
Experience with Sporadic Server Scheduling in Linux: Theory vs.

Practice

Mark J. Stanovich, Theodore P. Baker∗, An-I Andy Wang

Florida State University

Department of Computer Science, Florida, USA

{stanovic,baker,awang}@cs.fsu.edu

Abstract

Real-time aperiodic server algorithms were originally devised to schedule the execution of threads
that serve a stream of jobs whose arrival and execution times are not known a priori, in a way that
supports schedulability analysis. Well-known examples of such algorithms include the periodic polling
server, deferrable server, sporadic server, and constant bandwidth server.

The primary goal of an aperiodic-server scheduling algorithm is to enforce a demand bound for each
thread - that is, an upper bound on the amount of CPU time a thread may compete for in a given time
interval. Bounding the demand of a given thread limits the interference that thread can inflict on other
threads in the system. Isolating the CPU-time demand of a thread, known as temporal isolation, is an
essential requirement for guaranteed resource reservations and compositional schedulability analysis in
open real-time systems. A secondary goal of an aperiodic server is to minimize the worst-case and/or
average response time for jobs served while enforcing the demand bound. The theoretical aperiodic server
algorithms meet both goals to varying degrees.

An implementation of an aperiodic server can yield performance significantly worse than its theoretical
counterpart. Average response time is often higher, and even temporal isolation may not be enforced due
to factors not found or considered in the theoretical algorithm. These factors include context-switching
overheads, imprecise clocks and timers, preemption delays (e.g., overruns), and limits on storage available
for bookkeeping.

This paper reports our experience implementing, in Linux, variations of the sporadic-server scheduling
algorithm, originally proposed by Sprunt, Sha, and Lehoczky. We chose to work with sporadic-server
scheduling because it fits into the traditional Unix priority model, and is the only scheduling policy
recognized by the Unix/POSIX standard that enforces temporal isolation. While this paper only considers
sporadic server, some lessons learned extend to other aperiodic servers including those based on deadline
scheduling.

Through our experience, we show that an implemented sporadic server can perform worse than less
complex aperiodic servers such as the polling server. In particular, we demonstrate the effects of an
implementation’s inability to divide CPU time into infinitely small slices and to use them with no overhead.
We then propose and demonstrate techniques that bring the performance closer to that of the theoretical
sporadic-server algorithm. Our solutions are guided by two objectives. The primary objective is that the
server enforce an upper bound on the CPU time demanded. The secondary objective is that the server
provide low average-case response time while adhering to the server’s CPU demand bound. In order to
meet these objectives, our solutions restrict the degree to which the server’s total CPU demand can be
divided. Additionally, we provide mechanisms to increase the server’s ability to provide more continuous
allocations of CPU demand.

Through a network packet service example, we show that sporadic server can be effectively used to
bound CPU demand. Further, the efficiency of jobs served by sporadic server can be improved in terms
of both reduced average-case response time and increased throughput.

∗Dr. Baker’s contributions to this paper are based on work supported by the National Science Foundation, while working at
the Foundation.

1

1 Introduction

The roots of this paper are in experiments we did
in 2007 on trying to schedule Linux device-driver
execution in a way that conforms to an analyz-
able real-time scheduling model[3]. We found that
the Unix SCHED SPORADIC scheduling policy is
a potential improvement over SCHED FIFO at any
constant scheduling priority. Then, in subsequent
studies we discovered that we needed to correct
some technical defects in the POSIX definition of
SCHED SPORADIC, which are reported in [5]. The
current paper describes our more recent efforts to
deal with another phenomenon, having to do with
preemption overhead and trade-offs between server
throughput, server response time, and the ability to
guarantee deadlines of other real-time tasks.

In a broader sense, this paper is about narrowing
a gap that has developed between real-time operat-
ing systems and real-time scheduling theory. While
a great deal is known about real-time scheduling in
theory, very little of the theory can be applied in
current operating systems. We feel that closer in-
tegration of operating systems implementation and
scheduling theory is needed to reach a point where
one can build open systems that reliably meet real-
time requirements.

After some review of real-time scheduling the-
ory and aperiodic servers, we discuss our experi-
ences with implementing sporadic server scheduling,
the problem of properly handling preemption over-
head, and how we addressed the problem. We com-
pare the performance of serving aperiodic workloads
by a polling server, a sporadic server, and a hybrid
polling-and-sporadic server, using our implementa-
tion of the three scheduling algorithms in Linux. We
conclude with a brief discussion of lessons learned
and some further work.

2 Background

Any implementor of real-time operating systems
needs to understand the basics of real-time schedul-
ing theory, in order to understand the implications
of implementation decisions. While this paper is not
primarily about scheduling theory, we try to estab-
lish some theoretical background as motivation for
our discussion of implementation issues.

Real-time scheduling theory provides analysis
techniques that can be used to design a system to
meet timing constraints. The analyses are based on
abstract scheduling algorithms and formal models of

workload and processing resources. The theory can
guarantee that a set of timing constraints will always
be satisfied, but only if an actual system conforms to
the abstract models on which the analysis is based.

Real-time operating systems provide a run-time
platform for real-time applications, including the
mechanisms and services that schedule the execu-
tion of tasks on the processing unit(s). For timing
guarantees based on real-time scheduling theory to
apply to an application implemented using an oper-
ating system, there must be a close correspondence
between the virtual execution platform provided by
the OS and the abstract models and scheduling al-
gorithms of the theory. The burden of achieving this
correspondence falls on the OS and application de-
velopers.

