicas will be marked as
identical (transition back to the starting state). An update to the
dominating replica will not change its dominance over the
subordinate replica. However, an update to the subordinate replica
breaks its subordinate relationship to its dominating replica, and
the system enters the rightmost state (conflict).

Conflicting replicas (dots) are not connected by lines. An
update to either of the conflicting replicas will leave both in
conflict. However, a reconciliation between two conflicting
replicas will lead to identical replicas (the starting state or the
convergence state), with a reported conflict.

Note that a system can be in a state with conflicting replicas
without reporting conflicts, since conflicts are detected only at
reconciliation time. Therefore, the conflict rate used in this paper,
or the probability of having conflicts due to a system event (either
update or reconciliation), is computed by obtaining the equilibrium
probability of a state that contains replicas in conflict, multiplied
by the probability of traversing its conflict-resolving transition.

3.1 Analysis for Two Replicas—the Base Case
With the state diagram in Figure 1, we can assign probability
variables p0 (leftmost) to p2 (rightmost) to each state. When the
system is in equilibrium, the outbound transition flow at each state
should be equal to the inbound flow, resulting in a system of linear
equations ((1), (2), and (3)). Also, the sum of probability at each
state should be 1 (4).

()
()

()
()41

3
2

2
2

1

210

12

01

210

=++

=

=
��

����
+

+=

ppp

pp

pp

ppp

λµ

λµλ
µµλ

()() ()

()() ()

()() ()

()() ()8
2

7
2

6
2

2

5
2

2

2

2

2

2

1

2

0

µλµλ
µλµ

µλµλ
λ

µλµλ
λµ

µλµλ
µλµ

++
==

++
=

++
=

++
+=

pp

p

p

p

conflict

Solving for the probability of the conflicting state (7), the
probability of reporting a conflict pconflict (8) can be computed by
multiplying (7) by µ, the probability of taking the transition that
resolves conflicting replicas.

As expected, the conflict rate has an intimate dependency on
both the update arrival rate and reconciliation rate, even for this
simple two-replica case. Figure 2 shows the percentage
contribution of each state as a function of λ/µ, superimposed with
the conflict-rate curve. (We will postpone discussing the
simulation validation.) As λ/µ approaches 0, the probability of
convergence (p0) approaches 1, and the probability of being in the
conflict state (p2) approaches 0. As λ/µ increases asymptotically,
the probability of convergence (p0) approaches 0, and the
probability of being in the conflict state (p2) approaches 1.

0

0.2

0.4

0.6

0.8

1

0.0/1.0 0.2/0.8 0.4/0.6 0.6/0.4 0.8/0.2

lamdba/mu

st
at

e
pr

ob
ab

ili
ty

 &

co
nf

lic
t r

a
te

p_0

p_1

p_2

p_conflict

sim convergence

sim conflict rate

Figure 2: Percentage contributions of states for two replicas,
superimposed with analytical conflict rate curves and simulation
validation data points. The simulation was repeated 5 times with
different random seeds, each with a total of 100,000 update and
reconciliation events. Since the confidence intervals are less than
1% of the mean and clutter the simulation points, we have
removed them for the clarity of presentation.

For the conflict rate (8), as µ approaches 1 (λ/µ approaches
0), the high frequency of reconciliation will bring the conflict rate
(pconflict) to 0. Intriguingly, as µ approaches 0, the lack of opportu-
nities to report conflicts with reconciliation processes will also
bring the conflict rate down to 0. This finding is consistent with
prior findings [18]. Thus, a system can spend most of its time up-
dating two conflicting replicas, but only one conflict is reported
per reconciliation process. Also, through this exhaustive range of
ratios between the update and reconciliation rates, we can see that
the conflict rate can actually be bounded under this system setting
as a fraction of the total update and reconciliation events (11%) by
solving equation (8) for its maximum. This is an important insight
for capacity planning under optimistic replication.

3.2 Validation for Two Replicas
To validate the analytical results based on the use of permuted
states, we compare them with results obtained from a version-
vector-based simulation of optimistic replication, similar to the one
used in a prior study [16]. Briefly, each replica keeps a local
“version vector” of update counters for all replicas. A replica
increments its local counter (a version vector element) whenever it
performs an update. At reconciliation time, two replicas compare
their version vectors. If every counter of replica X is greater than
or equal to the corresponding counter of the replica Y, X dominates
Y. If X dominates Y, and if Y dominates X, X and Y are equal. If
neither X dominates Y, nor Y dominates X, we have a conflict.
When reconciling, a subordinate replica copies the version vector
from the dominant one. To merge conflicting version vectors, each
counter is set to the greater of the corresponding version vector
elements. The counter of the conflict-resolving replica is
incremented by one, indicating that a new version is generated as a

result of resolving conflicts. The simulation includes only one
replicated item. We follow the methodology presented in [16].

All simulation results are presented at the 90% confidence
level. We assume that all updates and reconciliations take place
instantly.

Figure 2 also shows the validation results based on
simulation. The results match well with the model based on
permuted states. For the first time, simulation results for
optimistic replication have been cross-validated with an analytical
model, although with only two replicas.

