
Defects of the POSIX Sporadic Server and How to Correct Them

Mark Stanovich
Theodore P. Baker

An-I Wang
Florida State University, USA

Michael González Harbour
Universidad de Cantabria, Spain

Abstract

The specification of the sporadic server real-time
scheduling policy in the IEEE POSIX standard is defective,
and needs to be corrected. Via experiments using a POSIX
sporadic server implementation under Linux, as well as
simulations, we have shown and confirmed previously un-
reported defects. We propose and demonstrate a corrected
sporadic server formulation that eliminates these defects
without changes to the syntax of the API or any significant
increase in implementation complexity.

1 Introduction

During the late 1980’s and early 1990’s, a major initia-
tive was undertaken to disseminate then-recent technolog-
ical developments in real-time systems through program-
ming language and operating system standards. One suc-
cess of this effort was the inclusion of support for pre-
emptive fixed-task-priority scheduling policies in the IEEE
POSIX standard application program interface (API) for op-
erating system services. That standard has since been rolled
into the Unix standard of the Open Group[10] and is imple-
mented by Linux and many other operating systems. How-
ever, as advances have continued to be made in the under-
standing of real-time scheduling, very little has been done
to update the POSIX standard.

In this paper, we make a case for the need to correct the
SCHED SPORADIC scheduling policy specification in the
existing POSIX real-time scheduling standard. We show that
the current specification has several critical technical flaws,
argue for the importance of correcting these flaws, and pro-
vide specific suggestions for how they may be corrected.

The SCHED SPORADIC policy is important because it is
the only scheduling policy supported by the POSIX standard
that enforces an upper bound on the amount of high-priority

execution time that a thread can consume within a given
time interval. As such, it is the only standard scheduling
policy that is potentially suitable for compositional schedu-
lability analysis of an “open” real-time system in the sense
of [6], and the only one that is suitable as the basis for a vir-
tual computing resource abstraction for compositional anal-
ysis of a hierarchical scheduling scheme such as those stud-
ied in [19, 16, 13, 5, 2, 17].

The SCHED SPORADIC policy is a variation on the spo-
radic server scheduling concept, originally introduced by
Sprunt, Sha, and Lehoczky [18]. Conceptually, a sporadic
server has execution time budget, which it consumes while
it executes at a given server priority, and which is replen-
ished according to a rule that approximates the processor
usage of a conceptual set of sporadic tasks with a given
period. The intent is that the worst-case behaviors of the
server – both the minimum level of service it provides and
the maximum amount of processor time it consumes – can
be modeled by an equivalent periodic task, whose worst-
case execution time is equal to the server budget and whose
period is equal to the server period. We call this property
the periodic task analogy.

This alleged equivalence of a sporadic server to a peri-
odic task is often cited in the literature. For example, [5]
says that “Sprunt proved that in the worst-case the inter-
ference due to a Sporadic Server is equivalent to that of a
simple Periodic Server”, and [16] says “in the worst case,
a child reserve [implemented as a sporadic server] behaves
like a classical Liu and Layland periodic task”.

Unfortunately, the original formulation of the sporadic
server scheduling algorithm published in [18] – commonly
called the SpSL sporadic server – violates the above asser-
tions. A defect in the replenishment rules allows a thread to
consume more processor time than the allegedly-equivalent
periodic task. We do not know for certain who first dis-
covered this defect. One of us, cited as a source in [1], first
learned of it from Raj Rajkumar. It is also described in [15].

Several proposals for correcting this defect have been
published, including one in [1], several variations in [15],
and an adaptation for deadline scheduling in [9]. In par-
ticular, the formulation of the sporadic server scheduling
policy in the POSIX standard was widely believed to have
corrected this defect. For example, [1] says: “The POSIX
sporadic server algorithm (PSS) provides an effective and
safe solution that does not allow any budget overruns”.

Believing the POSIX sporadic server to be correct, we
proposed in prior work [12] that the device driver process-
ing of incoming and outgoing network traffic be executed
by a thread that is scheduled using the SCHED SPORADIC
policy. Our original experiments with a tick-based imple-
mentation of the scheduling policy suggested that the per-
formance would be improved by finer-grained management
of time. However, in follow-up experiments using finer-
grained time measurement, we were surprised to see that the
server’s actual processor utilization was significantly higher
than that of a periodic task with the same budget and period.
When we looked for the cause of this anomalous behavior,
we discovered two flaws in the POSIX specification, which
we believe need urgent attention.

To that end, this paper demonstrates the following facts:

1. The POSIX sporadic server algorithm’s replenishment
rules suffer from an effect that we call “premature re-
plenishment”. We provide an example in which this
defect allows a server to use an average of 38 percent
more execution time than the analogous periodic task.

2. The POSIX sporadic server algorithm also suffers from
an unreported defect, which we call “budget amplifi-
cation”. This defect allows a server to use arbitrarily
close to 100 percent of the processor time, regardless
of how small the server’s budget may be.

3. These defects can be corrected by modifications to
the POSIX sporadic server specification, which are de-
scribed in this paper.

In support of the above, we report experiences with an
implementation of the POSIX sporadic server in the Linux
kernel, which clearly demonstrate the budget amplifica-
tion effect on a task. We also report on simulations using
pseudo-random job arrivals that provide some insight into
the likelihood of encountering the effects of the above two
defects in practice.

We additionally propose a change to the POSIX sporadic
server specification to address a practical deficiency relat-
ing to the inability to lower the priority of a sporadic server
sufficiently when it is out of budget.

2 An Ideal Sporadic Server Model

The preemptive scheduling of periodic task systems is
well understood and has been studied extensively, starting

with the pioneering work of [14] and the recursive response-
time analysis technique of [11].