The OS must provide mechanisms that allow de-
velopment of applications that conform to the ab-
stract models of the theory within bounded toler-
ances. In the case of a general-purpose operating
system that supports the concept of open systems,
such as Linux, the OS must go further, to provide
firewall-like mechanisms that preserve conformance
to the models when independently developed appli-
cations or components run alongside one another.

In real-time scheduling theory the arrival of a re-
quest for some amount of work is known as a job, and
a logical stream of jobs is called a task. Some jobs
have deadlines. The goal is to find a way to schedule
all jobs in a way that one can prove that hard dead-
lines will always be met, soft deadlines will be met
within a tolerance by some measure, and all tasks
are able to make some progress at some known rate.
To succeed, the theory must make some assumptions
about the underlying computer platform and about
the workload, i.e. the times at which jobs may arrive
and how long it takes to execute them.

The best-behaved and best understood task
model is a periodic task, whose jobs have a known
worst-case execution time (WCET) and a known
fixed separation between every pair of consecutive
jobs, called the period. A periodic task also has an
associated deadline, the point in time, relative to the
arrival of a job, by which the job must complete exe-
cution. These workload parameters, along with oth-
ers, can be used to determine whether all jobs can
meet their timing constraints if executed according
to certain scheduling algorithms, including strict pre-
emptive fixed-task priority scheduling.

A key concept in the analysis of preemptive
scheduling is interference. The nominal WCET of a
job is based on the assumption that it is able to run
to completion (i.e., until the corresponding thread

2

suspends itself) without interference from jobs of
any other task. Showing that a job can complete
within a given time window in the presence of other
tasks amounts to bounding the amount of proces-
sor time the other tasks can “steal” from it over that
interval, and then showing that this worst-case inter-
ference leaves enough time for the job to complete.
The usual form of interference is preemption by a
higher priority task. However, lower priority tasks
can also cause interference, which is called priority
inversion or preemption delay. Preemption delays
may be caused by critical sections, imprecision in
the OS timer mechanism, or any other failure of the
kernel to adhere consistently to the preemptive fixed-
priority scheduling model.

A system that supports the UNIX real-time API
permits construction of threads that behave like a pe-
riodic task. The clock nanosleep() function is one of
several that provide a mechanism for suspending ex-
ecution between one period and the next. Using the
sched setscheduler() function the application can re-
quest the SCHED FIFO policy, and assign a priority.
By doing this for a collection of periodic tasks, and
choosing priorities sufficiently high to preempt all
other threads,1 one should be able to develop an ap-
plication that conforms closely enough to the model
of periodic tasks and fixed task-priority preemptive
scheduling to guarantee the actual tasks meet dead-
lines within some bounded tolerance.

Unfortunately, that is not enough. To support a
reasonable range of real-time applications one needs
to be able to handle a wider range of tasks. For ex-
ample, a task may request CPU time periodically but
the execution time requested may not be bounded,
or the arrival of work may not be periodic. If such a
task has high enough priority, the interference it can
cause for other tasks may be unpredictable or even
unbounded, causing other tasks to miss deadlines.

Aperiodic tasks typically have performance re-
quirements that are soft, meaning that if there is a
deadline it is stochastic, or occasional deadline misses
can be tolerated, or under temporary overload con-
ditions load shedding may be acceptable. So, while
the CPU time allocated to the service of aperiodic
tasks should be bounded to bound worst-case inter-
ference for other tasks, it should be provided in a way
that allows the aperiodic task to achieve fast average
response time under expected normal circumstances.

One example of an aperiodic task that requires
fast average response time can be found in the pa-
per by Lewandowski, et. al [3]. In this paper, a
real-time task uses the network in its time-critical

path to gather information. While it is desirable
to receive all network packets, missing a few pack-
ets is not necessarily catastrophic. The difficulty lies
in that the network receive path is shared by other
tasks on the system, some with different deadlines
and others with no explicit deadlines.

Assuming a fixed-task-priority model, a prior-
ity must be chosen for the bottom level of network
packet service. Processing the packets at a low or
background priority does not work well because pro-
cessing the packets may be delayed arbitrarily. Ex-
tended delay in network packet processing means
that a real-time task waiting for the packets may miss
an unacceptably large number of packets. Another
option is to schedule the network packet processing
at a high priority. However, the network packet pro-
cessing now can take an unbounded amount of CPU
time, potentially starving other tasks on the system
and thereby causing missed deadlines. Therefore, a
scheduling scheme is needed that provides some high-
priority time to serve the aperiodic jobs; however, the
high-priority time should be limited, preventing the
packet processing from monopolizing the CPU. The
bound on CPU time ensures other tasks have access
to the CPU in a timely manner.

The key to extending analysis techniques devel-
oped for periodic tasks to this broader class of work-
loads is to ration processor time. It must be pos-
sible to force even an uncooperative thread to be
scheduled in a way that the worst-case interference
it causes other tasks can be modeled by the worst-
case behavior of some periodic task. A number of
scheduling algorithms that accomplish this have been
studied, which we refer to collectively as aperiodic
servers.

Examples of well-known aperiodic server
scheduling algorithms for use in a fixed-task-priority
scheduling environment include the polling and de-
ferrable servers [18], and the sporadic server [2].
There are also several examples for use with dead-
line scheduling, among which the constant bandwidth
server has received considerable attention[17].

All these algorithms bound the amount of CPU
time an aperiodic task receives in any time interval,
which bounds the amount of interference it can cause
other tasks, guaranteeing the other tasks are left a
predictable minimum supply of CPU time. That is,
aperiodic servers actively enforce temporal isolation,
which is essential for an open real-time execution
platform.