3.3 Generalization to Three Replicas
The three-replica case tests whether we can reduce the original 64
states down to a more manageable number, and whether the
notation and manipulation rules invented for the two-replica case
can be generalized.

3.3.1 State-Transition Diagram for Three Replicas
Figure 3 shows the transition diagram for three replicas.
Surprisingly, the three-replica case can be
completely captured with only 8 permuted
states. The starting state (state 0), which is also
the convergence state, is easily generalized from
the two-replica case. However, since an update
can be applied to any one of the replicas, the
update-receiving replica dominates the
remaining two identical ones (state 1). At this
point, an update to one of the two identical
subordinate replicas will first break off the
update-receiving replica from the replica that
dominates it, and second will make the update-
receiving replica dominate its original identical
partner (state 2).

At state 2, it is interesting to note that the
two dominating replicas are in conflict, while
dominating the same replica. A reconciliation
between the two dominating replicas will lead
to the report of a conflict and transition to state
3. An update to the subordinate replica will
break the update-receiving replica from all its
dominating replicas and reach state 4.

At state 3, reconciling between any
dominating version and the subordinate version
will lead to the convergence state (state 0). An
update to any dominating version will lead to
state 6. An update to the subordinate replica
will break off the update-receiving replica from
its dominating replicas and reach state 5.

At state 4, an update to any replica will
leave all three replicas in conflict. Reconciling
any pair of replicas will lead to the report of a
conflict and a transition to state 5.

At state 5, an update to one of the identical
replicas will lead to state 7; reconciling between
one of the identical replicas and the replica in
conflict will lead to the report of a conflict and
the generation of a new version that dominates
the replica not involved in reconciliation (state
3).

At state 6, the dominance relationship is transitive. An update
to the top dominating replica results in a self-transition. An update
to the middle dominating replica breaks its relationship with the
top dominating replica and leads to state 2, while preserving its
dominating relationship to the subordinate replica. An update to
the subordinate replica will break its relationship to both
dominating replicas and lead to state 7. Reconciling the top
dominating replica with either other replica will result in state 3.
Reconciling between the bottom two replicas will result in state 1.

At state 7, an update to the subordinate replica will lead to
state 4. Reconciling between the dominating and subordinate
replicas will result in state 5. Reconciling the dominating replica
with the conflicting replica will result in state 3. Reconciling the
subordinate replica with the conflicting replica is equivalent of
making an update to the subordinate replica (state 4) and then
reconciling it with the conflicting replica. The result is state 5.

Overall, the three-replica case demonstrates the richness of
behaviors in optimistic replication. Interestingly, not all
conceivable states are possible. For example, it is not possible to
have one replica dominating over two replicas in conflict. Using

λ

µ

2λ/3

λ/3 + µ/3

2µ/3

2λ/3

2λ/3

µ/3

2µ/3

λ

µ

λ/3 + µ/3

2λ/3

2µ/3
λ/3

λ/3

λ/3

2µ/3

2λ/3

λ/3

2µ/3

µ/3

µ/3

0

1

2 3

4 5 6

7

λ/3
2µ/3

µ/3

Figure 3: The state-transition diagram for three replicas. The shaded state is the
starting state, where replicas are identical. States with dashed outlines contain
conflicting replicas. The solid lines mark various transitions among states, and the
dashed lines mark conflict reporting transitions.

permuted states for analysis eliminates both isomorphic states and
unreachable states.

3.3.2 Analyses and Validation for Three Replicas
Similar to the two-replica analysis, we set up a system of equations
based on the state-transition diagram in Figure 3. The exact
equations used are listed in Appendix A. Note that the conflict
rate is the sum of the products of the probability of each conflict-
originating state and its outbound transition probability of conflict-
resolving edges (9).

()9
3

2

3

2

3 7542 pppppconflict

µµµµ +++=

After solving the system of equations with MathCAD, the
following equations highlight our findings:

()()() ()

()()() ()
()

()()()() ()12
22332

91132

11
232

2

10
223

4

222

3

4

3

0

µλµλµλµλ
µλµλµλ

µλµλµλ
λ

µλµλµλ
µ

++++
++=

+++
=

+++
=

conflictp

p

p

One immediate surprise from these resulting equations is that the
order of complexity is smaller than expected. For nine equations
and eight unknowns, we would expect the resulting equations to
have exponents of seven to eight; on the other hand, we have four
to five, suggesting that our permuted state representation may be
further compacted. For example, a state with a single inbound
transition can be merged with the state that makes the inbound
transition. Based on the equations listed in Appendix A, states p0
and p6 can be directly substituted with state p3, and the overall
system can be characterized with six states.

Figure 4 shows the probability contributions of each state.
Similar to the two-replica case, as λ/µ approaches 0, the
probability of convergence (p0) approaches 1. As λ/µ increases
asymptotically, the probability of being in the fully divergent state
(p4) approaches 1, where all replicas are conflicting versions.
Also, in the case of a 0.9/0.1 λ/µ ratio, the most probable states
(p4, p5, and p7) contain conflicting versions.
Figure 5 shows the percentage contribution for the all-identical and
all-conflict states and the conflict-rate curve. The remaining states
have been removed for clarity. Compared to the two-replica case,
the additional replica has increased the conflict-rate potential from
11% to 17%. Also, the peak of the curve shifts left, meaning that
fewer updates are needed to cause more conflicts, with a fixed
number of reconciliation processes.

