
Modeling device driver effects in real-time schedulability analysis:
Study of a network driver ∗

Mark Lewandowski, Mark J. Stanovich, Theodore P. Baker, Kartik Gopalan, An-I Andy Wang
Department of Computer Science

Florida State University
Tallahassee, FL 32306-4530

e-mail: [lewandow, stanovic, baker, awang]@cs.fsu.edu, kartik@cs.binghamton.edu

Abstract

Device drivers are integral components of operating
systems. The computational workloads imposed by de-
vice drivers tend to be aperiodic and unpredictable be-
cause they are triggered in response to events that oc-
cur in the device, and may arbitrarily block or preempt
other time-critical tasks. This characteristic poses sig-
nificant challenges in real-time systems, where schedu-
lability analysis is essential to guarantee system-wide
timing constraints. At the same time, device driver
workloads cannot be ignored. Demand-based schedu-
lability analysis is a technique that has been success-
ful in validating the timing constraints in both single
and multiprocessor systems. In this paper we present
two approaches to demand-based schedulability analy-
sis of systems that include device drivers. First, we
derive load-bound functions using empirical measure-
ment techniques. Second, we modify the scheduling of
network device driver tasks in Linux to implement an
algorithm for which a load-bound function can be de-
rived analytically. We demonstrate the practicality of
our approach through detailed experiments with a net-
work device under Linux. Our results show that, even
though the network device driver does not conform to
conventional periodic or sporadic task models, it can be
successfully modeled using hyperbolic load-bound func-
tions that are fitted to empirical performance measure-
ments.

∗Based upon work supported in part by the National Science
Foundation under Grant No. 0509131, and a DURIP equipment
grant from the Army Research Office.

1 Introduction

Device drivers are the software components for man-
aging I/O devices. Traditionally, device drivers for
common hardware devices (e.g.. network cards and
hard disks) are implemented as part of the operating
system kernel for performance reasons. Device drivers
have also traditionally been a weak spot of most operat-
ing systems, especially in terms of accounting and con-
trol of the resources consumed by these software com-
ponents. Each device driver’s code may run in multiple
(possibly concurrent) execution contexts which makes
the resource accounting difficult, if not impossible. For
instance, Linux device drivers are scheduled in a hi-
erarchy of ad hoc mechanisms, namely hard interrupt
service routines (ISR), softirqs, and process or thread
contexts, in decreasing order of execution priorities.

While the traditional ways of scheduling device
drivers can be tolerated in best-effort systems, they
tend to present a problem for real-time systems. Real-
time systems need to guarantee that certain workloads
can be completed within specified time constraints.
This implies that any workload within a real-time sys-
tem must be amenable to schedulability analysis, which
is defined as the application of abstract workload and
scheduling models to predict the ability of the real-time
system to meet all of its timeliness guarantees.

The workloads imposed by device drivers tend to be
aperiodic, hard to characterize, and they defy schedu-
lability analysis because much of their computational
workload is often triggered by unpredictable events
(e.g. arrival of network packets or completion of disk
I/O). There may be blocking due to nonpreemptable
critical sections within device drivers and preemption
due to ISR code that executes in response to a hard-
ware interrupt. The interference caused by device
drivers on the execution of time-critical tasks, through

such blocking and preemption, needs to be accurately
modeled and included in the schedulability analysis of
the system. In addition, the device drivers themselves
may have response time constraints imposed by the
need to maintain some quality of I/O services.

In this paper we present two approaches to demand-
based schedulability analysis of systems including de-
vice drivers, based on a combination of analytically and
empirically derived load-bound functions. Demand-
based schedulability analysis views the schedulability
analysis problem in terms of supply and demand. One
defines a measure of computational demand and then
shows that a system can meet all deadlines by prov-
ing that demand in any time interval cannot exceed
the computational capacity of the available proces-
sors. This analysis technique has been successfully ap-
plied to several abstract workload models and schedul-
ing algorithms, for both single and multiprocessor sys-
tems [9, 1, 3, 2].

