
Introducing Permuted States for Analyzing Conflict Rates
in Optimistic Replication

An-I A. Wang, Florida State University
Peter Reiher, University of California, Los Angeles

Geoff Kuenning, Universität Karlsruhe and Harvey Mudd College

Categories and Subject Descriptors
D.4.3 [File Systems Management]: Distributed file systems.
D.4.8 [Performance]: Modeling and prediction; simulation.

General Terms
Performance and measurement

Keywords
Optimistic replication, analytical modeling, simulation, permuted
states, conflict rates

1. INTRODUCTION
Optimistic replication is a technique that allows read/write access
to any available replica of a data item, even during network out-
ages. In optimistic systems, data synchronization, or reconcilia-
tion, guarantees convergence and the correctness of data in the
case of improper concurrent modifications, or conflicts [3, 4].
Typically, reconciliation involves two replicas, with bidirectional
data propagation. Conflicts are detected only at reconciliation
time, when both replicas have been updated since the previous
reconciliation. The conflict rate is a very important metric when
evaluating an optimistic replication system, since it reflects the
level of data consistency and the efforts involved in achieving
such consistency.

Although optimistic replication is widely deployed [1, 3, 4, 5], an
analytical understanding of conflicts in these systems is limited to
two replicas, due to the exponential growth of the state space.
Even for 3 replicas, we need 64 states to track all pairwise, update
relationships. The base case of an important class of internal
system conflicts, identical conflicts, requires 4 replicas for analy-
sis, or 4,096 states. Therefore, the current understanding of con-
flicts largely relies on simulations, validated with only two
replicas. Without validation, simulation errors can easily go un-
detected for higher replication factors.

2. PERMUTED STATES
To summarize the state space efficiently, we apply combinatorics.
We use an event-based model in which time is measured in terms
of updates and reconciliations.

Figure 1 illustrates the two-replica case, with λ as the probability
of having an update at either replica, and µ as the probability of
having a pair-wise reconciliation process, respectively, as the next
system event. We use a Poisson interarrival model. At each state,
the outbound update and reconciliation probabilities sum to λ and
µ, respectively. The sum of outbound λ and µ at each state is 1.

This analysis assumes uniform λ and µ across all replicas, to
make the analysis tractable. However, the resulting model can be

used to validate simulations that explore non-uniform transition
probabilities.

Each replica is represented by a dot. In the starting state (shaded),
two replicas are identical, represented via a horizontal line con-
necting the two. If reconciliation occurs, the replicas remain iden-
tical, so the starting state transitions back to itself.

If one of the replicas is updated, we move to the middle state,
where the update-receiving replica dominates the subordinate
one. This relationship is represented by a non-horizontal line,
where the upper replica dominates the lower one. Regardless of
which replica is updated, we can only transition from the starting
state to the middle state. By decoupling the system state from the
labeling of individual replicas, each state captures all isomorphic
states resulted from permuting the replica identifications. We call
this representation permuted states.

Figure 1: The state-transition diagram for two replicas.

If a dominating replica reconciles with its subordinate, it will
replace the content of the latter with its own, and then both will be
marked as identical (back to the starting state). An update to the
dominating replica will not change its dominance over the subor-
dinate. An update to the subordinate replica breaks the domi-
nance relationship, and the system enters the rightmost state
(conflict).

Conflicting replicas (dots) are not connected by lines. An update
to either conflicting replica leaves both in conflict. However, a
reconciliation between the two leads to identical replicas (the
starting state or the convergence state), with a reported conflict.

A system can be in a state with conflicting replicas without report-
ing conflicts, since conflicts are detected at reconciliation time.
Therefore, the conflict rate, or the probability of having conflicts
due to either update or reconciliation, is computed by obtaining
the equilibrium probability of a state that contains replicas in con-
flict, multiplied by the probability of traversing its conflict-
resolving transition.

To compute the equilibrium probability based on Figure 1, we can
construct a system of linear equations by equating the outbound
transition flow at each state with the inbound flow. The sum of
probabilities at each state should be 1. We omit the equations
and their solutions here; the reader is referred to [7] for details.

Copyright is held by the author/owner(s).
SIGMETRICS’05, June 6–10, 2005, Banff, Alberta, Canada.
ACM 1-59593-022-1/05/0006.

λ

µ

µ

λ/2

µ (conflict reported)

λ λ/2

3. GENERALIZATION & VALIDATIONS
By applying permuted states, we can reduce the original 64 states
for three replicas down to 8 states; 4,096 states for four replicas
reduce to 27 permuted states.

For validation, we compare analytical results with those obtained
from a simulation [6]. Briefly, each replica keeps a local “version
vector” V of update counters for all replicas. A replica i incre-
ments its local Vi whenever it performs an update. At reconcilia-
tion time, if ∀ i, Vreplica_Xi ≥ Vreplica_Yi, X dominates Y. If X
dominates Y, and if Y dominates X, X and Y are equal. Otherwise,
we have a conflict. A subordinate replica copies the version vec-
tor from the dominant one. To merge conflicting version vectors,
∀ i, Vreplica_Xi = Vreplica_Yi = max(Vreplica_Xi, Vreplica_Yi). The counter
of the conflict-resolving replica is incremented by one, indicating
that a new version was generated as a result of resolving the con-
flict. The simulation includes only one replicated item. We fol-
low the methodology presented in [6].