0%

20%

40%

60%

80%

100%

0.0/1.0 0.2/0.8 0.4/0.6 0.6/0.4 0.8/0.2

lambda/mu

pr
ob

ab
ili

ty

p_7

p_6

p_5

p_4

p_3

p_2

p_1

p_0

Figure 4: Percentage contribution of states in the three-replica
case.

0

0.2

0.4

0.6

0.8

1

0.0/1.0 0.2/0.8 0.4/0.6 0.6/0.4 0.8/0.2

lambda/mu

st
at

e
pr

ob
ab

ili
ty

 &

co
nf

lic
t r

at
e p_0

p_4

p_conflict

sim convergence

sim conflict rate

Figure 5: Percentage contributions of states for three replicas,
superimposed with analytical conflict-rate curves and simulation
validation data points. The simulation was repeated 5 times with
different random seeds, each with 100,000 update and
reconciliation events (i.e., 100K events in total). Since the
confidence intervals are less than 1% of the mean and clutter the
simulation points, we have removed them for the clarity of
presentation.

In terms of the simulation validation, the data points once
again confirm the validity of modeling optimistic replication via
permuted states.

3.4 The Base Case for Identical Conflicts
The four-replica case is the base case for identical conflicts. This
exploration helps us to gain insights on how identical conflicts are
formed and how to predict their proliferation. Rather than
burdening the reader with the same analyses as for two and three
replicas, this section will highlight only the results of interest.

Surprisingly, the four-replica case contains only 27 permuted
states, which is valuable for analyzing systems like Oceanstore [8],
where the core writable replicas have only a replication factor of
four. (We omit the state equations, since they are lengthy and not
very informative.) Five of the states have only a single inbound
transition, so the 27 states can potentially be compacted down to
22. Unfortunately, MathCAD did not find a closed form for these
equations, so we used the Microsoft Excel solver to generate
Figures 6 and 7, with 10,000 iterations to approximate each data
point. The simulation results match well with the curves derived
from analytical equations. (Note that the peak conflict rate has
increased and shifted slightly to the left; this effect is even more
pronounced in Figure 15, later in the paper.)

Figure 6: Percentage contribution of states in the four-replica
case.

As in the three-replica case (Figure 4), a few states have

dominating contributions when the system operates with extreme
λ/µ ratios, namely those close to the convergence state p0 (states
with many lines interconnecting dots that represent replicas), and
those close to the divergent state p8 (states with few lines

0%

20%

40%

60%

80%

100%

0.0/1.0 0.2/0.8 0.4/0.6 0.6/0.4 0.8/0.2

lambda/mu

pr
ob

ab
ili

ty p_17

p_8

p_0

interconnecting the dots that represent replicas). This finding
prompts the question of whether it is possible to trim the state
space for any number of replicas down to a characteristic subset of
states. We will leave the answer as future work.

With the aid of permuted states, for the first time, we can
understand and enumerate the cases where identical conflicts are
generated. The formation of an identical conflict goes through a
setup sequence, as shown in Figure 8. Incidentally, this sequence
is in the example we used in Section 2.2. During this setup phase,
the system first enters the state with two pairs of identical replicas,
replicas 1 and 2, and replicas 3 and 4. A reconciliation process
between one replica from each pair (e.g., replicas 1 and 4) will
result in a new pair of identical replicas, dominating the replicas 2
and 3, which remain in conflict with each other. (A unique version
number is generated for each conflict-resolved version.) When
replicas 2 and 3 reconcile, they will create a new version of data
during the conflict reconciliation and break away from the
dominating replicas 1 and 4.

0

0.2

0.4

0.6

0.8

1

0.0/1.0 0.2/0.8 0.4/0.6 0.6/0.4 0.8/0.2

lambda/mu

st
at

e
pr

ob
ab

ili
ty

 &

co
nf

lic
t r

a
te

p_0

p_8

p_conflict

sim convergence

sim conflict rate

Figure 7: Percentage contributions of states for four replicas,
superimposed with analytical conflict rate curves and simulation
validation data points. The analytical numbers were approximated
by the Microsoft Excel solver with 10,000 iterations per data point.
p0 is the convergence state, and p8 is the fully divergent state. The
simulation was repeated 5 times with different random seeds, each
with a total of 100,000 update and reconciliation events. Since the
confidence intervals are less than 1% of the mean and clutter the
simulation points, we have removed them for the clarity of
presentation.

 Replica 1 Replica 2 Replica 3 Replica 4

Event Con-
tent

Ver Con-
tent

Ver Con-
tent

Ver Con-
tent

Ver

 X 1000 X 1000 Y 0010 Y 0010

Recon(1, 4) XY 2010 X 1000 Y 0010 XY 2010

Recon(2, 3) XY 2010 XY 1110 XY 1110 XY 2010

Figure 8: A setup sequence of events for identical conflicts in the
four-replica case. The states being reconciled are in boldface.

Figure 9 shows the states involved in forming identical
conflicts. For simplicity, not all outbound transitions are shown.
Basically, after the setup sequence, as long as one replica from
each version pair remains, they can reconcile and form identical
conflicts. The other two replicas can be in a number of states
resulting from updates and reconciliations.