Aperiodic device-driver tasks present a special chal-
lenge for demand-based schedulability analysis, be-
cause their potential computational demand is un-
known. In principle, analysis would be possible if they
were scheduled according to an algorithm that budgets
compute time. However, the common practice in com-
modity operating systems is to schedule them using a
combination of ad hoc mechanisms described above,
for which it may be impractical or impossible to derive
an analytical bound on the interference that the device
driver tasks may cause other time-critical tasks. Two
possible approaches for analysis:

1. Derive a load-bound function for the driver empir-
ically.

2. Modify the way device driver tasks are scheduled
in the operating system, to use a time-budgeting
algorithm for which a load-bound function can be
derived analytically.

In the rest of this paper we evaluate both of the
above approaches, using a device driver as a case study
– the Linux e1000 driver for the Intel Pro/1000 fam-
ily of Ethernet network interface adapters. We focus
on demand-based schedulability analysis using fixed-
priority scheduling in a uniprocessor environment.

2 Demand Analysis

Our view of demand analysis is derived from stud-
ies of traditional workload models [9, 1, 3, 2] which
are based on the concepts of job and task. A job is
a schedulable component of computational work with
a release time (earliest start time), a deadline, and an

execution time. The computational demand of a job
J in a given time interval [a, b) for a given schedule,
denoted by demandJ(a, b), is defined to be the actual
amount of processor time consumed by that job within
the interval.

Suppose there is a single processor, scheduled ac-
cording to a policy that is priority driven. Every job
will be completed on time as long as the sum of its
own execution time and the interference caused by the
execution of other higher priority jobs within the same
time window during which the job must be completed
add up to no more than the length of the window.
That is, suppose J = {J1, J2, ...} is the (possibly in-
finite) collection of jobs to be scheduled, numbered in
order of decreasing priority. A job Jk released at time
rk with deadline rk + dk and execution time ek will be
completed by its deadline if

ek +
∑
i<k

demandJi
(rk, rk + dk) ≤ dk (1)

Traditional schedulability analysis relies on impos-
ing constraints on the release times, execution times,
and deadlines of the jobs of a system to ensure that
inequality (1) is satisfied for every job. This is done
by characterizing each job as belonging to one of a fi-
nite collection of tasks. A task is an abstraction for a
collection of possible sequences of jobs.

The best understood type of task is periodic, with
release times separated by a fixed period pi, deadlines
at a fixed offset di relative to the release times, and
actual execution times bounded by a fixed worst-case
execution time ei. A sporadic task is a slight relax-
ation of the periodic task model, in which the period
pi is only a lower bound on the separation between the
release times of the task’s jobs.

The notions of computational demand and inter-
ference extend naturally to tasks. The function
demandmax

τi
(∆) is the maximum of combined demands

of all the jobs of τi in every time interval of length ∆,
taken over all possible job sequences of τi. That is if S
is the collection of all possible job sequences of τi then

demandmax
τi

(∆) def= max
S∈S,t>0

∑
J∈S

demandJ(t−∆, t) (2)

Restated in terms of tasks, the same reasoning says
that a task τk with relative deadline dk will always meet
its deadline if the sum of its own execution time and
the interference of higher priority tasks within any time
window of length dk never exceeds dk. That is, suppose
there is a set of tasks τ = τ1, . . . , τn, numbered in order
of decreasing priority, and dk ≤ pk. Then every job of

2

τk will complete within its deadline if

ek +
k−1∑
i=1

demandmax
τi

(dk) ≤ dk (3)

A core observation for preemptive fixed-priority
scheduling of periodic and sporadic tasks is the fol-
lowing traditional demand bound:

demandmax
τi

(∆) ≤
⌈

∆
pi

⌉
ei (4)

This says that the maximum computation time of
τi in any interval length ∆ can be no more than the
maximum execution time required by one job of τi,
multiplied by the maxumum number of jobs of τi that
can execute in that interval. Replacing the maximum
demand in (3) by the expression on the right in (4)
leads to a well known response test for fixed-priority
schedulability, i.e., τk is always scheduled to complete
by its deadline if

ek +
k−1∑
i=1

⌈
dk

pi

⌉
ei ≤ dk (5)

In Section 4 we report experiments in which we
measured the actual interfering processor demand due
to certain high priority tasks, over time intervals of
different lengths. When we computed the maximum
observed demand from that data, we observed that
it never reached the level of the traditional demand
bound, given by the expression on the right of (4).
That is because the traditional demand over-estimates
the actual worst-case execution time of τi in many in-
tervals, by including the full execution time ei even in
cases where the interval is not long enough to permit
that. For example, suppose pi = di = 7 and ei = 2,
and consider the case ∆ = 8. Since the release times
of τi must be separated by at least 7, the maximum
amount of time that τi can execute in any interval of
length 8 is 3, not 4.