The importance of aperiodic servers extends
beyond the scheduling of aperiodic tasks. Even

1Of course, careful attention must be given to other details, such as handling critical sections.

3

the scheduling of periodic tasks may benefit from
the temporal-isolation property.2 Aperiodic server
scheduling algorithms have been the basis for a
rather extensive body of work on open real-time sys-
tems, appearing sometimes under the names virtual
processor, hierarchical, or compositional scheduling.
For example, see [4, 9, 10, 11, 12, 13, 14].

In this paper, we limit attention to a fixed-task-
priority scheduling environment, with particular at-
tention to sporadic-server scheduling. The primary
reason is that Linux for the most part adheres to the
UNIX standard and therefore supports fixed-task-
priority scheduling. Among the well-known fixed-
task-priority aperiodic-server scheduling algorithms,
sporadic-server scheduling is theoretically the best.
It also happens to be the only form of aperiodic-
server scheduling that is recognized in the UNIX
standard.

A polling server is one way of scheduling aperi-
odic workloads. The polling server is a natural ex-
tension to the execution pattern of a periodic task.
Using a polling server, queued jobs are provided CPU
time based on the polling server’s budget, which is
replenished periodically. If no work is available when
the polling server is given its periodic allocation of
CPU time, the server immediately loses its budget.
Similarly, if the budget is partially used, and no jobs
are queued, the polling server gives up the remainder
of the budget.3

FIGURE 1: Example usage and replenish-
ment of sporadic server’s budget.

A sporadic server is a thread that is scheduled
according to one of the variants of the original spo-
radic server algorithm introduced by Sprunt, Sha,
and Lehoczky [2]. While many variants exist, the
basic idea is the same. A sporadic server has a
budget, replenishment period, and scheduling prior-
ity. When the sporadic server uses the CPU, the
amount of time used is deducted from its budget.

The amount of CPU time consumed is restored to
the budget one replenishment period in the future,
starting from the instant when the sporadic server
requested CPU time and had budget. The operation
to restore the budget at a given time in the future,
based on the amount of time consumed, is known as
a replenishment. Once the server uses all of its bud-
get, it can no longer compete for CPU time at its
scheduling priority.4

The objective of the sporadic-server scheduling
algorithm is to limit worst-case system behavior
such that the server’s operation can be modeled, for
schedulability analysis of other tasks, as if it were
a periodic task. That is, in any given sliding time
window, the sporadic server will not demand more
CPU time than could be demanded by a periodic
task with the same period and budget. A secondary
goal of the sporadic server is to provide fast average
response time for its jobs.

With regard to minimizing average response
time, a sporadic server generally outperforms a
polling server. The advantage with a sporadic server
is that jobs can often be served immediately upon
arrival, whereas with a polling server jobs will gener-
ally have to wait until the next period to receive CPU
time. Imagine a job arrival that happens immedi-
ately after the polling server’s period. The job must
wait until the following period to begin service, since
the polling server immediately forfeits its budget if
there are no jobs available to execute. A sporadic
server, on the other hand, can execute the job imme-
diately given that its budget can be retained when
the server’s queue is empty. The ability to retain
budget allows the server to execute more than once
during its period, serving multiple jobs as they ar-
rive. Aperiodic servers that can hold on to their bud-
get until needed are known as bandwidth-preserving
servers.

3 Implementation

Several variants of the original sporadic-server al-
gorithm have been proposed, including the POSIX
SCHED SPORADIC [7], and more recently two vari-
ants that correct defects in the POSIX version [5, 8].
Differences include how they handle implementation
constraints such as limited space to store replen-
ishment operations, overruns, and preemption costs.

2Even nominally periodic tasks may be subject to faults that cause them to over-run their predicted WCET.
3A polling server cannot be implemented as a SCHED FIFO periodic task, because there is no enforcement of the processor

time budget.
4This does not describe the original Sporadic Server algorithm completely, nor does it address a subtle defect in the origi-

nal algorithm which was corrected in subsequent work. Further, there are many sporadic-server variants, each with their own
nuances. These details are omitted to simplify the discussion.

4

The scheduling algorithm followed by our implemen-
tation is described in [15], which is an updated ver-
sion of [5] including corrections for errors in the
pseudo-code that were identified by Danish et al. in
[4].

Correct operation of a sporadic server results in
bounded interference experienced by lower-priority
tasks. In order to measure the interference, we used
Regehr’s “hourglass” technique [6], which creates an
application-level process that monitors its own exe-
cution time without requiring special operating sys-
tem support. The hourglass process infers the times
of its transitions between executing and not execut-
ing by reading the clock in a tight loop. If the time
between two successive clock values is small, the as-
sumption is that the process was not preempted.
However, if the difference is large, the thread was
likely preempted. This technique can be used to find
preemption points and thereby determine the time
intervals when the hourglass process executed. From
this information, the hourglass process can calculate
its total execution time.

Using the hourglass approach, we were able to
evaluate whether an implemented sporadic server ac-
tually provides temporal isolation. That is, if we
schedule the hourglass task with a priority below
that of the sporadic server (assuming there are no
other higher-priority tasks in the system), the hour-
glass task should be able to consume all of the CPU
time that remains after the sporadic server used all
of its budgeted high-priority time. The CPU time
available to the hourglass task should, ideally, be one
hundred percent minus the percentage budgeted for
the sporadic server, viewed over a large enough time
window. Therefore, if we schedule a sporadic server
with a budget of 1 millisecond and a period of 10
milliseconds, and there are no other tasks with pri-
ority above the sporadic server and hourglass tasks,
the hourglass task should be able to consume at least
90% of the CPU time, i.e., 9 milliseconds in any win-
dow of size 10 milliseconds. In reality, other activities
such as interrupt handlers may cause the interfer-
ence experienced by the hourglass task to be slightly
higher.