A periodic server is a mechanism for scheduling an ape-
riodic workload in a way that is compatible with schedu-
lability analysis techniques originally developed for peri-
odic task systems. Aperiodic requests (jobs) are placed in a
queue upon arrival. The server activates at times t1, t2, . . .
such that ti+1 − ti = Ts, where Ts is the nominal server
period, and executes at each activation for up to Cs, where
Cs is the server budget. If the server uses up its budget it is
preempted and its execution is suspended until the next pe-
riod. If the server is scheduled to activate at time t and finds
no queued work, it is deactivated until t + Ts. In this way
the aperiodic workload is executed in periodic bursts of ac-
tivity; i.e., its execution is indistinguishable from a periodic
task.

A primitive sporadic server is obtained from a periodic
server by replacing the periodic constraint ti+1 − ti = Ts

by the sporadic constraint ti+1 − ti ≥ Ts. That is, the pe-
riod is interpreted as just a lower bound on the separation
between activations. The sporadic constraint guarantees
that the worst-case preemption caused by a sporadic task
for other tasks is not greater than that caused by a periodic
task with the same worst-case execution time and period. In
other words, the processor demand function (and therefore
a worst-case residual supply function for other tasks) of the
server will be no worse than a periodic task with period Ts

and worst-case execution time Cs. That is, the periodic task
analogy holds.

A primitive sporadic server has an advantage over a pe-
riodic server in greater bandwidth preservation; that is, it
is able to preserve its execution time budget under some
conditions where a periodic server would not. If there are
no jobs queued for a sporadic server at the time a periodic
server would be activated, the sporadic server can defer ac-
tivation until a job arrives, enabling the job to be served
earlier than if it were forced to wait to be served until the
next period of the periodic server.

An ideal sporadic server is a generalization based on
a conceptual swarm of unit-capacity sporadic tasks, called
“unit servers” or just “units”, for short. The basis for this
generalization is the observation that the worst-case anal-
ysis techniques of [14] and [11] allow a set of periodic or
sporadic tasks with the identical periods to be treated as if
they were a single task, whose execution time is the sum
of the individual task execution times. That is, the worst-
case interference such a swarm of identical sporadic tasks
can cause for other tasks occurs when all the tasks are re-
leased together, as if they were one task. Although the
worst-case interference for lower-priority tasks caused by
such a swarm of sporadic servers remains the same as for a
single periodic server task, the average response time under
light workloads can be much better. Indeed, studies have

shown that sporadic servers are able to achieve response
times close to those of a dedicated processor under light
workloads, and response times similar to those of a proces-
sor of speed us = Cs/Ts under heavy loads.

Since the overhead of implementing a server as a swarm
of literal unit-capacity sporadic servers would be very high,
published formulations of sporadic server scheduling algo-
rithms attempt to account for processor capacity in larger
chunks of time, called replenishments. Each replenishment
R may be viewed as representing a cohort of R.amt unit
servers that are eligible to be activated at the same replen-
ishment time, R.time. For such a sporadic server formula-
tion to satisfy the periodic task analogy, the rules for com-
bining unit servers into replenishments must respect the
sporadic constraint.

Observation 1 If R represents a cohort of unit servers that
were activated together at some time t and executed during
a busy interval containing t 1, the sporadic constraint will
be satisfied so long as R.time ≥ t+ Ts.

Observation 2 The sporadic constraint is preserved if
R.time is advanced to any later time.

Observation 3 The sporadic task constraint is preserved
if a replenishment R1 is merged with a replenishment
of R2 to create a replenishment R3 with R3.amt =
R1.amt+R2.amt and R3.time = R1.time, provided that
R1.time+R1.amt ≥ R2.time.

Proof
Suppose cohorts corresponding to R1 and R2 are activated
at R1.time. Since unit servers are indistinguishable within
a cohort, we can assume that those of R1 execute first and
so cannot complete sooner than R1.time+R1.amt. Since
R1.time+R1.amt ≥ R2.time, by the time R1 completes
the replenishment time t2 will have been reached. So, none
of the unit servers in the combined R3 can activate earlier
than if R1 and R2 are kept separate. 2

3 The POSIX Sporadic Server

The POSIX sporadic server policy specified in [10] su-
perficially resembles the ideal model. A thread subject to
this policy has a native priority, specified by the parame-
ter sched priority, a budget Cs specified by the parameter
sched ss init budget, and a period Ts specified by the pa-
rameter sched ss repl period. The thread has a numerical
attribute, called the currently available execution capacity,
which abstracts a set of unit servers that are eligible for ac-
tivation at a given time (because their last activations are all

1A busy interval is a time interval during which the processor is contin-
ually busy executing the server and tasks that cannot be preempted by the
server.

at least Ts in the past), and a set of pending replenishments,
which abstract sets of unit servers that are not yet eligible
for activation (because the last activation is less than Ts).
If the POSIX specification were in agreement with the ideal
model, each replenishment R would correspond to a cohort
of units that executed within a busy interval of the server
and R.time would be earliest time consistent with Obser-
vation 1. However, the POSIX rules for handling replen-
ishments fail to enforce the sporadic constraint at the unit
server level, and so break the periodic task analogy.

In this section we compare the POSIX sporadic server
policy and its terminology to the ideal model described pre-
viously 2. These comparisons will be used to explain how
the resulting defects occur.