Take the first right-looping branch from Figure 9 as an
illustrative example. Figure 10 starts with two sets of identical

pairs, continued from Figure 8. Based on version vectors,
replicas 1 and 4 are identical; replicas 2 and 3 are identical. If
replicas 1 and 2 reconcile, we will have an identical conflict based
on their version information; however, the content is the same.
Replicas 3 and 4 can reconcile and form another identical conflict.

Figure 9: A subset of four-replica states and transitions that
illustrates ways to form identical conflicts. The shaded states are
the setup sequence. The solid lines mark various transitions
among states; the dashed lines mark conflict transitions, and the
dotted dashed lines mark identical-conflict transitions.

 Replica 1 Replica 2 Replica 3 Replica 4

Event Con-
tent

Ver Con-
tent

Ver Con-
tent

Ver Con-
tent

Ver

 XY 2010 XY 1110 XY 1110 XY 2010

Recon(1, 2) XY 3110 XY 3110 XY 2010 XY 1100

Recon(3, 4) XY 3110 XY 3110 XY 2120 XY 2120

Figure 10: The first right looping branch from Figure 9.

3.5 Comments on Identical Conflicts
During the process of analyzing the base case for identical
conflicts, we made two disturbing observations. (1) For the four-
replica scenario, we can see that identical conflicts can potentially
be self-inducing due to looping behavior. Based on a prior
simulation study on large-scale optimistic replication systems [16],

identical conflicts constitute most of the conflicts, and this looping
behavior may be a contributing factor. (2) Identical conflicts are
defined as a function of data content, in addition to the system
states. In Figure 9, the same states can generate either regular or
identical conflicts. However, tracking the data content and system
states is analytically prohibitive even for few replicas, since we can
no longer compact states effectively.

4. AUTOMATIC GENERATION OF
PERMUTED STATES
Although permuted states enable a significant step forward in
understanding replicated systems, there is still a limit to the size of
the analysis. In exploring higher replication factors, we thus turn
from pure analysis to an analytically validated simulation.
However, such validation requires an automated way to generate
analytical solutions for higher replication factors. Although the
number of states still grows rapidly, the ability to validate a
simulation up to 10 replicas can cover common replication
deployment scenarios and give confidence in the accuracy of even
larger simulations. Even without closed-form solutions to
equations, using random traversals of the states with appropriate
probabilities for updates and reconciliations can be a good sanity
check for simulation results.

Four steps are involved in automating state generation: (1)
Map the diagram state representation into a data structure; (2)
define rules to transition among states; (3) remove isomorphic
states resulting from permuted labeling of replicas; and (4) traverse
states with the given transition probabilities.

4.1 Data Structure Representation
The first simplification in our automation is an assumption of
global knowledge, which allows us to directly translate diagram
states into graph-based representations. To illustrate, identical
replicas 1 and 2 have the state()

()==
==

,

, . The first row belongs to

replica 1. The equality symbols indicate that replica 1 is identical
to itself and replica 2. The second row belongs to replica 2,
showing that replica 2 is identical to replica 1 and itself.

If replicas 1 and 2 are in conflict, we have state()
()=
=
*,

,* . The

asterisks show that replica 1 is in conflict with replica 2 (vector 1),
and replica 2 is in conflict with replica 1 (vector 2).

If replica 1 dominates replica 2, we have the state ()
()=<

>=
,

, . The

greater-than sign shows that replica 1 dominates replica 2 (vector
1), and the less-than sign shows that replica 2 is subordinate to
replica 1 (vector 2).
In this simple 2-replica scenario, vectors 1 and 2 appear to contain
redundant information. However, as the number of replicas
increases, we need each replica to track its relationship to others to
capture the full complexity of system states. For example, with

, replicas 1 (top left), 2 (top right), and 3 (the bottom) can be

represented with the state
()
()
()=<<

>=
>=

,,

,*,

,*,
.

4.2 State Transition Rules
The state transition rules are also translated from the state diagram.
An update to a dominating replica does not change the dominance
of the replica. An update to a subordinate replica breaks its
relationship with its dominating replicas. An update to a number
of identical replicas makes one of the replicas dominating over all
other replicas.

Reconciliation rules fall into three categories: (1)
Reconciling two identical replicas: No actions are needed. (2)
Reconciling a dominant and a subordinate replica: The subordinate
replica first receives an update from the dominating one (with
update rules applied, meaning that if a subordinate is dominated by
two replicas, it has to break off from both dominating replicas first)
and copies over the vector from the dominating replica. (3)
Reconciling conflicting replicas: Each replica first receives an
update to form a new data version (with similar update rules
applied). For each vector element, if one of the replicas dominates
a third replica not involved in reconciliation, both replicas are set
to dominate the third. If one replica is identical to a third, both
reconciling replicas are set to be identical to each other,
dominating the third. Note that since conflict resolution is
equivalent to first applying chosen updates to the conflicting
replicas so as to make them equal, and then reconciling them, they
cannot be subordinate to any other replica after reconciliation.