To evaluate the response time characteristics of
our sporadic server, we measured the response time
of datagram packets sent across a network. The re-
sponse time of a packet is measured by the time dif-
ference between sending the packet on one machine,
m1, and receiving the packet by another, m2. More
specifically, the data portion of each packet sent from

m1 contains a timestamp, which is then subtracted
from the time the packet is received by the UDP layer
on m2.

5 In our setup, m1 periodically sends packets
to m2. The time between sending packets is varied
in order to increase the load experienced by the net-
work receive thread onm2. The receive thread onm2

is scheduled using either the polling server, sporadic
server, or SCHED FIFO [7] scheduling policies.6 In
our experiments, m2 is running Linux 2.6.38 with
a ported version of softirq threading found in the
2.6.33 Linux real-time patch. m2 has a Pentium D
830 processor running at 3GHz with a 2x16KB L1
cache and a 2x1MB L2 cache. 2GB of RAM are in-
stalled. The kernel was configured to use only one
core, so all data gathered is basically equivalent to a
uniprocessor system.

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20 22

re
sp

on
se

 ti
m

e
(m

ill
is

ec
on

ds
)

sent packets (1000 pkts/sec)

SCHED_FIFO
sporadic server

polling server

FIGURE 2: Response time using different
scheduling policies.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16 18 20 22

C
P

U
 u

til
iz

at
io

n

sent packets (1000 pkts/sec)

10% utilization
SCHED_FIFO

sporadic server
polling server

FIGURE 3: sirq-net-rx thread CPU utiliza-
tion using different scheduling policies.

5The clocks for the timestamps on m1 and m2 are specially synchronized using a dedicated serial connection.
6SCHED FIFO differs from the other in allowing thread of sufficiently high priority to execute arbitrarily long without

preemption.

5

Scheduling the Linux network receive thread
(i.e., sirq-net-rx) using various scheduling policies af-
fects the average response time of received network
packets. One would expect that the polling server
would result in higher average response times than
SCHED FIFO or sporadic server and that sporadic
server and SCHED FIFO should provide similar av-
erage response times until sporadic server runs out
of budget.

In our experiment, sporadic server and polling
server are both given a budget of 1 millisecond
and a period equal to 10 milliseconds. The spo-
radic server’s maximum number of replenishments
is set to 100. The hourglass task is scheduled us-
ing SCHED FIFO scheduling at a real-time priority
lower than the priority of the network receive thread.
Each data point is averaged over a 10 second interval
of sending packets at varied rates. The CPU utiliza-
tion and response time for the described experiment
are shown in Figures 2 and 3.

One would expect that if the sporadic server
and polling server both were budgeted 10% of the
CPU, the lower-priority hourglass task should be
able to consume at least 90% of the CPU time re-
gardless of the load. However, the data for the exper-
iment shows that the sporadic server is causing much
greater than 10% interference. The additional inter-
ference is the consequence of preemptions caused by
the server. Each time a packet arrives the sporadic
server preempts the hourglass task, thereby causing
two context switches for each packet arrival. Given
that the processing time for a packet is small (2-10
microseconds) the server will suspend itself before
the next packet arrives. In this situation, the aggre-
gate time for context switching and other sporadic
server overhead such as using additional timer events
and running the sporadic-sever-related accounting
becomes significant. For instance, on the receiv-
ing machine the context-switch time alone was mea-
sured at 5-6 microseconds using the lat ctx LMbench
program[1].

The overhead associated with preemption causes
the additional interference that is measured by the
lower-priority hourglass task.7

A snapshot of CPU execution time over a 500

microsecond time interval was produced using the
Linux Trace Toolkit(LTTng)[16] and is shown in Fig-
ure 4. The top bar is the sirq-net-rx thread and the
bottom bar is the lower-priority hourglass measur-
ing task. This figure shows that the CPU time of
both tasks is being finely sliced. The small time
slices cause interference for both the lower-priority
and sporadic server thread that would not be expe-
rienced if the threads were able to run to completion.

3.1 Accounting for Preemption Over-

head

To ensure that no hard deadlines are missed, and
even to ensure that soft deadlines are met within the
desired tolerances, CPU time interference due to pre-
emptions must be included in the system’s schedula-
bility analysis. The preemption interference caused
by a periodic task can be included in the analysis
by adding a preemption term to the task’s worst-
case execution time (WCET) that is equal to twice
the worst-case context-switch cost (CStime) – one
for switching into the task and one for switching out
of the task.8 Assuming all tasks on the system are
periodic, this is at least a coarse way of including
context-switch time in the schedulability analysis.

A sporadic server can cause many more context
switches than a periodic task with the same param-
eters. Rather than always running to completion, a
sporadic server has the ability to self-suspend its ex-
ecution. Therefore, to obtain a safe WCET bound
for analysis of interference9, one would have to deter-
mine the maximum number of contiguous “chunks”
of CPU time the sporadic server could request within
any given period-sized time interval. The defini-
tion of sporadic- server scheduling given in schedul-
ing theory publications does not place any such re-
striction on the number of CPU demand chunks and
thus imposes no real bound on the WCET . In order
to bound the number of preemptions, and thereby
bound the time spent context switching, most imple-
mented variations of sporadic server limit the maxi-
mum number of pending replenishments, denoted by
max repl. Once max repl replenishments are pend-
ing, a sporadic server will be prevented from exe-
cuting until one of the future replenishments arrives.