3.1 Budget Amplification

POSIX differs from the ideal model by limiting a server’s
execution “to at most its available execution capacity, plus
the resolution of the execution time clock used for this
scheduling policy”. Some such allowance for inexact ex-
ecution budget enforcement is essential in a practical im-
plementation. Typically budget enforcement latency can
vary from zero to the maximum of the timer latency and
the longest non-preemptable section of the system calls that
a server may perform. POSIX seems to err in stating that
when “the running thread ... reaches the limit imposed on
its execution time ... the execution time consumed is sub-
tracted from the available execution capacity (which be-
comes zero).” The specified one-tick enforcement delay
mentioned above allows the server budget to become neg-
ative by one tick, and in reality, larger overruns must be
expected. POSIX allows for this elsewhere by stating that
“when the running thread with assigned priority equal to
sched priority becomes a preempted thread ... and the exe-
cution time consumed is subtracted from the available exe-
cution capacity ... If the available execution capacity would
become negative by this operation ... it shall be set to zero”.
POSIX attempts to compensate for the downstream conse-
quences of forgiving such overruns by specifying that if as a
result of a replenishment “the execution capacity would be-
come larger than sched ss initial budget, it shall be rounded
down to a value equal to sched ss initial budget.” However,
this is an oversimplification, which cannot be translated into
the ideal model.

This oversimplification of the ideal model leads to the
defect we refer to as budget amplification. That is, the size
of a replenishment can grow as it is consumed and resched-
uled over time.

2We regret that the page limit prevents us from reproduc-
ing the full specification from the POSIX standard [10], but it
is available for free access at the website of The Open Group
(http://www.opengroup.org/bookstore/catalog/c082.htm).

When an overrun occurs, the POSIX specification states
that the available execution capacity should be set to zero
and that a replenishment should be scheduled for the
amount of the time used since the activation time. At this
point, the sporadic server has used more units than it had.
This increased amount is scheduled as a future replenish-
ment. This would not be a big problem as long as the spo-
radic server were charged for this amount of time. However,
setting the execution capacity to zero means that the over-
run amount is never charged, thereby increasing the total
capacity the server can demand within its period.

3 3 4
limit

budget

Ts Ts Ts

capacity
available

0 5 10 15 20 25 30 35 40 45 50 55

unblock

block

time

4

time

2
(replenishments)

Figure 1. Budget amplification anomaly.

While POSIX attempts to diminish such effects by round-
ing the currently available execution capacity down to the
initial budget, this effort is not sufficient. Consider the ex-
ample illustrated in Figure 1. Here the resolution for the
execution time clock is 1 time unit. At time 0, the server
executes for two time units and schedules a replenishment
of two time units at time 20. At time 10, the server again
begins execution, but at time 12 it has not completed exe-
cuting and therefore is scheduled to stop running at its high
priority. The server is able to execute an additional time unit
before actually being stopped, as permitted in the POSIX
specification. At time 13, a replenishment is scheduled at
time 30 for the amount of capacity consumed, which in this
case is 3, and the available execution capacity is set to zero.
Now, the sum of pending replenishments is greater than the
initial budget of 4, but within the leeway provided by the
specification. This sequence of receiving one time unit of
additional execution capacity repeats with the intervals of
server execution beginning at 20, 30, 40, and 50. By the
time the replenishment for the execution interval beginning
at 30 is scheduled, the sum of pending replenishments is 2
time units greater than the initial budget. If this scenario
continues each overrun will contribute an increase to the to-
tal execution time available to the sporadic server. As long
as each replenishment is below the maximum budget, this
amplification may continue. In this case, each replenish-
ment can grow to at most 5 time units (4 due to the initial
budget limit and 1 for the permitted clock resolution).

With this defect, by breaking the budget into small
enough fragments a server can achieve an execution capac-
ity arbitrarily close to 100%.

Task Ci Ti Di

τ1 10 200 20
τ2 20 50 50
τ3 49 200 100

Table 1. Periodic task set for premature re-
plenishment example.

3.2 Premature Replenishments

POSIX specifies that “a replenishment operation consists
of adding the corresponding replenish amount to the avail-
able execution capacity at the scheduled time”. This has
the effect of maintaining a single activation time for all cur-
rently available units. This is inconsistent with the ideal
model, because it fails to preserve the minimum replenish-
ment time (earliest next activation time) of a replenishment
(cohort of server units) if the server is in a busy period when
a replenishment arrives. A consequence is that a replen-
ishment can arrive earlier than its required minimum offset
from the previous arrival, resulting in what we refer to as a
premature replenishment.

Figure 2. Execution sequence showing a replenishment
that occurs prematurely.

The following example illustrates the premature replen-
ishment defect. Consider a scenario with three independent
periodic tasks, given a deadline-monotonic priority ordering
and parameters (worst-case execution time, period, relative
deadline) shown in Table 1. Response time analysis [11]
obtains a worst-case response time for task τ3 of 99 time
units:

R3 =
⌈

99
200

⌉
C1 +

⌈
99
50

⌉
C2 +C3 = 10+2 ·20+49 = 99

Suppose task τ2 is a sporadic server serving aperiodic
events. The sporadic server is given an execution capacity

C2 = 20, and a replenishment period T2 = 50. Under the
ideal sporadic server model the worst-case response time of
τ3 would be 99. However, in the execution sequence shown
in Figure 2, the response time of τ3 is 117 (and therefore
its deadline is missed). In this sequence, aperiodic events
arrive at times {0, 40, 90}, with respective execution-time
demands of {18, 20, 20}. Task τ3 is activated at t = 0,
while task τ1 is activated at t = 41. We can see that when
the second aperiodic event arrives at t = 40, the execution
capacity of the sporadic server is above zero (its value is 2),
so the activation time is recorded as 40, and the aperiodic
event starts to be processed. At time 41, τ1 preempts the
execution of the sporadic server. When the replenishment
of the first chunk of execution time occurs at t = 50, 18
is added to the available execution capacity (1 unit at that
time), and the activation time remains unchanged (because
the server is still active). This violates the ideal model, by
effectively merging a cohort of 18 units not permitted to ac-
tivate until time 50 with a cohort of two units that activated
at time 40. When the aperiodic event is fully processed,
a replenishment of 20 time units is scheduled to happen at
t = 90. This allows the service of three long aperiodic
events to preempt task τ3, instead of the two that would
happen in the ideal model.

