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1. INTRODUCTION 
Optimistic replication is a technique that allows read/write access 
to any available replica of a data item, even during network out-
ages.    In optimistic systems, data synchronization, or reconcilia-
tion, guarantees convergence and the correctness of data in the 
case of improper concurrent modifications, or conflicts [3, 4].  
Typically, reconciliation involves two replicas, with bidirectional 
data propagation.  Conflicts are detected only at reconciliation 
time, when both replicas have been updated since the previous 
reconciliation.  The conflict rate is a very important metric when 
evaluating an optimistic replication system, since it reflects the 
level of data consistency and the efforts involved in achieving 
such consistency. 

Although optimistic replication is widely deployed [1, 3, 4, 5], an 
analytical understanding of conflicts in these systems is limited to 
two replicas, due to the exponential growth of the state space.  
Even for 3 replicas, we need 64 states to track all pairwise, update 
relationships.  The base case of an important class of internal 
system conflicts, identical conflicts, requires 4 replicas for analy-
sis, or 4,096 states.  Therefore, the current understanding of con-
flicts largely relies on simulations, validated with only two 
replicas.  Without validation, simulation errors can easily go un-
detected for higher replication factors.  

2. PERMUTED STATES 
To summarize the state space efficiently, we apply combinatorics.  
We use an event-based model in which time is measured in terms 
of updates and reconciliations. 

Figure 1 illustrates the two-replica case, with λ as the probability 
of having an update at either replica, and µ as the probability of 
having a pair-wise reconciliation process, respectively, as the next 
system event.  We use a Poisson interarrival model.  At each state, 
the outbound update and reconciliation probabilities sum to λ and 
µ, respectively.  The sum of outbound λ and µ at each state is 1.   

This analysis assumes uniform λ and µ  across all replicas, to 
make the analysis tractable.  However, the resulting model can be 

used to validate simulations that explore non-uniform transition 
probabilities. 

Each replica is represented by a dot.  In the starting state (shaded), 
two replicas are identical, represented via a horizontal line con-
necting the two.  If reconciliation occurs, the replicas remain iden-
tical, so the starting state transitions back to itself.   

If one of the replicas is updated, we move to the middle state, 
where the update-receiving replica dominates the subordinate 
one.  This relationship is represented by a non-horizontal line, 
where the upper replica dominates the lower one.  Regardless of 
which replica is updated, we can only transition from the starting 
state to the middle state.  By decoupling the system state from the 
labeling of individual replicas, each state captures all isomorphic 
states resulted from permuting the replica identifications.  We call 
this representation permuted states. 

 
Figure 1:  The state-transition diagram for two replicas.   

If a dominating replica reconciles with its subordinate, it will 
replace the content of the latter with its own, and then both will be 
marked as identical (back to the starting state).  An update to the 
dominating replica will not change its dominance over the subor-
dinate.  An update to the subordinate replica breaks the domi-
nance relationship, and the system enters the rightmost state 
(conflict).   

Conflicting replicas (dots) are not connected by lines.  An update 
to either conflicting replica leaves both in conflict.  However, a 
reconciliation between the two leads to identical replicas (the 
starting state or the convergence state), with a reported conflict.   

A system can be in a state with conflicting replicas without report-
ing conflicts, since conflicts are detected at reconciliation time.  
Therefore, the conflict rate, or the probability of having conflicts 
due to either update or reconciliation, is computed by obtaining 
the equilibrium probability of a state that contains replicas in con-
flict, multiplied by the probability of traversing its conflict-
resolving transition.   

To compute the equilibrium probability based on Figure 1, we can 
construct a system of linear equations by equating the outbound 
transition flow at each state with the inbound flow.  The sum of 
probabilities at each state should be 1.   We omit the equations 
and their solutions here; the reader is referred to [7] for details. 
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3. GENERALIZATION & VALIDATIONS 
By applying permuted states, we can reduce the original 64 states 
for three replicas down to 8 states; 4,096 states for four replicas 
reduce to 27 permuted states.   