In this paper we introduce a refined demand bound,
obtained by only including the portion of the last job’s
execution time that fits into the interval, as follows.

demandmax
τi

(∆) ≤ jei + min(ei,∆− jpi) (6)

where

j
def=

⌊
∆
pi

⌋
The difference between the traditional demand

bound and our refined bound in (6) is shown by Fig-
ure 1 for a periodic task with pi = 7 and ei = 2. The
two bounds are equal between points that correspond

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16 18 20

d
e

m
a
n

d
 b

o
u

n
d

interval length

traditional demand bound
refined demand bound

linear demand bound

Figure 1. Comparison of the demand bounds of (5)

and (6), for a periodic task with pi = 7 and ei = 2.

to earliest and latest possible completion times of jobs,
but the refined bound is tighter for other points.

The diagonal line in the figure corresponds to a sim-
plified upper bound function, obtained by interpolating
linearly between the points ∆ = jpi + ei at which the
traditional and refined demand bounds converge. At
these points, the expression on the right of (6) reduces
to

(
∆− ei

pi
+ 1)ei = ui(∆ + pi − ei)

and so

demandmax
τi

(∆) ≤ min(∆, ui(∆ + pi − ei)) (7)

The above definitions and analyses can also be ex-
pressed in terms of the ratio of demand to inter-
val length, which we call load. That is, loadτi(t −
∆, t) def= demandτi(t − ∆, t)/∆ and loadmax

τi
(∆) def=

demandmax
τi

(∆)/∆. It follows from (3) that a task τk

will always complete by its deadline if

ek

dk
+

k−1∑
i=1

loadmax
τi

(dk) ≤ 1 (8)

That is, to verify that a task τk always completes by
its deadline, it is sufficient to add the percentage of
CPU time used by all higher priority tasks and the
percentage required for τk in any interval of length dk.
If this sum is less than or equal to one, then there is
enough CPU time available for τk to finish its work on
time.

The corresponding refined load-bound function of
a periodic task can be derived by dividing (6) by ∆,
resulting in

loadmax
τi

(∆) ≤ jei + min(ei,∆− jpi)
∆

(9)

where j is defined as in (6), and a simplified hyper-
bolic load bound can be obtained by dividing (7) by ∆,
resulting in

loadmax
τi

(∆) ≤ min(1, ui(1 +
pi − ei

∆
)) (10)

3

The refined load-bound function on the right of (9)
and the hyperbolic approximation on the right of (10)
are compared to the traditional load-bound function in
Figure 2, for the same task as Figure 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

d
a
ta

/l
o

a
d

 b
o
u
n

d

interval length

traditional load bound
hyperbolic bound

refined load bound
utilization

Figure 2. Load bounds for a periodic task with pi =

7 and ei = di = 2.

We find the load-based formulation more intuitive,
since it allows us to view the interference that a task
may cause other tasks as a percentage of the total avail-
able CPU time, which converges to the utilization fac-
tor ui = ei/pi for sufficiently long intervals. This can
be seen in in Figure 2, where all the load bounds con-
verge to the limit 2/7. Because of the critical zone
property [9], an upper bound on the percentage inter-
ference a periodic or sporadic task would cause for any
job of a given lower priority task can be discovered by
reading the Y-value of any of these load-bound func-
tions for the X-value that corresponds to the deadline
of the lower priority task.

Demand-based schedulability analysis extends from
periodic and sporadic tasks to non-periodic tasks
through the introduction of aperiodic server thread
scheduling algorithms, for which a demand-bound
function similar to the one above can be shown to ap-
ply to even non-periodic tasks. The simplest such
scheduling algorithm is the polling server [14], in which
a task with a fixed priority level (possibly the high-
est) and a fixed execution budget is scheduled peri-
odically and allowed to execute until it has consumed
the budgeted amount of execution time, or until it sus-
pends itself voluntarily (whichever occurs first). Other
aperiodic server scheduling policies devised for use in
a fixed-priority preemptive scheduling context include
the Priority Exchange, Deferrable Server [16, 8], and
Sporadic Server (not to be confused with sporadic task)
algorithms [15, 10]. These algorithms improve upon

Thread context

 Interrupt context

Thread context

Level 3
softirq

 Interrupt context

Level 3
softirq

Level 2
driver ISR

Level 1
generic ISR

Level 2
driver ISR

Level 1
generic ISR

Vanilla Linux TimeSys Linux

Figure 3. Comparison of execution contexts for

vanilla and Timesys Linux.

the polling server by allowing a thread to suspend it-
self without giving up its remaining budget, and so are
termed bandwidth preserving algorithms.