4.3 Isomorphic State Reduction
As we analyze the system at the level of permuted states, the
labeling of replicas becomes irrelevant. For example, in the two-
replica case, we make no distinctions between replica 1 dominating
over 2 (()

()=<
>=

,

,), and replica 2 dominating over 1 (()
()=>

<=
,

,). In the

three-replica case of , we make no distinctions among
()
()
()=<<

>=
>=

,,

,*,

,*,
,

()
()
()=>

<=<
>=

,*,

,,

,*,
, and

()
()
()=>

=>
<<=

,*,

,*,

,,
.

This problem of compacting isomorphic states into a
permuted state is similar to the problem of finding isomorphic
graphs. Unlike subgraph isomorphism, the isomorphic graph
problem is neither NP-complete, nor a P-problem [14]. However,
known algorithms for constant-bounded vertex degree are O(n4)
[2], which is still too computationally intensive to scale well.

An intriguing observation is that one state can be turned into
another by swapping two corresponding rows and columns, with
the invariant that the diagonal entries are always ‘=’ . For example,

swapping the first and third rows of
()
()
()=<<

>=
>=

,,

,*,

,*,
 leads to

()
()
()>=

>=
=<<

,*,

,*,

,,
; the

first and third columns are then swapped to obtain a isomorphic

state,
()
()
()=>

=>
<<=

,*,

,*,

,,
. This raises the possibility that we might find a

reduced representation of the state that captures these variations
due to permutations. If so, we can look up the isomorphic states in
a dictionary. We currently use a hash table for this purpose.

To construct the reduced representation, we need to consider
the following constraints: (1) We need a function that is
commutative for row elements and column elements, so that any

swapping between two rows and columns results in the same
value. (2) We need to break the diagonal symmetry of matrices by
using two different functions for rows and columns, or our
reduction will not be as effective in eliminating unintended
collisions (false isomorphisms). False compaction of states will
confound the probability of reaching distinct states and increase
the error of our analyses. (3) We need to account for all matrix
elements.

The ‘=’ , ‘>’ , ‘<’ , and ‘ *’ symbols are first mapped to four 32-
bit numbers (chosen randomly at design time). The current hash
function is the sum of values from three functions (integer
overflow is ignored): (1) the product of the sums of each row
element, (2) the sum of the products of each column element, and
(3) the sum of all elements. The observed false compaction rate is
around 0.6% for 6 replicas, found by comparing the number of
obtained states with that obtained by brute-force permutation of
matrix rows and columns. The false compaction rate is expected to
become lower as the number of replicas increases, because two
valid matrices first have to follow the transitivity constraints (if
replica A dominates B, and if replica B dominates C, then replica
A dominates C) and be hashed to the same value.

1

100

10,000

1,000,000

100,000,000

10,000,000,000

2 3 4 5 6

replicas

st
at

es

theoretical

enumeration

permuted states

Figure 11: Comparison of number of system states obtained by
theoretical limits (4 states for each replica pair), brute-force
enumeration of reachable states, and permuted states.

Figure 11 compares the effectiveness of the permuted-state

approach to the number of states obtained by theoretical limits (4
states for each replica pair) and brute-force enumeration of
reachable states. Note that the y axis uses a logarithmic scale.
Using permuted states for as few as 6 replicas can reduce the state
space by 2 to 6 orders of magnitude.

4.4 Validation
After building the permuted states, all we need to do is construct
the state diagram through systematic state enumeration, and
randomly traverse the graph with specified update and
reconciliation arrival rates. For λ = µ, we validated our automated
analytical method (which contains 488,013 permuted states)
against a simulation with up to 10 replicas (Figure 12). Intuitively,
λ should be much greater than µ in real systems. However, based
on trace analyses [16], thanks to write-back caching and the work
cycle (2-day weekends and 8-hour working days), the average λ
and µ are not that far apart.

In the past, simulations of optimistic replication have been
validated only for 2 replicas. Now we have two independent
implementations of optimistic models that cross-validate well even
at 10 replicas. We are thus more confident in using simulation to
explore optimistic systems at higher replication factors.

0

0.1

0.2

0.3

0.4

2 3 4 5 6 7 8 9 10

replicas

analytical conflict rate

sim conflict rate

Figure 12: Comparison between automated analytical modeling
based on permuted states and simulation with counter-based
version vectors. The analytical numbers were obtained with
100,000 random transitions with λ = µ. The simulation was
repeated 5 times with different random seeds, each with a total of
100,000 update and reconciliation events. Since the confidence
intervals are less than 1% of the mean and clutter the simulation
points, we have removed them for the clarity of presentation.

5. IDENTICAL CONFLICTS REVISITED
A prior trace-based simulation study has shown that identical
conflicts account for a significant fraction of conflicts at high
replication factors (around 50 replicas) [16]. However, the
simulation validated by our analytical model shows that identical
conflicts are relatively rare events compared to the overall conflicts
(Figure 13).

0

0.1

0.2

0.3

0.4

0.5

2 10 18 26 34 42 50

replicas

co
nf

lic
t r

at
e

identical conflict rate

non-identical conflict rate

Figure 13: A stack graph of non-identical and identical conflict
rates at different replication factors. The simulation was repeated
5 times with different random seeds, each with a total of 100,000
update and reconciliation events, with λ = µ.. The identical-
conflict curve is just above the non-identical one. The difference
is too small to be seen.