3.3 Unreliable Temporal Isolation

In many real-time systems there is a need to provide tem-
poral isolation between tasks or between sub-systems. That
is, when one composes subsystems one wants a guarantee
that if a task in one subsystem fails to complete within its
allotted time budget it cannot cause a task in another subsys-
tem to miss a deadline. As mentioned in the Introduction,
sporadic server scheduling has been proposed in a num-
ber of papers on compositional and hierarchical scheduling
for “open” real-time systems, as a means of achieving such
temporal isolation.

The theoretical formulation of the sporadic server in [18]
provides temporal isolation by requiring that when a task
runs out of budget, it is not allowed to execute until its
budget is replenished. The POSIX formulation differs in al-
lowing a sporadic server to continue execution after it has
exhausted its budget, albeit at a lower (background) prior-
ity, specified by the parameter sched ss low priority. The
apparent intent behind this feature is to allow a server to
make use of otherwise-idle time. This feature is compati-
ble with the ideal model so long as sched ss low priority is
below the priority of every critical task. However, POSIX
also specifies that each scheduling policy has a range of
valid priorities, which is implementation defined. Further,
the statement that the SCHED SPORADIC policy “is iden-
tical to the SCHED FIFO policy with some additional con-
ditions” has been interpreted by some to mean that the
range of priorities for these two policies should be the

same. For example, in Linux the priorities for SCHED FIFO,
SCHED SPORADIC, and SCHED RR are identical, while pri-
orities for SCHED OTHER are strictly lower. This means
that a thread under any real-time policy can lock out all
SCHED OTHER threads, breaking temporal isolation.

This problem has been recognized. The consequence is
that the Linux kernel implements real-time throttling [20,
3], at the expense of breaking POSIX compliance. Real-
time throttling ensures that in a specified time period, the
non-real-time threads receive a minimum amount of time
on the CPU. Once the budget for all real-time threads is
consumed in the period the CPU is taken away from the
real-time threads to provide CPU time to the non-real-time
threads. This mechanism prevents real-time threads from
locking up the system, but it is very coarse. There is only
one budget and period, defined system wide. The default
budget is 950 msec of real-time execution time per 1 second
period. This means that any real-time thread can experience
a (rather large and possibly fatal) preemption of 5 msec.

4 Corrected Sporadic Server Algorithm

In this section we provide a corrected version of the
POSIX sporadic server. We then go on to explain how this
new version corrects the defects mentioned previously.

Each server S has a replenishment queue S.Q, which
may contain a maximum of S.max repl replenishments.
Each replenishment R has time R.time and an amount
R.amt. The queue S.Q is ordered by replenishment time,
earliest first. The sum of the replenishment amounts is equal
to the server’s initial budget

S.budget =
∑

R∈S.Q

R.amt

A server is in foreground mode, competing for processor
time at S.foreground priority or in background mode,
competing at S.background priority. Whenever S is in
foreground mode, its execution time is accumulated in the
variable S.usage. The currently available execution capac-
ity of the server is computed as

S.capacity =
{

0 if S.Q.head.time > Now
S.Q.head.amt− S.usage otherwise

S is in foreground mode whenever S.capacity > 0,
and should perform a BUDGET CHECK as soon as possi-
ble after the system detects that S.capacity ≤ 0 (the server
may change to background mode). To detect this condi-
tion promptly, event S.exhaustion is queued to occur at
time Now + S .capacity whenever S becomes a running
task at its foreground priority. The system responds to event
S.exhaustion by updating S.usage with the amount of ex-
ecution time used at the foreground priority since the last
update and then executing BUDGET CHECK (Figure 3).

BUDGET CHECK

1 if S .Capacity ≤ 0 then
2 while S .Q .head .amt ≤ S .usage do

� Exhaust and reschedule the replenishment
3 S .usage ← S .usage −S .Q .head .amt
4 R ← S .Q .head
5 S .Q .pop
6 R.time ← R.time +S .Period
7 S .Q .add(R)
8 if S .usage > 0 then � S .usage is the overrun amt.

� Budget reduced when calculating S .capacity
� Due to overrun delay next replenishment

9 S .Q .head .time ← S .Q .head .time +S .Usage
� Merge front two replenishments times overlap

10 if S .Q .size > 1 and
S .Q .head .time ≥ S .Q .head .next .time then

11 a← S .Q .head .amt
12 S .Q .pop � remove head from queue
13 S .Q .head .amt ← S .Q .head .amt +a
14 if S .capacity = 0 then � S .Q .head .time > Now
15 S .priority ← S .background priority
16 if ¬S .is blocked then
17 S .replenishment .enqueue(S .Q .head .time)

Figure 3. Pseudo-code for budget over-run check.

The system also calls BUDGET CHECK when S is exe-
cuting in foreground mode and becomes blocked or is pre-
empted, after cancelation of event Q .exhaustion . If S
blocks while in foreground mode, after BUDGET CHECK
the system executes procedure SPLIT CHECK (Figure 4).

SPLIT CHECK

1 if S .usage > 0 and S .Q .head .time ≤ Now then
2 remnant ← S .Q .head .amt −S .Usage
3 if S .Q .head .size = S .max Repl then

� Merge remnant with next replenishment
4 S .Q .pop
5 S .Q .head .amt ← S .Q .head .amt + remnant
6 else

� Leave remnant as reduced replenishment
7 S .Q .head .amt ← remnant
8 S .Q .add(S .usage,S .Q .head .time +S .period)

Figure 4. Pseudo-code for conditionally splitting a re-
plenishment.