3 The Linux e1000 Driver

Network interface device drivers are representative
of the devices that present the biggest challenge for
modeling and schedulability analysis, because they
generate a very large workload with an unpredictable
arrival pattern. Among network devices, we chose a
gigabit Ethernet device for its high data rate, and the
Intel Pro/1000 because it has one of the most advanced
open-source drivers, namely the e1000 driver. This sec-
tion describes how the e1000 driver is scheduled in the
Linux kernel.

The Linux e1000 driver implements the new Linux
API (NAPI) for network device drivers [11], which
leaves the hardware interrupts for incoming packets
disabled as long as there are queued received packets
that have not been processed. The device interrupt is
only re-enabled when the server thread has polled, dis-
covered it has no more work, and so suspends itself.
These mechanisms were originally developed to reduce
receive live-lock but also has the effect of reducing the
number of per-packet hardware interrupts.

The device-driven workload of the e1000 driver can
be viewed as two device-driven tasks: (1) input process-
ing, which includes dequeuing packets that the device
has previously received and copied directly into system
memory and the replenishing the list of DMA buffers
available to the device for further input; (2) output
processing, which includes dequeuing packets already
sent and the enqueueing of more packets to send. In
both cases, execution is triggered by a hardware inter-
rupt, which causes execution of a hierarchy of handlers
and threads.

4

The scheduling of the e1000 device-driven tasks can
be described as occurring at three levels. The schedul-
ing of the top two levels differs between the two Linux
kernel versions considered here (Figure 3), which are
the standard “vanilla” 2.6.16 kernel from kernel.org,
and Timesys Linux, a version of the 2.6.16 kernel
patched by Timesys Corporation to better support
real-time applications.

Level 1. The hardware preempts the currently ex-
ecuting thread and transfers control to a generic in-
terrupt service routine (ISR) which saves the processor
state and eventually calls a Level 2 ISR installed by the
device driver. The Level 1 processing is always preemp-
tively scheduled at the device priority. The only way
to control when such an ISR executes is to selectively
enable and disable the interrupt at the hardware level.

Level 2. The driver’s ISR does the minimum
amount of work necessary, and then requests that the
rest of the driver’s work be scheduled to execute at
Level 3 via the kernel’s “softirq” (software interrupt)
mechanism. In vanilla Linux this Level 2 processing is
called directly from the Level 1 handler, and so it is
effectively scheduled at Level 1. In contrast, Timesys
Linux defers the Level 2 processing to a scheduled ker-
nel thread, one thread per IRQ number on the x86
architectures.

Level 3. The softirq handler does the rest
of the driver’s work, including call-outs to perform
protocol-independent and protocol-specific processing.
In vanilla Linux, the Level 3 processing is scheduled via
a complicated mechanism with two sub-levels: A lim-
ited number of softirq calls are executed ahead of the
system scheduler, on exit from interrupt handlers, and
at other system scheduling points. Repeated rounds
of a list of pending softirq handlers are made, allowing
each handler to execute to completion without preemp-
tion, until either all have been cleared or a maximum
iteration count is reached. Any softirq’s that remain
pending are served by a kernel thread. The reason for
this ad hoc approach is to achieve a balance between
throughput and responsiveness. Using this mechanism
produces very unpredictable scheduling results, since
the actual instant and priority at which a softirq han-
dler executes can be affected by any number of dy-
namic factors. In contrast, the Timesys kernel handles
softirq’s entirely in threads; there are two such threads
for network devices, one for input processing and one
for output processing.

The arrival processes of the e1000 input and out-
put processing tasks generally need to be viewed as
aperiodic, although there may be cases where the net-
work traffic inherits periodic or sporadic characteristics
from the tasks that generate it. The challenge is how

to model the aperiodic workloads of these tasks in a
way that supports schedulability analysis.