7The lower-priority thread does not measure much of the cache eviction and reloading that other applications may experience,
because its code is very small and typically remains in the CPU’s cache. When cache effects are taken into account, the potential
interference penalty for each preemption by a server is even larger.

8This is an intentional simplification. The preemption term should include all interferences caused by the sporadic server
preempting another thread, not only the direct context-switch time, but also interferences such as the worst-case penalty im-
posed by cache eviction and reloading following the switch. For checking the deadline of a task, both “to” and “from” context
switches need to be included for potentially preempting task, but only the “to” switch needs be included for the task itself.

9From this point on we abuse the term WCET to stand for the maximum interference that a task can cause for lower-priority
tasks, which includes not just the maximum time that the task itself can execute, but also indirect costs, such as preemption
overheads.

6

FIGURE 4: LTTng visualization of CPU execution.

Using max repl, the maximum number of context-
switches per period of a sporadic server is two times
the max repl. Using this logic, and assuming that
the actual context-switch costs are added on top of
the servers budget, a worst-case upper bound on the
interference that can be caused by a sporadic server
task could be written as:

SSbudget + (2 ∗max repl ∗ CStime)

Accounting for the cost due to preemptions is
important in order to ensure system schedulabil-
ity; however, adding preemption cost on top of the
server’s budget as above results in over-provisioning.
That is, if a sporadic server does not use max repl

number of replenishments in a given period a worst-
case interference bound derived in this way is an
over-estimate. At the extreme, when a sporadic
server consumes CPU time equal to its budget in
one continuous chunk, the interference only includes
the cost for two context switches rather than two
times max repl. However, the server cannot make
use of this windfall to execute jobs in its queue be-
cause the context switch cost was not added to its
actual budget.

We believe a better approach is to account for
actual context-switch costs while the server is exe-
cuting, charging context switch costs caused by the
server against its actual budget, and doing so only
when it actually preempts another task. In this ap-
proach the SSbudget alone is used as the interfer-
ence bound for lower-priority tasks. Accounting for
context-switching overhead is performed on-line by
deducting an estimate of the preemption cost from
the server’s budget whenever the server causes a
preemption. Charging the sporadic server for pre-
emption overhead on-line reduces over-provisioning,
and need not hurt server performance on the aver-
age, although it can reduce the effective worst-case
throughput of the server if the workload arrives as
many tiny jobs (as in our packet service experiment).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16 18 20 22

C
P

U
 u

til
iz

at
io

n

sent packets (1000 pkts/sec)

10% utilization
SCHED_FIFO

sporadic server
polling server

FIGURE 5: Accounting for context-
switching overhead.

Charging for preemptions on-line requires that
the preemption interference be known. Determining
an appropriate amount to charge the server for pre-
empting can be very difficult, as it depends on many
factors. In order to determine an amount to charge
sporadic server for a preemption, we ran the network
processing experiment under a very heavy load and
extracted an amount that consistently bounded the
interference of sporadic server to under 10%. While
such empirical estimation may not be the ideal way
to determine the preemption interference, it gave us
a reasonable value to verify that charging for pre-
emptions can bound the interference.

The network experiment was performed again,
this time charging sporadic server a toll of 10 mi-
croseconds each time it caused a preemption. Fig-
ure 5 shows the results for the experiment and
demonstrates that time interference for other lower-
priority tasks can be bounded to 10%, that is, the
server’s budget divided by the period.

7

3.2 Preemption Overhead

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20 22

re
sp

on
se

 ti
m

e
(m

ill
is

ec
on

ds
)

sent packets (1000 pkts/sec)

SCHED_FIFO
sporadic server

polling server

FIGURE 6: Accounting for context-
switching overhead.

Bounding the interference that an aperiodic
workload causes for other tasks is the primary ob-
jective of aperiodic server scheduling; however, one
would also like to see fast average response time. Fig-
ure 6 shows that under heavy load, the average re-
sponse time of packets when using sporadic-server
scheduling is actually worse than that of a polling
server with the same parameters. For this experi-
ment, not only is the sporadic server’s average re-
sponse time higher, but as the load increases up to
45% of the packets were dropped.10

The poor performance of the sporadic server is
due to a significant portion of its budget being con-
sumed to account for preemption costs, leaving a
smaller budget to process packets. If all of the pack-
ets arrived at the same time, the processing would
be batched and context switching would not occur
nearly as often. However, due to the spacing be-
tween packet arrivals, a large number of preemptions
occur. A polling server on the other hand has a
much larger portion of its budget applied to process-
ing packets, and therefore does not drop packets and
also decreases the average response time.

Based on the poor performance of a sporadic
server on such workloads one might näıvely jump to
the conclusion that, in general, a polling server is a
much better choice. Actually, there is a trade-off,
in which each form of scheduling has its advantage.
Given the same budget and period, a sporadic server
will provide much better average-case response time
under light load, or even under a moderate load of
large jobs, but can perform worse than the polling
server for certain kinds of heavy or bursty workloads.