For validation, we compare analytical results with those obtained 
from a simulation [6].  Briefly, each replica keeps a local “version 
vector”  V of update counters for all replicas.  A replica i incre-
ments its local Vi whenever it performs an update.  At reconcilia-
tion time, if ∀ i, Vreplica_Xi ≥ Vreplica_Yi, X dominates Y.  If X 
dominates Y, and if Y dominates X, X and Y are equal.  Otherwise, 
we have a conflict.  A subordinate replica copies the version vec-
tor from the dominant one.  To merge conflicting version vectors, 
∀ i, Vreplica_Xi = Vreplica_Yi = max(Vreplica_Xi, Vreplica_Yi).  The counter 
of the conflict-resolving replica is incremented by one, indicating 
that a new version was generated as a result of resolving the con-
flict.  The simulation includes only one replicated item.  We fol-
low the methodology presented in [6].  
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Figure 2:  Permuted state models cross-validated with simula-
tions between two and four replicas.  Since the 90% confi-
dence intervals are <1% of the mean, we have removed 
them for clarity of presentation. 

Figure 2 shows that simulation models match well with the mod-
els based on permuted states, for the exhaustive range of λ/µ.  
Also, conflict rate can actually be bounded up to 22% for 4 repli-
cas, a valuable insight for systems like OceanStore [2], where the 
core writable replicas have only a replication factor of four.   

4. IDENTICAL CONFLICTS 

 
 Replica 1 Replica 2 Replica 3 Replica 4 

Event Con-
tent 

Ver Con-
tent 

Ver Con-
tent 

Ver Con-
tent 

Ver 

 X 1000 X 1000 Y 0010 Y 0010 
Setup sequence 

Recon(1, 4) XY 2010 X 1000 Y 0010 XY 2010 
Recon(2, 3) XY 2010 XY 1110 XY 1110 XY 2010 

Identical conflict formation 
Recon(1, 2) XY 3110 XY 3110 XY 2010 XY 1100 

Figure 3: Identical conflict formations.  The states being rec-
onciled are in boldface. 

With permuted states, for the first time, we can enumerate how 
identical conflicts are formed.  The formation of an identical con-
flict goes through a setup sequence (Figure 3).  The system first 
enters the state with two pairs of identical replicas, replicas 1 and 
2, and replicas 3 and 4.  A reconciliation process between one 
replica from each pair (e.g. replicas 1 and 4) will result in a new 
pair of identical replicas, dominating the replicas 2 and 3, which 
remain in conflict with each other.  When replicas 2 and 3 recon-

cile, they will create a new version of the data during reconcilia-
tion and break away from the dominating replicas 1 and 4.      

With two sets of identical pairs after the setup sequence, if repli-
cas 1 and 2 reconcile, we will have an identical conflict based on 
their version information; however, the content is the same.   

5. AUTOMATING PERMUTED STATES 
To validate simulations with higher replication factors, we need 
an automated way to enumerate permuted states.  We represent 
two identical replicas 1 and 2 with ( )

( )==
==

,

, .  The first row belongs 

to replica 1, where ‘=’  indicates that replica 1 is identical to itself 
and replica 2.  The second row belongs to replica 2, showing that 
replica 2 is identical to replica 1 and itself.  Two conflicting repli-
cas are represented by ( )

( )=
=
*,

,* , where ‘ *’  show that replica 1 is in 

conflict with replica 2 (vector 1), and replica 2 is in conflict with 
replica 1 (vector 2).  If replica 1 dominates 2, we have the state 
( )
( )=<

>=
,

, , where ‘>’  shows that replica 1 dominates 2 (vector 1), and 

‘<’  shows that replica 2 is subordinate to 1 (vector 2).  By remov-
ing isomorphic graphs, we can eliminate redundant states and 
generate the state transition diagram.  We have successfully vali-
dated simulations up to 10 replicas with only 105 permuted states, 
as opposed to 1033 original states.  The ten-replica case covers 
most common replication deployment scenarios and gives confi-
dence in the accuracy of even larger simulations. 

6. CONCLUSIONS 
We have described methods to represent and automate permuted 
states, which have enabled us to use analytical methods to explore 
the 4-replica base case of identical conflicts, and automate the 
analytical investigation up to 10 replicas.  All results have been 
confirmed by an independent simulation based on version vectors.   

The analysis of problems with exponential state spaces is always 
challenging.  Permuted states are a new technique that makes the 
analysis of complex replicated systems tractable.  As a result, we 
can characterize and quantify important system behaviors that 
have previously been unrecognized or poorly understood.   
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