4 Empirical Load Bound

In this section we show how to model the workload
of a device-driven task by an empirically derived load-
bound function, which can then be used to estimate
the preemptive interference effects of the device driver
on the other tasks in a system.

For example, suppose one wants to estimate the to-
tal worst-case device-driven processor load of a network
device driver, viewed as a single conceptual task τD.
The first step is to experimentally estimate loadmax

τD
(∆)

for enough values of ∆ to be able to produce a plot sim-
ilar to Figure 2 in Section 2. The value of loadmax

τD
(∆)

for each value of ∆ is approximated by the maximum
observed value of demandτD

(t − ∆, t)/∆ over a large
number of intervals [t−∆, t).

One way to measure the processor demand of a
device-driven task in an interval is to modify the kernel,
including the softirq and interrupt handlers, to keep
track of every time interval during which the task ex-
ecutes. We started with this approach, but were con-
cerned about the complexity and the additional over-
head introduced by the fine-grained time accounting.
Instead, we settled on the subtractive approach, in
which the CPU demand of a device driver task is in-
ferred by measuring the processor time that is left for
other tasks.

To estimate the value of demandτD
(t − ∆, t) for a

network device driver we performed the following ex-
periment, using two computers attached to a dedicated
network switch. Host A sends messages to host C at a
rate that maximizes the CPU time demand of C’s net-
work device driver. On system C, an application thread
τ2 attempts to run continuously at lower priority than
the device driver and monitors how much CPU time it
accumulates within a chosen-length interval. All other
activity on C is either shut down or run at a priority
lower than τ2. If ∆ is the length of the interval, and
τ2 is able to execute for x units of processor time in
the interval, then the CPU demand attributed to the
network device is ∆− x and the load is (∆− x)/∆.

It is important to note that this approach only mea-
sures CPU interference. It will not address memory
cycle interference due to DMA operations. The reason
is that most if not all of the code from τ2 will oper-
ate out of the processor’s cache and therefore virtually
no utilization of the memory bus will result from τ2.
This effect, known as cycle stealing, can slow down a
memory intensive task. Measurement of memory cycle
interference is outside the scope of the present paper.

5

Each host had a Pentium D processor running in
single-core mode at 3.0 GHz, with 2 GB memory and
an Intel Pro/1000 gigabit Ethernet adapter, and was
attached to a dedicated gigabit switch. Task τ2 was
run using the SCHED FIFO policy (strict preemptive
priorities, with FIFO service among threads of equal
priority) at a real-time priority just below that of the
network softirq server threads. All its memory was
locked into physical memory, so there were no other
I/O activities (e.g. paging and swapping).

The task τ2 estimated its own running time using
a technique similar to the Hourglass benchmark sys-
tem [12]. It estimated the times of preemption events
experienced by a thread by reading the system clock as
frequently as possible and looking for larger jumps than
would occur if the thread were to run between clock
read operations without preemption. It then added up
the lengths of all the time intervals where it was not
preempted, plus the clock reading overhead for the in-
tervals where it was preempted, to estimate amount of
time that it was able to execute.

The first experiment was to determine the base-line
preemptive interference experienced by τ2 when τD is
idle, because no network traffic is directed at the sys-
tem. That is, we measured the maximum processor
load that τ2 can place on the system when no de-
vice driver execution is required, and subtracted the
value from one. This provided a basis for determin-
ing the network device driver demand, by subtracting
the idle-network interference from the total interference
observed in later experiments when the network device
driver was active.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

%
 i
n
te

rf
e
re

n
c
e

interval length (µsec)

vanilla Linux
Timesys

Figure 4. Observed interference with no network

traffic.

Figure 4 shows the results of this experiment in
terms of the percent interference observed by task τ2.

For this and the subsequent graphs, note that each
data point represents the maximum observed preemp-
tive interference over a series of trial intervals of a given
length. This is a hard lower bound, and it is also a sta-
tistical estimate of the experimental system’s worst-
case interference over all intervals of the given length.
Assuming the interference and the choice of trial in-
tervals are independent, the larger the number of trial
intervals examined the closer the observed maximum
should converge to the system’s worst-case interference.