It turns out that the workload presented by our
packet service example is a bad one for the sporadic
server, in that a burst of packet arrivals can frag-
ment the server budget, and then this fragmenta-
tion becomes “locked in” until the backlog is worked
off. Suppose a burst of packets arrives, and the first
max repl packets are separated by just enough time
for the server to preempt the running task, forward
the packet to the protocol stack, and resume the
preempted task. The server’s budget is fragmented
into max repl tiny chunks. Subsequent packets are
buffered (or missed, if the device’s buffer overflows),
until the server’s period passes and the replenish-
ments are added back to its budget. Since there is
by now a large backlog of work, the server uses up
each of its replenishment chunks as it comes due,
then suspends itself until the next chunk comes due.
This results in a repetition of the same pattern until
the backlog caused by the burst of packets has been
worked off. During this overload period, the spo-
radic server is wasting a large fraction of its budget
in preemption overhead, reducing its effective band-
width below that of a polling server with the same
budget and period. There is no corresponding im-
provement in average response time, since after the
initial max repl fragmentation, the reduced band-
width will cause the response times to get worse and
worse.

3.3 Reducing the Impact of Preemp-

tion Overhead

A hybrid server combining the strengths of polling
and sporadic servers may be a better alternative than
choosing either one. In this approach, a sporadic
server is used to serve light loads and a polling server
to serve heavy loads.

Sporadic-server scheduling supports a polling-
like mode of operation. When the max repl param-
eter value is one, only one preemption is permitted
per period. Switching to the polling-like mode of
operation is just a matter of adjusting max repl to
1.

When changing modes of operation of the spo-
radic server in the direction of reducing max repl,
something must be done if the current number
of pending replenishments would exceed max repl.
One approach is to allow the number of pending re-
plenishments to exceedmax repl temporarily, reduc-
ing it by one each time a replenishment comes due.
Another approach is to implement the reduction at
once, by coalescing pending replenishments. This is

10No packets were dropped by the other servers.

8

similar to the classical mode-change scheduling prob-
lem, in that one must be careful not to violate the
assumptions of the schedulability analysis during the
transition. In the case of a sporadic server the con-
straint is that the server cannot cause any more in-
terference within any time window than would be
caused by a periodic task with execution time equal
the server budget and period equal to the server’s
budget replenishment period, including whatever ad-
justments have been made to the model to allow for
context-switch effects. We call this the sliding win-
dow constraint for short.

FIGURE 7: Sporadic server with
max repl ≥ 4, before switch to polling-
like server.

FIGURE 8: After switch to poll-like server,
with max repl = 1 and replenishments coa-
lesced.

In order to maintain the sliding-window con-
straint during the mode change, one can think in
terms of changing the times associated with pend-
ing replenishments. Consolidating the replenishment
times would allow the creation of a single replen-
ishment with an amount equal to the server’s ini-
tial budget. To guard against violating the sliding-
window constraint, the replenishment time of any re-
plenishment must not be moved earlier in time. One
approach is to coalesce all replenishments into the
replenishment with a time furthest in the future, re-
sulting into a single replenishment with an amount
equal to the server’s initial budget as shown in Fig-
ures 7 and 8.

Switching from sporadic server to a polling-like
server should be performed if the server is experi-
encing heavy load. The ideal switching point may
be difficult to detect. For instance, a short burst

may be incorrectly identified as the onset of a heavy
load and the early switching may cause the server
to postpone a portion of its budget that could have
been used sooner. Conversely, delaying the switch
may mean that time that could have been used to
serve incoming jobs is wasted on preemption charges.

While an ideal switching point may not be pos-
sible to detect beforehand, one reasonable indicator
of a heavy load is when sporadic server uses all of its
budget. That is the point when a sporadic server is
blocked from competing for CPU time at its schedul-
ing priority. At this point the server could switch to
its polling-like mode of operation.

A possible event to indicate when to switch back
to the sporadic server mode of operation is when a
sporadic server blocks but still has available budget.
This point in time would be considered as entering a
period of light load and the max repl could be rein-
stated.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16 18 20 22

C
P

U
 u

til
iz

at
io

n

sent packets (1000 pkts/sec)

10% utilization
SCHED_FIFO

sporadic server coalesce (immediate)
polling server

sporadic server coalesce (gradual)
sporadic server (max_repl = 1)

FIGURE 9: Coalescing replenishments un-
der heavy load.

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20 22

re
sp

on
se

 ti
m

e
(m

ill
is

ec
on

ds
)

sent packets (1000 pkts/sec)

SCHED_FIFO
sporadic server coalesce (immediate)

polling server
sporadic server coalesce (gradual)

sporadic server (max_repl = 1)

FIGURE 10: Coalescing replenishments
under heavy load.

9

Implementation of the switching mechanism de-
scribed above is relatively simple. The replenish-
ments are coalesced into one when the server runs
out of budget but still has work. The single replen-
ishment limit will remain enforced until the sporadic
server is suspended and has budget, a point in time
considered to be an indication of light load. So, the
polling-like mode of operation will naturally tran-
sition back to the original sporadic server mode of
operation.

Immediately coalescing all replenishments may
be too eager. Loads that are between light and heavy
may experience occasional or slight overloads that re-
quire only slightly more CPU time. In this case, con-
verting all potential preemption charges, by delaying
replenishments, into CPU time to serve packets is
too extreme. Therefore, to perform better under a
range of loads one approach is to coalesce only two re-
plenishments for each overload detection. Using this
method allows the sporadic server to naturally find
an intermediate number of replenishments to serve
packets efficiently without wasting large portions of
its budget on preemption charges.