If S goes into background mode while it is

not blocked (in BUDGET CHECK) or if it be-
comes unblocked while in background mode (in
SPLIT CHECK) event S .replenishment is queued to
occur at time S .Q .head .time . The system responds
to event S .replenishment by setting S .priority to
S .foreground priority , which may result in S being
chosen to execute next.

If S becomes unblocked the system executes procedure
UNBLOCK CHECK, shown in Figure 5.

UNBLOCK CHECK

� Advance earliest activation time to now.
1 if S .capacity > 0 then
2 if S .priority 6= S .foreground priority then
3 S .priority ← S .foreground priority
4 S .Q .head .time ← Now

� Merge available replenishments
5 while S .Q .Size > 1 do
6 a← S .Q .head .amt
7 if S .Q .head .next .time ≤ Now +a− S .Usage then
8 S .Q .pop � remove head from queue
9 S .Q .head .amt ← S .Q .head .amt +a

10 else
11 exit
12 else
13 S .replenishment .enqueue(S .Q .head .time)

Figure 5. Pseudo-code for unblocking event.

4.1 Correcting for Budget Amplification

In [9] a solution for blocking effects caused by a deadline
sporadic server is provided, where overruns will be charged
against future replenishments. This mechanism is adapted
to allow our modified sporadic server to handle overruns
properly and inhibit the budget amplification effect.

Recall that amplification occurs when a replenishment is
consumed in its entirety with some amount of overrun. This
overrun amount is added to the replenishment and sched-
uled at a time in the future. The POSIX sporadic server is
never charged for the overrun time because a negative bud-
get is immediately set to zero.

A simple fix would be to just allow the currently avail-
able execution capacity to become negative. This prevents
the amplification effect by keeping the capacity plus replen-
ishments equal to the initial budget, thereby limiting execu-
tion within a server period to at most the initial budget plus
the maximum overrun amount. However, since the replen-
ishment is larger by the overrun amount, the server is still
not being properly charged for the overrun.

15

τ
ss

release

1
τ

5

deadline

0

time

time

5 10

10

(a) normal operation

τ
ss

release

1
τ

5

deadline

0

time

time

10

108

8 15

12

12

(b) overrun affecting deadline of τ1

1513

τ
ss

release

1
τ

5

deadline

0

time

time
8

8

(c) postponing replenishment time

Figure 6. Postponing replenishments after an overrun.

To handle this overrun properly, the time used will be
charged against a future replenishment. To be clear, we are
not preventing the overrun from occurring, only once it does
occur, future overruns of the same size will be prevented
from accumulating and only permitted to occur once per
interval of continuous server execution.

In the BUDGET CHECK procedure, the compensation
for an overrun is handled. An overrun has occurred when
the sum of the replenishment amounts with times less than
or equal to the current time exceed the server’s current us-
age (S.usage). This overrun amount is charged against fu-
ture replenishments as if that time has already been used.
The while loop starting at line 2 of BUDGET CHECK it-
erates through the replenishments, charging as needed un-
til the S.usage is less than the replenishment at the head
of the S.Q. At this point, the overrun amount will re-
main in S.usage. Therefore, when the next replenishment
arrives it will immediately be reduced by the amount in
S.usage according to the calculation of S.capacity. This
prevents the POSIX amplification effect by ensuring that
overrun amounts are considered borrowed from future re-
plenishments.

The intervals of sporadic server execution that corre-
spond to a given replenishment are spaced apart by the
server’s period. This spacing allows lower priority tasks to
receive execution time. However, when there is an overrun,
the time between such intervals may shrink. For instance,
consider Figure 6a. The execution of τ1 fits nicely between
the two intervals of server execution. However, if an over-
run occurs in the first execution interval of τss, the time
meant for τ1 is occupied, forcing τ1 to start execution later.
Since the next replenishment of τss arrives during the ex-
ecution of τ1, τss is permitted to preempt τ1. This further
postpones the completion of τ1 causing a missed deadline
as illustrated in Figure 6b.

The overrun time used during the interval of execution
corresponding to the first replenishment is borrowed from
the second one. This time was used early. If this time
is borrowed, the borrowed units should be taken from the
front of the next available replenishment. That is, the time
of the next replenishment should be postponed by the over-

run amount. This is done in line 9 of the BUDGET CHECK
procedure. With this postponement we see that in Figure 6c,
τ1 is able to meet its deadline.

4.2 Correcting the Premature Replenishments

Premature replenishments occur when one or more unit-
capacity servers violate the sporadic constraint. The POSIX
sporadic server experiences premature replenishments due
to its simplified tracking of activation times. When a re-
plenishment arrives, it is immediately merged with any re-
plenishment that has an activation time less than or equal
to the current time. This may result in invalid merging of
replenishment cohorts, allowing a replenishment to be used
earlier than the earliest activation time that would be con-
sistent with the sporadic constraint.

To maintain the sporadic constraint, we must ensure that
each cohort be separated by the server’s period (Ts). In the
corrected algorithm, replenishments can be totally or par-
tially consumed. If the entire replenishment is consumed,
the replenishment time is set to R.time + S.Period (line
6 of BUDGET CHECK). When only a portion of time is
used, the replenishment must be split resulting in distinct
replenishments. This is performed in the SPLIT CHECK
procedure. Only the used portion is given a new time, Ts

in the future (line 8). As these replenishments are main-
tained distinct and each usage is separated by at least Ts,
the worst-case interference is correctly limited in the fash-
ion consistent with the ideal model.