The envelope of the data points should be approx-
imately hyperbolic; that is, there should be an inter-
val length below which the maximum interference is
100%, and there should be an average processor uti-
lization to which the interference converges for long
intervals. There can be two valid reasons for deviation
from the hyperbola: (1) Periodic or nearly periodic de-
mand, which results in a zig-zag shaped graph similar
to line labeled “refined load bound” in Figure 2 (see
Section 2); (2) not having sampled enough intervals to
encounter the system’s worst-case demand. The latter
effects should diminish as more intervals are sampled,
but the former should persist.

In the case of Figure 4 we believe that the tiny blips
in the Timesys line around 1 and 2 msec are due to pro-
cessing for the 1 msec timer interrupt. The data points
for vanilla Linux exhibit a different pattern, aligning
along what appear to be multiple hyperbolae. In par-
ticular, there is a set of high points that seems to form
one hyperbola, a layer of low points that closely follows
the Timesys plot, and perhaps a middle layer of points
that seems to fall on a third hyperbola. This appear-
ance is what one would expect if there were some rare
events (or co-occurrences of events) that caused pre-
emption for long blocks of time. When one of those
occurs it logically should contribute to the maximum
load for a range of interval lengths, up to the length
of the corresponding block of preemption, but it only
shows up in the one data point for the length of the
trial interval where it was observed. The three levels
of hyperbolae in the vanilla Linux graph suggest that
there are some events or combinations of events that
occur too rarely to show up in all the data points, but
that if the experiment were continued long enough data
points on the upper hyperbola would be found for all
interval lengths.

Clearly the vanilla kernel is not as well behaved as
Timesys. The high variability of data points for the
vanilla kernel suggests that the true worst-case inter-
ference is much higher than the envelope suggested by
the data. That is, if more trials were performed for
each data point then higher levels of interference would
be expected to occur throughout. By comparison, the

6

observed maximum interference for Timesys appears
to be bounded within a tight envelope over all inter-
val lengths. The difference is attributed to Timesys’
patches to increase preemptability.

The remaining experiments measured the behav-
ior of the network device driver task τD under a
heavy load, consisting of ICMP “ping” packets every
10 µsec. ICMP “ping” packets were chosen because
they would execute entirely in the context of the de-
vice driver’s receive thread, from actually receiving the
packet through replying to it (TCP and UDP split ex-
ecution between send and receive threads).

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

%
 i
n
te

rf
e

re
n
c
e

interval length (µsec)

vanilla Linux
Timesys

hyperbolic bound

Figure 5. Observed interference with ping flooding,

including reply.

Figure 5 shows the observed combined interference
of the driver and base operating system under a net-
work load of one ping every 10 µsec. The high variance
of data points observed for the vanilla kernel appears
to extend to Timesys. This indicates a rarely occurring
event or combination of events that occurs in connec-
tion with network processing and causes a long block
of preemption. We believe that this may be a “batch-
ing” effect arising from the NAPI policy, which alter-
nates between polling and interrupt-triggered execu-
tion of the driver. A clear feature of the data is that
the worst-case preemptive interference due to the net-
work driver is higher with the Timesys kernel than the
vanilla kernel. We believe that this is the result of addi-
tional time spent in scheduling and context-switching,
because the network softirq handlers are executed in
scheduled threads rather than borrowed context.

Given a set of data from experimental measurements
of interference, we can fit the hyperbolic bound through
application of inequality (9) from Section 2. There are
several ways to choose the utilization and period so
that the hyperbolic bound is tight. The method used

here is: (1) eliminate any upward jogs from the data by
replacing each data value by the maximum of the values
to the right of it, resulting in a downward staircase
function; (2) approximate the utilization by the value
at the right most step; (3) choose the smallest period
for which the resulting hyperbola intersects at least one
of the data points and is above all the rest.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000

%
 i
n
te

rf
e

re
n

c
e

interval length (µsec)

reply to ping flood
ping flood, no reply

no load

Figure 6. Observed interference with ping flooding,

with no reply.