The performance data for the two coalescing
methods, immediate and gradual, are shown in Fig-
ures 9 and 10. These figures show the advantage
of transitioning between sporadic-server and polling-
like mode of operation. Under light load until ap-
proximately 4500 pkts/sec, the sporadic server has
the same response time as SCHED FIFO scheduling.
However, once the load is heavy enough the sporadic
server is forced to limit the amount of CPU demand
and therefore the response time begins to increase to
that of a polling server. There is not enough CPU
budget to maintain the low average response time
with SCHED FIFO scheduling. The difference be-
tween the immediate and gradual coalescing is seen
when the restriction on CPU demand begins. The
gradual coalescing provides a gradual transition to
polling-like behavior where as the immediate coalesc-
ing has a much faster transition to the polling server’s
response time performance. The better performance
of the gradual coalescing is due to the server making
better use of the available budget. With immediate
coalescing, when the server transitions to the polling-
like mode the CPU utilization drops, as one would
expect of sporadic server where the max repl is set
to 1. However, with gradual coalescing the server
continues to use its available budget to pay for pre-
emption costs and serve some jobs earlier, which re-
sults in lower response times.

4 Conclusion

Any open real-time operating system needs to pro-
vide some form of aperiodic-server scheduling policy,
in order to permit temporal isolation of tasks, and to
provide a real-time virtual processor abstraction that
can support fault-tolerant compositional schedulabil-
ity analysis. The only standard Unix scheduling pol-
icy with these properties is Sporadic Server. 11

We have described our experiences implementing
and using a variation of the Sporadic Server schedul-
ing algorithm in Linux. Our experience demon-
strates that sporadic server scheduling can be an ef-
fective way to provide a predictable quality of ser-
vice for aperiodic jobs while bounding the interfer-
ence that the server thread can cause other tasks,
thereby supporting schedulability analysis. However,
this goal cannot be achieved without consideration of
some subtle implementation issues that are not ad-
dressed in the theoretical formulations of sporadic
server that have been published.

Neither the published theoretical versions of Spo-
radic Server nor the POSIX/Unix formulation con-
sider all the interference effects we found on a real
implementation. In particular, fine grained time slic-
ing degrades the performance of the sporadic server
thread and can cause interference for other threads
on the system to significantly exceed the assumptions
of the theoretical model. This interference is mainly
due to a sporadic server being able to use CPU time
in arbitrarily small time slices. Such fine time slic-
ing not only increases the interference that the server
inflicts on tasks that it preempts, but also degrades
the throughput of the server itself. Through network
service experiments we showed that the interference
caused by a sporadic server can be significant enough
to cause other real-time threads to miss their dead-
lines.

Charging a sporadic server for preemptions is an
effective means to limit the CPU interference. The
charging for preemptions can be carried out in sev-
eral ways. We chose an on-line approach where the
server is charged when it preempts another thread.
Charging the server only when it actually preempts
not only bounds the CPU time for other tasks, but
allows the server to use its budget more effectively.
That is, rather than accounting for the additional
interference by inflating the nominal server budget
(over the implemented server budget) in the schedu-
lability analysis, we charge the server at run time
for the actual number of preemptions it causes. In

11While a literal implementation of the abstract description of SCHED SPORADIC in the Unix standard is not practical and
would not support schedulability analysis, we feel that the corrections described in this paper and [15] fall within the range of
discretion over details that should be permitted to an implementor.

10

this way the server’s actual interference is limited
to its actual CPU time budget, and we do not need
to use an inflated value in the schedulability analy-
sis. Since the preemption charges come out of the
server’s budget, we still need to consider preemp-
tion costs when we estimate the worst-case response
time of the server itself. However, if we choose to
over-provision the server for worst-case (finely frag-
mented) arrival patterns it actually gets the time and
can use it to improve performance when work arrives
in larger chunks.

The ability to use small time slices allows a spo-
radic server to achieve low average response times
under light loads. However, under a load of many
small jobs, a sporadic server can fragment its CPU
time and waste a large fraction of its budget on pre-
emption charges. A polling server, on the other hand,
does not experience this fragmentation effect, but
does not perform as well as sporadic server under
light load. To combine the strengths of both servers,
we described a mechanism to transition a sporadic
server into a polling-like mode, thereby allowing spo-
radic server to serve light loads with good response
time and serve heavy loads with throughput simi-
lar to a polling server. The data for our experiments
show that the hybrid approach performs well on both
light and heavy loads.

Our recent experiences reinforce what we learned
in prior work with sporadic-server scheduling in
Linux [5]. There are devils in the details when it
comes to reducing a clever-looking theoretical algo-
rithm to a practical implementation. To produce a
final implementation that actually supports schedu-
lability analysis, one must experiment with a real im-
plementation, reflect on any mismatches between the
theoretical model and reality, and then make further
refinements to the implemented scheduling algorithm
until there is a match that preserves the analysis.
This sort of interplay between theory and practice
pays off in improved performance and timing pre-
dictability.

We also believe our experience suggests a poten-
tial improvement to the “NAPI” strategy employed
in Linux network device drivers for avoiding unnec-
essary packet-arrival interrupts. NAPI leaves the in-
terrupt disabled so long as packets are being served,
re-enabling it only when the network input buffer
is empty. This can be beneficial if the network de-
vice is faster than the CPU, but in the ongoing race
between processors and network devices the speed
advantage shifts one way and another. For our ex-
perimental set-up, the processor was sufficiently fast
that it was able to handle the interrupt and the sirq-
net-rx processing for each packet before the next ar-

rived, but the preemption overhead for doing this
was still a problem. By waiting for several pack-
ets to arrive, and then processing them in a batch,
the polling server and our hybrid server were able
to handle the same workload with much less over-
head. However, the logical next step is to force a
similar waiting interval on the interrupt handler for
the network device.