The number of replenishments to maintain over time can
become very large. To help minimize this fragmentation
the corrected algorithm allows merging of replenishments
in accordance with Observation 3. This is done in lines 11-
13 of the BUDGET CHECK procedure. Here if the replen-
ishment at the head of the queue overlaps with the next in
the queue, they will be merged.

POSIX limits the number of replenishments into which
the server capacity can be fragmented. The parameter
sched ss max repl defines the maximum number of replen-
ishments that can be pending at any given time. There are
very good pragmatic reasons for this limit. One is that it
allows pre-allocation of memory resources required to keep

track of replenishments. Another benefit is that it implicitly
bounds the number of timer interrupts and context switches
that replenishments can cause within the server period. This
effect can be translated into the ideal model using Observa-
tion 2 as follows: When the pending replenishment limit
is reached all server units with earliest-next-activation time
prior to the next replenishment time are advanced to the next
replenishment time, effectively becoming part of the next
replenishment/cohort. This action is performed in the else
block starting at line 6, of the SPLIT CHECK procedure.

4.3 Improving Temporal Isolation

As explained in Section 3.3, the POSIX standard cur-
rently permits an interpretation that the sporadic server’s
background priority range is limited, and so there is no way
to prevent an over-running sporadic server from starving
tasks that are scheduled according to policies with priori-
ties below this range.

To permit all other tasks on the system to be isolated
from budget overruns of a sporadic server, we propose that
the allowable range of priorities for a server’s background
priority should extend down to include the lowest system
priority, and further include an extreme value so low that
a thread with that value can never run. Alternatively one
could introduce a new scheduling parameter or configurable
system parameter to indicate that instead of switching to a
background priority when a sporadic server is out of budget,
it should wait until its next replenishment time. Adding ei-
ther of these features would require very little change to an
existing scheduler, and would provide at least one portable
way to write applications with temporal isolation. If in-
troducing such a new priority value or a new interface ex-
ceeds the latitude of the IEEE Standards interpretation pro-
cess, the next best thing is to make it clear that implemen-
tations are permitted to define the range of priorities for
SCHED SPORADIC to extend below that of SCHED FIFO.

To demonstrate the usefulness of priority ranges we ex-
tended our simulator to provide such functionality. This al-
lowed us to implement SCHED SPORADIC alongside a vari-
ety of other scheduling policies, including earliest-deadline-
first (EDF) and deadline sporadic. We used a single range
of 64-bit integer values to cover both static priorities and
deadlines, reserving priority ranges at the extreme low and
extreme high ends, and interpreting the largest expressible
value as “do not execute”. Of course, such an implementa-
tion model needs remapping of values at the API in order
to comply with POSIX, which interprets numerically large
values as higher fixed priorities, and requires a contiguous
range of values for each policy.

5 Evaluation

This section presents our evaluation of the problems and
the proposed solutions discussed above. This evaluation
was performed using an implementation in the Linux-2.6.28
operating system and through simulation.

It is perhaps an indication of the seriousness of the
budget amplification effect that we discovered it acciden-
tally, as users. We were experimenting with a version
of the Linux kernel that we had modified to support the
SCHED SPORADIC policy. The reason for using this pol-
icy was to bound the scheduling interference device driver
threads cause other tasks [12]. Our implementation ap-
peared to achieve the desired effect. We noticed that the
server was consuming more execution time than its budget.
We attributed these overruns to the coarseness of our spo-
radic server implementation, which enforced budget limits
in whole ticks of the system clock. Since the clock tick
was much larger than the network message interarrival and
processing times, this allowed the execution behavior of the
sporadic server under network device driver loads to be very
similar to that of a periodic server, and it was able to run
over significantly in each period. We hoped that by going
to a finer-grained timer, we could both reduce the overrun
effect and distinguish better between the sporadic and pe-
riodic servers. Therefore, we tried using a different Linux
implementation of the sporadic server, developed by Dario
Faggioli [7], which uses high-resolution timers. With a few
refinements, we were able to repeat our prior experiments
using this version, but the server continued to run signif-
icantly over its budget – sometimes nearly double its al-
located CPU bandwidth. After first checking for errors in
the time accounting, we analyzed the behavior again, and
conjectured that the overruns might be due to budget am-
plification. To test this conjecture, we modified the sched-
uler to allow the currently available execution capacity to
become negative, and observed the server CPU utilization
drop down to the proper range.

As further verification, we conducted a simple structured
experiment, using the Linux sporadic server implementa-
tion. A sporadic server is given a period of 10 msecs and
a budget of 1 msec. Two jobs arrive, with execution times
of one-half the budget and one-half the server period. The
effect is to divide the budget into two replenishments. Im-
mediately following the second job arrival, more jobs ar-
rive, with the same execution times as the initial jobs, at a
rate that maintains a server backlog for the duration of the
experiment. The results are seen in the lower trace of Fig-
ure 7. Each replenishment, originally one-half the budget,
is able to increase to the size of the full budget, allowing the
server to achieve double its budgeted CPU utilization. The
other traces in Figure 7 show what happens if the number
of active replenishments before the start of the overload is

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

in
te

rf
er

en
ce

 (
fr

ac
tio

n
of

 c
pu

)

running time (secs)

8 initial chunks
6 initial chunks
4 initial chunks
2 initial chunks

Figure 7. Budget amplification effect with varying num-
ber initial replenishments (empirical measurement).

4, 6, and 8. In principle, with sufficiently many initial frag-
ments before the overload interval, the server CPU utiliza-
tion could reach nearly 100%. However, in our experiment,
the increase in server utilization did not climb so quickly,
apparently due to the replenishments overlapping, causing
merging of replenishments.