0

0.2

0.4

0.6

0.8

1

0.0/1.0 0.2/0.8 0.4/0.6 0.6/0.4 0.8/0.2

lambda/mu

st
at

e
pr

ob
ab

ili
ty

 &
 c

on
fli

ct

ra
te

p_convergence_2r

p_convergence_3r

p_convergence_4r

p_conflict_2r

p_conflict_3r

p_conflict_4r

sim_convergence_2r

sim_convergence_3r

sim_convergence_4r

sim_conflict_2r

sim_conflict_3r

sim_conflict_4r

Figure 2: Permuted state models cross-validated with simula-
tions between two and four replicas. Since the 90% confi-
dence intervals are <1% of the mean, we have removed
them for clarity of presentation.

Figure 2 shows that simulation models match well with the mod-
els based on permuted states, for the exhaustive range of λ/µ.
Also, conflict rate can actually be bounded up to 22% for 4 repli-
cas, a valuable insight for systems like OceanStore [2], where the
core writable replicas have only a replication factor of four.

4. IDENTICAL CONFLICTS

 Replica 1 Replica 2 Replica 3 Replica 4

Event Con-
tent

Ver Con-
tent

Ver Con-
tent

Ver Con-
tent

Ver

 X 1000 X 1000 Y 0010 Y 0010
Setup sequence

Recon(1, 4) XY 2010 X 1000 Y 0010 XY 2010
Recon(2, 3) XY 2010 XY 1110 XY 1110 XY 2010

Identical conflict formation
Recon(1, 2) XY 3110 XY 3110 XY 2010 XY 1100

Figure 3: Identical conflict formations. The states being rec-
onciled are in boldface.

With permuted states, for the first time, we can enumerate how
identical conflicts are formed. The formation of an identical con-
flict goes through a setup sequence (Figure 3). The system first
enters the state with two pairs of identical replicas, replicas 1 and
2, and replicas 3 and 4. A reconciliation process between one
replica from each pair (e.g. replicas 1 and 4) will result in a new
pair of identical replicas, dominating the replicas 2 and 3, which
remain in conflict with each other. When replicas 2 and 3 recon-

cile, they will create a new version of the data during reconcilia-
tion and break away from the dominating replicas 1 and 4.

With two sets of identical pairs after the setup sequence, if repli-
cas 1 and 2 reconcile, we will have an identical conflict based on
their version information; however, the content is the same.

5. AUTOMATING PERMUTED STATES
To validate simulations with higher replication factors, we need
an automated way to enumerate permuted states. We represent
two identical replicas 1 and 2 with ()

()==
==

,

, . The first row belongs

to replica 1, where ‘=’ indicates that replica 1 is identical to itself
and replica 2. The second row belongs to replica 2, showing that
replica 2 is identical to replica 1 and itself. Two conflicting repli-
cas are represented by ()

()=
=
*,

,* , where ‘ *’ show that replica 1 is in

conflict with replica 2 (vector 1), and replica 2 is in conflict with
replica 1 (vector 2). If replica 1 dominates 2, we have the state
()
()=<

>=
,

, , where ‘>’ shows that replica 1 dominates 2 (vector 1), and

‘<’ shows that replica 2 is subordinate to 1 (vector 2). By remov-
ing isomorphic graphs, we can eliminate redundant states and
generate the state transition diagram. We have successfully vali-
dated simulations up to 10 replicas with only 105 permuted states,
as opposed to 1033 original states. The ten-replica case covers
most common replication deployment scenarios and gives confi-
dence in the accuracy of even larger simulations.

6. CONCLUSIONS
We have described methods to represent and automate permuted
states, which have enabled us to use analytical methods to explore
the 4-replica base case of identical conflicts, and automate the
analytical investigation up to 10 replicas. All results have been
confirmed by an independent simulation based on version vectors.

The analysis of problems with exponential state spaces is always
challenging. Permuted states are a new technique that makes the
analysis of complex replicated systems tractable. As a result, we
can characterize and quantify important system behaviors that
have previously been unrecognized or poorly understood.

REFERENCES
[1] Daniels D et al. Oracle’s Symmetric Replication Technology and

Implications for Application Design. SIGMOD, 1994.
[2] Kubiatowicz J et al. OceanStore: An Architecture for Global-Scale

Persistent Storage, ASPLOS 2000, November 2000.
[3] Reiher P et al. Resolving File Conflicts in the Ficus File System.

USENIX, 1994.
[4] Satyanarayanan M. Coda: A Highly Available File System for a

Disconnected Workstation Environment. 2nd Workshop on Work-
station Operating Systems, 1989.

[5] Terry DB et al. Managing Update Conflicts in Bayou, a Weakly
Connected Replicated Storage System. SOSP, 1995.

[6] Wang AIA. A Simulation Evaluation for Optimistically Replicated
Filing Environments. Master's Thesis. Computer Science Depart-
ment, UCLA, 1998.

[7] Wang AIA et al. Using Permuted States and Validated Simulation
to Analyze Conflict Rates in Optimistic Replication, submitted to
SPECTS, 2005.