0

0.1

0.2

0.3

0.4

0.5

2 10 18 26 34 42 50

replicas

co
nf

lic
t r

at
e

identical conflict rate

non-identical conflict rate

Figure 14: A stack graph of non-identical and identical conflict
rates at different replication factors, with 90% of the updates going
to 10% of the replicas. The simulation was repeated 5 times with
different random seeds, each with a total of 100,000 update and
reconciliation events, with λ = µ.

The prior study also suggested that identical conflicts are
caused by access locality—most updates are applied to a subset of
replicas. To test this possibility, we adjusted our simulation to
have 90% of the updates take place at only 10% of the replicas.

Figure 14 shows that the impact of access locality is clearly
visible, but the effect is within 10% of the total. To make sure that
we were within the plausible range of parameter settings, we
examined conflict and identical conflict rates as a function of λ/µ,
with 90% of the updates going to 10% of the replicas.

Figure 15 shows the decomposition of identical and non-
identical conflicts with a wide range of λ/µ ratios. The non-
identical conflict rate is low for both high and low λ/µ ratios, due
to either the lack of updates to create diverging versions, or the
lack of reconciliation to detect conflicts. When λ = µ, the identical
conflict rate is expected to be low. However, as the λ/µ ratio
decreases, the identical conflict rate accounts for most conflicts.

0

0.2

0.4

0.6

0.8

1

0.01 0.04 0.16 0.64 2.56 10.24 40.96

update to reconciliation ratios

co
nf

lic
t r

at
e

identical conflict rate

non-identical conflict rate

Figure 15: A stack graph of non-identical and identical conflict
rates for 50 replicas and various λ/µ ratios (in log scale), with 90%
of updates going to 10% of all replicas. The simulation was
repeated 5 times with different random seeds, each with a total of
100,000 update and reconciliation events.

From the viewpoint of traces, updates occur more frequently
than reconciliations on average, to amortize the cost of
reconciliation over time. Therefore, we hypothesize that a high
average λ/µ ratio with accompanying high identical conflict rate is
induced by a bimodal traffic pattern, where updates arrive in bursts
to maintain an upper range of λ/µ, while the system is running a
lengthy background reconciliation most of the time. This temporal
locality of updates is also sensible from the viewpoint of a single
replicated file, which is likely to be updated intensively over short
durations, with periods of no updates but many reconciliations.

0

0.1

0.2

0.3

0.4

0.5

2 10 18 26 34 42 50

replicas

co
nf

lic
t r

at
e

identical conflict rate

non-identical conflict rate

Figure 16: A stack graph of non-identical and identical conflict
rates under different replication factors, with 90% of updates to
10% of all replicas and with a bimodal traffic pattern where the
λ/µ ratio is 8 for one-third of the time to reflect 8-hour working
days, and 0.08 to reflect non-working hours. The simulation was
repeated 5 times with different random seeds, each with a total of
100,000 update and reconciliation events.

We model this behavior of update bursts with an irregular square
wave, to reflect weekly activities. The function parameters are
extracted from the same trace used in [16]. The function consists
of five eight-hour working sessions, with λ/µ = 8, each followed
by a 16-hour “off” session dominated by reconciliation, with λ/µ =
0.08. The five eight-hour days are followed by two 24-hour
reconciliation periods. A working hour has an average of 3
updates, and the remaining hours have an average of one
reconciliation per hour. The overall average λ/µ is about 0.86,
computed based on the aggregate number of updates and
reconciliations. Access locality still applies.

Figure 16 shows a much more drastic decomposition of
conflict rate compared to Figure 14. Clearly, bimodal access
patterns have a large impact on identical conflicts. Intriguingly,
based on Figure 15, an average λ/µ of 0.86 should produce
relatively few identical conflicts. However, beyond 10 replicas,
identical conflicts can account for up to 48% of the total. This
suggests that load generators based on aggregate mean arrival rates
of updates and reconciliations are not suitable for studying
optimistic replication. Also, given that our square function is a
crude approximation of a trace, a direct trace-based simulation
would be expected to have more identical conflicts, which is
consistent with prior findings [16].

Intriguingly, the introduction of access and temporal localities
to the workload affects the overall conflict statistics (beyond 10
replicas) very little, but the internal composition changes
dramatically.

6. RELATED WORK
The permuted-state approach suggests that it might be profitable to
revisit existing approaches to evaluating optimistic replication.
One early approach, by Golding [3], was to measure the mean time
to converge with R conflicting replicas. No updates were allowed
during the convergence process.

Figure 17: The state-transition table for two replicas. The rows
represent the from states, and the columns the to states.

Golding’s approach is equivalent to making λ/µ be zero.
Based on Figures 4 and 6, for 3 and 4 replicas optimistic
replication under this setting is dominated by only a few states.
Many states can be overlooked because they are only reachable
through a mixture of update and reconciliation events. On the
other hand, we have also observed that an optimistic replication

µ λ

λ/2 λ/2 µ

λ µ

system typically operates with alternating extremes of λ/µ.
Therefore, Golding’s approach does reflect the case where
reconciliation events dominate the system. With only the state
transitions, one might conclude that Golding’s approach misses
33% of system states for 2 replicas (Figure 17), since it starts with
the fully divergent states where all replicas are in conflict and
transitions directly back to the starting state. The intermediate
state is not exercised at all. For three replicas, Golding’s approach
misses 38% of states; 56% for four replicas. In practice, however,
many missed states are not heavily exercised, since alternating
between extreme λ/µ ratios is the norm.