To further understand the sporadic server anomalies, a
simulator was developed. With the simulator we were able
to reduce the scheduling “noise” allowing us to focus on
the problems associated with the POSIX definition of spo-
radic server rather than those introduced by the hardware
and Linux kernel. Figures 8 and 9 are from this simulator.

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 50 60 70 80 90 100

m
ax

im
um

 w
in

do
w

 u
til

iz
at

io
n

presented workload as percent of server capacity

POSIX SS
corrected SS

Figure 8. Utilization in a given period-sized window
(simulation study).

The effects of budget amplification can not only increase
the total utilization over an entire run, but also the maximum
demand for execution time in any time window of a given

size. (Here we consider “demand” to be the amount of time
the server is allowed to compete at its foreground priority.)
A correctly operating sporadic server should have the same
worst-case demand as an equivalent periodic task.

So, if we consider a window of the server period in size,
the maximum server demand in that window should not ex-
ceed the execution time divided by the period.

Due to the budget amplification effect, this is not true for
sporadic server. Figure 8 shows the amount of execution
time given to a sporadic server at its native priority (here
the sporadic server is not allowed to run at background pri-
ority). This experiment was performed using an exponential
distribution of job execution times with a mean job execu-
tion time of 10 time units. The server’s period is 120 and
the budget is 40. To demonstrate the budget amplification,
there must be overruns. Here each job is permitted to over-
run 1 time unit, corresponding to the resolution of the ex-
ecution time clock as defined in the POSIX sporadic server.
The interarrival times of jobs are also determined with an
exponential distribution where the mean arrival rate is ad-
justed to create an average workload as a percent of server
capacity. So, for a workload of 100% the mean interarrival
time would be 120

4 = 30. The corrected sporadic server pro-
vides the expected maximum of 34% utilization in a given
window (40+1

120). The POSIX implementation however ex-
ceeds the maximum utilization drastically, clearly not pro-
viding temporal isolation. (Over 100% of server capacity, it
may be noticed that the maximum window utilization drops
slightly, apparently due to more frequent overlapping and
merging of replenishments.)

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 45 50 55 60 65 70 75 80

pe
rc

en
t o

f
pr

oc
es

so
r

ca
pa

ci
ty

execution time of high priority periodic task

POSIX SS
corrected SS

Figure 9. Effect of premature replenishments (simulation
study).

To demonstrate the effect of premature replenishments
Figure 9 graphs the combined capacity of the sporadic
server and a higher priority periodic task. The periodic task

has a period of 141 and execution time identified by the
value along the x-axis. The sporadic server has a budget
of 42 and a period of 100. The effect of the premature re-
plenishment is not seen until the execution time of the high
priority periodic task increases above 57 time units. At this
point the effect hits abruptly, and the POSIX sporadic server
is able to acquire 58 percent of the CPU. This is an increase
of 38 percent from its budgeted 42 percent maximum and
causes the CPU to become saturated. The corrected spo-
radic server is able to correctly limit the CPU utilization,
thereby allowing other tasks to run, despite the server over-
load.

Attempts were made to demonstrate this premature re-
plenishment effect on random arrivals and execution times,
however, it appears that the effect does not occur often
enough to be measured on a macroscopic scale. If, as this
suggests, the premature replenishment anomaly has a very
low probability, it may be that this anomaly would only be
a concern in a hard real-time environment.

6 Related Work

Other works have proposed to improve the original spo-
radic server algorithm in [18], and at least one other pro-
posed a correction for the error in the original sporadic
server definition. However, to the best of our knowledge,
this work is the first to point out and provide corrections for
the defects in the POSIX sporadic server scheduling policy
that are mentioned in this paper.

In [15], Jane Liu gives an example of a defect in the orig-
inal sporadic server defined in [18], which allows a chunk of
time to be replenished too soon. However, she does not dis-
cuss the POSIX sporadic server, which has different replen-
ishment rules. In fact, the POSIX sporadic server handles
her example correctly. Liu provides an alternate version of
the sporadic server algorithm, that is conceptually similar
to ours and that of [9] in maintaining the budget in separate
chunks, each with their own replenishment times, and using
the old replenishment time to compute the next replenish-
ment time for the chunk. Liu’s algorithm appears to always
avoid premature replenishments, even on the example that
we found caused trouble for the POSIX sporadic server. The
differences between that algorithm and ours are in details
that affect implementation overhead. Liu’s algorithm ap-
plies a more aggressive and computationally more complex
rule for computing replenishment times, based on keeping
track of the starting times of busy intervals for each prior-
ity. It is less aggressive in attempting to merge chunks and
so may require more storage and timer interrupts. It also
fails to address the practical matter of budget overruns.

In [8], the importance of handling overruns is addressed.
The authors propose a ‘payback’ mechanism that limits the

amount of time a server can accumulate when its budget is
exceeded.

In addition, the authors of [8] introduce an optimization
to reduce the number of timer events by only arming a re-
plenishment timer when the server has work to perform. We
have observed that one can further reduce the number of
timers events by not only checking if the server has work to
perform, but also checking whether the server has budget.
If the server has budget, then the need for a replenishment
event is not necessary.

While they provide optimizations for the sporadic server
algorithm, they do not address the defects we have men-
tioned in the current paper.

Davis and Burns [5] evaluated the use of periodic, de-
ferrable, and sporadic servers in fixed priority pre-emptive
systems. They provide response time analysis for real-time
tasks scheduled under those servers. In a later paper, Davis
and Burns [4] define a Hierarchical Stack Resource Policy
(HSRP) for global resource access. That policy allows for
server overruns and proposes to use the payback mechanism
described in [9]. The approach in our paper also adapts the
same overrun and payback mechanism.