To carry the analysis further, an experiment was
done to separate the load bound for receive process-
ing from the load bound for transmit processing. The
normal system action for a ping message is to send a
reply message. The work of replying amounts to about
half of the work of the network device driver tasks for
ping messages. A more precise picture of the interfer-
ence caused by just the network receiving task can be
obtained by informing the kernel not to reply to ping
requests. The graph in Figure 6 juxtaposes the ob-
served interference due to the driver and base operating
system with ping-reply processing, without ping-reply
processing, and without any network load. The fitted
hyperbolic load bound is also shown for each case. An
interesting difference between the data for the “no re-
ply” and the normal ping processing cases is the clear
alignment of the “no reply” data into just two distinct
hyperbolae, as compared to the more complex pattern
for the normal case. The more complex pattern of vari-
ation in the data for the case with replies may be due to
the summing of the interferences of these two threads,
whose busy periods sometimes coincide. If this is true,
it suggests a possible improvement in performance by
forcing separation of the execution of these two threads.

Note that understanding these phenomena is not
necessary to apply the techniques presented here. In
fact the ability to model device driver interference with-

7

out knowledge of the exact causes for the interference
is the chief reason for using these techniques.

5 Interference vs. I/O Service Quality

This section describes further experiments, involv-
ing the device driver with two sources of packets and
two hard-deadline periodic tasks. These were intended
to explore how well empirical load bounds derived by
the technique in Section 4 work with analytical load
bounds for periodic tasks for whole-system schedula-
bility analysis. We were also interested in compar-
ing the degree to which scheduling techniques that re-
duce interference caused by the device-driver task for
other tasks (e.g. lowering its priority or limiting its
bandwidth through an aperiodic server scheduling al-
gorithm); would affect the quality of network input ser-
vice.

The experiments used three computers, referred to
as hosts A, B, and C. Host A sent host C a heartbeat
datagram once every 10 msec, host B sent a ping packet
to host C every 10µsec (without waiting for a reply),
and host C ran the following real-time tasks:

• τD is the device-driven task that is responsible
for processing packets received and sent on the
network interface (viewing the two kernel threads
softirq-net-rx and softirq-net-tx as a single task).

• τ1 is a periodic task with a hard implicit deadline
and execution time of 2 msec. It attempts one
non-blocking input operation on a UDP datagram
socket every 10 msec, expecting to receive a heart-
beat packet, and counts the number of heartbeat
packets it receives. The packet loss rate measures
the quality of I/O service provided by the device
driver task τD.

• τ2 is another periodic task, with the same period
and relative deadline as τ1. Its execution time
was varied, and the number of deadline misses
was counted at each CPU utilization level. The
number of missed deadlines reflects the effects of
interference caused by the device driver task τD.

All the memory of these tasks was locked into phys-
ical memory, so there were no other activities. Their
only competition for execution was from Level 1 and
Level 2 ISRs. The priority of the system thread that
executes the latter was set to the maximum real time
priority, so that τD would always be queued to do work
as soon as input arrived.

Tasks τ1 and τ2 were implemented by modifying the
Hourglass benchmark [12], to accommodate task τ1’s
nonblocking receive operations.

Server τ1 τ2 τD OS
Traditional high med hybrid vanilla
Background high med low Timesys
Foreground med low high Timesys
Sporadic high low med (SS) Timesys

Table 1. Configurations for experiments.

We tested the above task set in four scheduling con-
figurations. The first was the vanilla Linux kernel. The
other three used Timesys with some modifications of
our own to add support for a Sporadic Server schedul-
ing policy (SS). The SS policy was chosen because it is
well known and is likely to be already implemented in
the application thread scheduler of any real-time op-
erating system, since it is the only aperiodic server
scheduling policy included in the standard POSIX and
Unix (TM) real-time API’s.

The tasks were assigned relative priorities and
scheduling policies as shown in Table 1. The scheduling
policy was SCHED FIFO except where SS is indicated.

 0.01

 0.1

 1

 10

 100

 0 1 2 3 4 5 6 7 8

%
 d

e
a
d
lin

e
s
 m

is
s
e
d

τ2 execution time (msec)

vanilla Linux
Timesys, τD low

Timesys, τD high
Timesys, τD med SS

Figure 7. Percent missed deadlines of τ2 with inter-

ference from τ1 (e1 = 2 and p1 = 10) and τD subject

to one PING message every 10 µsec.

Figures 7 and 8 show the percentage of deadlines
that task τ2 missed and the number of heartbeat pack-
ets that τ1 missed, for each of the experimental config-
urations.