Gray et al. [4] studied replication under a database workload,
with relatively uniform access patterns to all replicated items.
Their results suggest that the conflict rate grows at a rate that is
prohibitive for scaling of optimistic replication. However, Gray’s
analytical model assumes an access pattern that is not applicable in
environments where update locality is the norm. Also, due to the
strong correlation between the usage model and the working day,
our traffic pattern is bimodal. Our model cycles through extreme
update-to-reconciliation ratios.

Kistler and Satyanarayanan [7] have conducted an empirical
study of disconnected operation in the Coda file system, showing a
low likelihood of concurrent updates [9]. A study of the Ficus file
system [11] showed that optimistic replication used in an office
environment achieved an extremely low conflict rate after the
automation of conflict resolution for many applications and after
removing identical conflicts. The study reported many identical
conflicts, but their relationships to the system parameters and their
implications on scaling were not explained. Neither the Coda nor
the Ficus experience has examined the relationship between the
update-to-reconciliation ratio and the formation of identical
conflicts, which constitute the majority of conflicts.

There are relatively few studies that use both simulation and
analytical methods to investigate the causes of conflicts and
identical conflicts. Through a trace-driven simulation, one paper
observed the inverse relationship between update locality and
conflict and identical conflict rates [16]. However, our study has
further investigated the effect of a bimodal traffic pattern on
optimistic replicated systems. Another paper analytically
characterized the conflict rate, but the results were limited to two
replicas and not generalizable [18]. Our use of permuted states
can capture the combinatorial growth of states at a small scale,
which is representative of most replication scenarios.

There have also been other studies that examined the service
quality of optimistic replication [12, 19]. However, the behavior of
the conflict-rate curve was not deeply explored in these studies.

7. FUTURE WORK
Through this exploration of optimistic replication with both
analytical and simulation approaches, we have begun to gain more
mature intuition about system behavior. Although the state space
of optimistic replication is large, we believe that a system can be
reasonably characterized with fewer than 200 states, to capture all
major aggregate statistics. We intend to design, implement,
analyze, and automate algorithms to extract the top contributing
states. The aggregate statistics obtained from a trimmed state
diagram will be compared with the full state diagram for
verification. If successful, we can use this simplified model to
provide system feedback, prediction, and tuning at runtime.

Since traffic characteristics can significantly influence the
fraction of conflicts that are identical, a fruitful area for future
research would be to construct traffic filters that can shape the
decomposition of conflicts. Ideally, we want no conflicts. If that
is not possible, we want most conflicts to be identical, for easy
resolution. (Note that for modeling purposes, an automated
resolver such as those described in [9] and [11] would cause non-
identical conflicts to behave as if they were identical ones.)

8. LESSONS & CONCLUSION
The results presented in this paper capture several iterations of
experimentation with analytical methods, and many findings are
not obvious in retrospect. We originally made naïve attempts to
cluster states with conflicts into small sets of super states to
simplify the computation. However, the results were similar to
variable substitutions in complex equations. Although the
resulting state-transition diagram had fewer states, the complexity
of the equations remained unchanged.

After we discovered that conflicts occur as transitions, not
states, we tried to insert probing states into each conflict-
generating transition, in the hope that the equilibrium probability
of the probing state would capture the conflict probability.
Unfortunately, the probing states significantly distorted the results,
making it difficult to compute conflict probabilities.

We have described methods to represent, automate, and
optimize permuted states, which has enabled us to use analytical
methods to explore the 4-replica base case of identical conflicts,
and automate the analytical investigation up to 10 replicas. All
results have been independently confirmed by a simulation based
on version vectors. As a consequence, we discovered that update
locality and bimodal access patterns are the primary factors that
influence the fraction of identical conflicts.

The analysis of problems with exponential state spaces is
always challenging. By introducing the concept of permuted
states, we have developed a new technique that makes the base-
case analysis of complex replicated systems tractable. As a result,
we have been able to characterize and quantify important system
behaviors that have previously been unrecognized or poorly
understood.

Appendix A: State-Equilibr ium Equations for
Three Replicas

()

()

1

33

2

3

3

2

3

2
3

2

33

2

3

2
33

33

2

3

2

33

2

3

2

33

2

3

33

2
3

2

76543210

657

36

74325

724

765213

612

601

30

=+++++++

+=
��

����
+

=
��

����
+

+++=+

+=

++++=
��

����
+

+=
��

����
+

+=+

=

pppppppp

ppp

pp

ppppp

ppp

pppppp

ppp

ppp

pp

λλµλ

λµλ

µµλµµλ

λλµ

µµµµµµλ

λλµλ

µλµλ

µλ

REFERENCES
[1] Daniels D, Doo LB, Downing A, Elsbernd C, Hallmark G, Jain S,

Jenkins B, Lim P, Smith G, Souder B, Stamos J. Oracle’s Symmetric
Replication Technology and Implications for Application Design.
Proceedings of SIGMOD Conference, p. 467, 1994.