7 Conclusion

We have shown that the POSIX formulation of the
SCHED SPORADIC scheduling policy suffers from several
defects, making it inadequate for its intended purposes. If
a critical system is trusted to meet deadlines, based on a
schedulability analysis in which a SCHED SPORADIC server
is modeled as periodic server model, the consequences
could be serious.

One possible reaction to the existence of these defects
is to dismiss the POSIX SCHED SPORADIC policy entirely.
Some have argued that POSIX should be extended to include
other fixed-task-priority budget-enforcing policies [1] that
have lower implementation complexity. Others may argue
that POSIX should be extended to include deadline-based
scheduling policies, which potentially allow deadlines to be
met at higher processor utilization levels.

We do not believe that SCHED SPORADIC should be dis-
missed. There is a definite need for a standard schedul-
ing policy that enforces time budgets, now. This capability
is essential for the safe composition of applications in an
open system. POSIX has no other such policy. The API for
SCHED SPORADIC exists, and with proper semantics can
serve the originally intended purpose.

There is also a matter of time. The POSIX standard
revision process is on a five-year cycle, and does not al-
low standardization of specifications that have not already
been tested in existing practice. Therefore, the addition
of any such new policies would be about five years off.
In the mean time, there is an “interpretation” process for

the existing standard that can be applied to correct the
SCHED SPORADIC specification sooner, perhaps within one
year.

Therefore, we urge members of the real-time re-
search and development community to support a cor-
rective re-interpretation of the semantics of the POSIX
SCHED SPORADIC specification.

Acknowledgment

We thank our anonymous reviewers for their invaluable
insights. We also would like to thank Dario Faggioli for
his Linux implementation of the POSIX SCHED SPORADIC
scheduling policy. This work is sponsored by NSF CNS-
0509131. Opinions, findings, and conclusions or recom-
mendations expressed in this document do not necessarily
reflect the views of the NSF, FSU, or the U.S. government.

References

[1] G. Bernat and A. Burns. New results on fixed priority ape-
riodic servers. In Proc. 20th IEEE Real-Time Systems Sym-
posium, pages 68–78, 1999.

[2] R. J. Bril and P. J. L. Cuijpers. Analysis of hierarchical fixed-
priority pre-emptive scheduling revisited. Technical Report
CSR-06-36, Technical University of Eindhoven, Eindhoven,
Netherlands, 2006.

[3] J. Corbet. SCHED FIFO and realtime throttling. http:
//lwn.net/Articles/296419/, Sept. 2008.

[4] R. Davis and A. Burns. Resource sharing in hierarchical
fixed priority pre-emptive systems. In Real-Time Systems
Symposium, 2006. RTSS ’06. 27th IEEE International, pages
257–270, Dec. 2006.

[5] R. I. Davis and A. Burns. Hierarchical fixed priority pre-
emptive scheduling. In Proc. 26th IEEE Real-Time Systems
Symposium, pages 376–385, 2005.

[6] Z. Deng and J. W. S. Liu. Scheduling real-time applications
in an open environment. In Proc. 18th IEEE Real-Time Sys-
tems Symposium, pages 308–319, Dec 1997.

[7] D. Faggioli. POSIX SCHED SPORADIC implementa-
tion for tasks and groups. http://lkml.org/lkml/
2008/8/11/161, Aug. 2008.

[8] D. Faggioli, M. Bertogna, and F. Checconi. Sporadic server
revisited. In SAC ’10: Proceedings of 25th ACM Symposium
On Applied Computing. ACM, Mar. 2010.

[9] T. M. Ghazalie and T. P. Baker. Aperiodic servers in a dead-
line scheduling environment. Real-Time Systems, 9(1):31–
67, 1995.

[10] IEEE Portable Application Standards Committee (PASC).
Standard for Information Technology - Portable Operating
System Interface (POSIX) Base Specifations, Issue 7. IEEE,
Dec. 2008.

[11] J. P. Lehoczky. Fixed priority scheduling of periodic task
sets with arbitrary deadlines. In Proc. 11th IEEE Real-Time
Systems Symposium, pages 201–209, 1990.

[12] M. Lewandowski, M. J. Stanovich, T. P. Baker, K. Gopalan,
and A.-I. Wang. Modeling device driver effects in real-time
schedulability analysis: Study of a network driver. In Real
Time and Embedded Technology and Applications Sympo-
sium, 2007. RTAS ’07. 13th IEEE, pages 57–68, Apr. 2007.

[13] G. Lipari and E. Bini. Resource partitioning among real-
time applications. In Proc. 15th EuroMicro Conf. on Real-
Time Systems, pages 151–158, July 2003.

[14] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard real-time environment. Journal of
the ACM, 20(1):46–61, Jan. 1973.

[15] J. W. S. Liu. Real-Time Systems. Prentice-Hall, 2000.
[16] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H.

Klein. Analysis of hierarchical fixed-priority scheduling. In
ECRTS ’02: Proceedings of the 14th Euromicro Conf. on
Real-Time Systems, page 173, Washington, DC, USA, 2002.
IEEE Computer Society.

[17] I. Shin and I. Lee. Compositional real-time scheduling
framework with periodic model. ACM Trans. Embed. Com-
put. Syst., 7(3):1–39, 2008.

[18] B. Sprunt, L. Sha, and L. Lehoczky. Aperiodic task schedul-
ing for hard real-time systems. Real-Time Systems, 1(1):27–
60, 1989.

[19] Y. C. Wang and K. J. Lin. The implementation of hierar-
chical schedulers in the RED-Linux scheduling framework.
In Proc. 12th EuroMicro Conf. on Real-Time Systems, pages
231–238, June 2000.

[20] P. Zijlstra. sched: rt time limit. http://lkml.org/
lkml/2007/12/30/258, Dec. 2007.