While we have not experimented with deadline-
based aperiodic servers in Linux, it appears that
our observations regarding the problem of fitting the
handling of context switch overheads to an analyz-
able theoretical model should also apply to the con-
stant bandwidth server, and that a similar hybrid
approach is likely to pay off there.

In future work, we hope to explore additional
variations on our approach to achieving a hybrid be-
tween polling and sporadic server, to see if we can
improve performance under a range of variable work-
loads. We are considering several different mecha-
nisms, including stochastic, for detecting when we
should change modes of operation as the system
moves between intervals of lighter and heavier load.
We also plan to explore other aperiodic servers and
determine how much interference preemptions cause.
For example, it appears that a constant bandwidth
server would suffer the same performance problems
as a sporadic server when the workload causes bud-
get fragmentation. We also plan to investigate the
preemption interference due to cache eviction and
reloading. The threads used in our experiments ac-
cess relatively small amounts of data and therefore do
not experience very large cache interferences. This
is not true for all applications, and the cache effects
on such applications will need to be bounded. While
limiting the number of replenishments does reduce
the cache effect, better mechanisms are needed to
reduce the ability of sporadic server to cause cache
interferences.

Other questions we are considering include
whether it is practically feasible to schedule multiple
threads using a single sporadic-server budget, and
how well sporadic-server scheduling performs on a
multi-core system with thread migration.

References

[1] L. McVoy and C. Staelin. lmbench: Portable
tools for performance analysis. In USENIX An-
nual Technical Conference, pages 279–294, Jan.
1996.

[2] B. Sprunt, L. Sha, and L. Lehoczky. Aperiodic

11

task scheduling for hard real-time systems. Real-
Time Systems, 1(1):27–60, 1989.

[3] M. Lewandowski, M. J. Stanovich, T. P. Baker,
K. Gopalan, and A.-I. Wang. Modeling device
driver effects in real-time schedulability analy-
sis: Study of a network driver. In Real Time and
Embedded Technology and Applications Sympo-
sium, 2007. RTAS ’07. 13th IEEE, pages 57–68,
Apr. 2007.

[4] M. Danish, Y. Li, and R. West. Virtual-cpu
scheduling in the quest operating system. Real-
Time and Embedded Technology and Applica-
tions Symposium, IEEE, 0:169–179, 2011.

[5] M. J. Stanovich, T. P. Baker, A. A.-I. Wang, and
M. G. Harbour. Defects of the POSIX sporadic
server and how to correct them. In Proc. of the
16th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium, pages 35–45,
Stockholm, Sweden, Apr. 2010.

[6] J. Regehr. Inferring scheduling behavior with
Hourglass. In Proc. of the USENIX Annual
Technical Conf. FREENIX Track, pages 143–
156, Monterey, CA, June 2002.

[7] IEEE Portable Application Standards Commit-
tee (PASC). Standard for Information Tech-
nology - Portable Operating System Interface
(POSIX) Base Specifations, Issue 7. IEEE, Dec.
2008.

[8] D. Faggioli, M. Bertogna, and F. Checconi. Spo-
radic server revisited. In Proceedings of the 2010
ACM Symposium on Applied Computing, SAC
’10, pages 340–345, Sierre, Switzerland, 2010.
ACM.

[9] R. J. Bril and P. J. L. Cuijpers. Analysis of
hierarchical fixed-priority pre-emptive schedul-
ing revisited. Technical Report CSR-06-36,
Technical University of Eindhoven, Eindhoven,
Netherlands, 2006.

[10] R. I. Davis and A. Burns. Hierarchical fixed pri-
ority preemptive scheduling. In Proc. 26th IEEE

Real-Time Systems Symposium, pages 376–385,
2005.

[11] G. Lipari and E. Bini. Resource partitioning
among real-time applications. In Proc. 15th
EuroMicro Conf. on Real-Time Systems, pages
151–158, July 2003.

[12] S. Saewong, R. R. Rajkumar, J. P. Lehoczky,
and M. H. Klein. Analysis of hierarchical fixed-
priority scheduling. In ECRTS ’02: Proceed-
ings of the 14th Euromicro Conf. on Real-Time
Systems, pages 152–160, Vienna, Austria, June
2002.

[13] I. Shin and I. Lee. Compositional real-
time scheduling framework with periodic model.
ACM Trans. Embed. Comput. Syst., 7(3):1–39,
2008.

[14] Y. C. Wang and K. J. Lin. The implementa-
tion of hierarchical schedulers in the RED-Linux
scheduling framework. In Proc. 12th EuroMicro
Conf. on Real-Time Systems, pages 231–238,
June 2000.

[15] M. J. Stanovich, T. P. Baker, A. A.-I. Wang,
and M. G. Harbour. Defects of the POSIX spo-
radic server and how to correct them. Technical
Report TR-091026 (revised), Florida State Uni-
versity Department of Computer Science, Oct.
2009.

[16] Linux Trace Toolkit Next Generation,
http://lttng.org/

[17] L. Abeni, G. Lipari, and G. Buttazzo. Constant
bandwidth vs. proportional share resource allo-
cation. In Proc. IEEE Int. Conf. Multimedia
Computing and Systems, Florence, Italy, June
1999.

[18] J. Strosnider, J. P. Lehoczky, and L. Sha.
The deferrable server algorithm for enhanced
aperiodic responsiveness in real-time environ-
ments. IEEE Trans. Computers, 44(1):73–91,
Jan. 1995.

12