[2] Foggia P, Sansone, C, Vento M. A Performance Comparison of Five
Algorithms for Graph Isomorphism. Proceedings of the 3rd
Workshop on Graph-based Representations in Pattern Recognition,
2001.

[3] Golding RA. Weak-Consistency Group Communication and
Membership. Ph.D. Dissertation, Department of Computer Science,
University of California, Santa Cruz, 1992.

[4] Gray J, Helland P, O’Neil P, Shasha D. The Dangers of Replication
and a Solution. Proc. of the 1996 ACM SIGMOD Conference,
pp.173-182, 1996.

[5] Guy R, Popek G, Page TW. Consistency Algorithms for Optimistic
Replication. Proceedings of the 1st International Conference on
Network Protocols, IEEE, October 1993.

[6] Kawell LJ, Beckhardt S, Halvorsen T, Ozzie R, Greif I. Replicated
Document Management in a Group Communication System.
Groupware: Software for Computer-Supported Cooperative Work,
IEEE Computer Society Press, pp. 226-235, 1992.

[7] Kistler JJ, Satyanarayanan M. Disconnected Operation in the Coda
File System. ACM Transactions on Computer Systems, 10(1),
February 1992.

[8] Kubiatowicz J, Bindel D, Chen Y, Czerwinski S, Eaton P, Geels D,
Gummadi R, Rhea S, Weatherspoon H, Weimer W, Wells C, and
Zhao B. Proceedings of the Ninth international Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2000), November 2000.

[9] Kumar P, Satyanarayanan M. Flexible and Safe Resolution of File
Conflicts. Proceedings of the 1995 USENIX Technical Conference,
pp. 95-106, January 1995.

[10] Page T, Guy R, Heidemann J, Ratner D, Reiher P, Goel A, Kuenning
G, Popek G. Perspectives on Optimistically Replicated, Peer-to-Peer
Filing. Software—Practice and Experience, December 1997.

[11] Reiher P, Heidemann J, Ratner D, Skinner G, Popek G. Resolving
File Conflicts in the Ficus File System. Proceedings of USENIX
Conference, pp. 183-195, June 1994.

[12] Rowstron AIT, Lawrence N, Bishop CM. Probabilistic Modeling of
Replica Divergence. Proc. of the 8th IEEE Workshop on Hot Topics
in Operating Systems, May 2001.

[13] Satyanarayanan M. Coda: A Highly Available File System for a
Disconnected Workstation Environment. Proceedings of the 2nd
Workshop on Workstation Operating Systems, September 1989.

[14] Skiena S, Graph Isomorphism. Implementing Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica. Reading,
Massachusetts, Addison-Wesley, pp. 181-187, 1990.

[15] Terry DB, Theimer MM, Petersen K, Demers AJ, Spreitzer MJ,
Hauser CH. Managing Update Conflicts in Bayou, a Weakly
Connected Replicated Storage System. Proceedings of the 15th ACM
Symposium on Operating Systems Principle, December 1995.

[16] Wang AIA. A Simulation Evaluation for Optimistically Replicated
Filing Environments. Master's Thesis. Computer Science
Department, University of California, Los Angeles, 1998.

[17] Wang AIA, Peter Reiher, and Rajive Bagrodia. A Simulation
Evaluation of Optimistically Replicated Filing in Mobile
Environments. Proceedings of the 18th IEEE International
Performance, Computing, and Communication Conference
(IPCCC), February 1999.

[18] Wang AIA, Peter Reiher, Rajive Bagrodia, and Geoffrey Kuenning.
Understanding the Behavior of the Conflict-Rate Metric in
Optimistic Peer Replication. Proceedings of the 5th IEEE
International Workshop on Mobility in Databases and Distributed
Systems (MDDS), Aix-en-Provence, France, September 2002.

[19] Yu H, Vahdat A. Design and Evaluation of a Continuous
Consistency Model for Replicated Servers. Proc. of the 4th
Symposium on Operating Systems Design and Implementation,
October 2000.

An-I A. Wang is an assistant professor of computer science at

Florida State University. He received his Ph.D. and M.S. in computer
science from UCLA in 2003 and 1998, and his B.A. in computer science
from UC Berkeley in 1995. His research interests include file systems,
optimistic peer-to-peer replication, performance evaluation, ad hoc
network routing, operating systems, and distributed systems.

Geoff H. Kuenning is an associate professor of computer science at
Harvey Mudd College. He received his Ph.D. in computer science from
UCLA in 1997, and his B.S. and M.S. in computer science from Michigan
State University in 1973 and 1974. From 1974 to 1989, he worked in the
areas of operating systems and embedded systems. His research interests
include file systems, performance analysis, and computer system security.

Peter Reiher is an adjunct associate professor of computer science at
UCLA. He received his Ph.D. and his M.S. in computer science from
UCLA in 1987 and 1984, respectively. He received his B.S. in electrical
engineering from the University of Notre Dame in 1979. Dr. Reiher’s
research interests include active networks, advanced operating systems,
parallel discrete event simulation, and security for distributed systems.