The Traditional Server experiments showed that the
vanilla Linux two-level scheduling policy for softirq’s
causes τ2 to miss deadlines at lower utilization levels
and causes a higher heartbeat packet loss rate for τ1

than the other driver scheduling methods. Neverthe-
less, the vanilla Linux behavior does exhibit some desir-
able properties. One is nearly constant packet loss rate,
independent of the load from τ1 and τ2. That is due

8

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1 2 3 4 5 6 7 8

n
u

m
b
e

r
o

f
h

e
a

rt
b

e
a

t
p

a
c
k
e

ts
 r

e
c
e
iv

e
d

τ2 execution time (msec)

vanilla Linux
Timesys, τD low

Timesys, τD high
Timesys, τD med SS

Figure 8. Number of heartbeat packets received by

τ1 with interference from τ2 (e1 = 2 and p1 = 10) and

τD subject to one PING message every 10 µsec.

to the ability of the driver to obtain some processing
time at top priority, but only a limited amount. (See
the description of Level 3 processing in Section 3 for
details.) Another property, which is positive for soft-
deadline applications, is that the missed deadline rate
of τ2 degrades gracefully with increasing system load.
These are also characteristics of an aperiodic schedul-
ing algorithm, which the Linux policy approximates by
allocating a limited rate of softirq handler executions
at top priority and deferring the excess to be completed
at low priority. However, the vanilla Linux policy is not
simple and predictable enough to support schedulabil-
ity analysis. Additionally, this strategy does not allow
for user-level tuning of the device driver scheduling.

The Background Server experiments confirmed that
assigning τD the lowest priority of the three tasks (the
default for Timesys) succeeds in maximizing the proba-
bility of τ2 in meeting its deadlines, but it also gives the
worst packet loss behavior. Figure 9 shows the com-
bined load for τ1 and τ2. The values near the deadline
(10) suggest that if there is no interference from τD or
other system activity, τ2 should be able to complete
within its deadline until e2 exceeds 7 msec. This is
consistent with the data in Figure 7. The heartbeat
packet receipt rate for τ1 starts out better than vanilla
Linux, but degenerates for longer τ2 execution times.

The Foreground Server experiments confirmed that
assigning the highest priority to τD causes the worst
deadline-miss performance for τ2, but also gives the
best heartbeat packet receipt rate for τ1. The line la-
beled “τ1 + τD” in Figure 10 shows the sum of the the-
oretical load bound for τ1 and the empirical hyperbolic
load bound for τD derived in Section 4. By examining

 0

 20

 40

 60

 80

 100

 0 10 20 30 40

%
 i
n

te
rf

e
re

n
c
e

interval length (msec)

e2 = 5 msec
e2 = 6 msec
e2 = 7 msec

Figure 9. Sum of load-bound functions for τ1 and

τ2, for three different values of the execution time e2.

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000

%
 i
n
te

rf
e
re

n
c
e

interval length (µsec)

τD
τ1

τ1 + τD

Figure 10. Individual load-bound functions for τ1

and τD, and their sum.

the graph at the deadline (10000 µsec), and allowing
some margin for release-time jitter, overhead and mea-
surement error, one would predict that τ2 should not
miss any deadlines until its execution time exceeds 1.2
msec. That appears to be consistent with the actual
performance in Figure 7.

The Sporadic Server experiments represent an at-
tempt to achieve a compromise that balances missed
heartbeat packets for τ1 against missed deadlines for τ2,
by scheduling τD according to a bandwidth-budgeted
aperiodic server scheduling algorithm, running at a pri-
ority between τ1 and τ2. This has the effect of reserving
a fixed amount of high priority execution time for τD,
effectively lowering the load bound curves. This al-
lows it to preempt τ2 for the duration of the budget,
but later reduces its priority to permit τ2 to execute,

9

thereby increasing the number of deadlines τ2 is able
to meet. The Sporadic Server algorithm implemented
here uses the native (and rather coarse) time account-
ing granularity of Linux, which is 1 msec. The server
budget is 1 msec; the replenishment period is 10 msec;
and the number of outstanding replenishments is lim-
ited to two. It can be seen in figure 7 that running the
experiments on the SS implementation produces data
that closely resembles the behavior of the vanilla Linux
kernel. (This is consistent with our observations on the
similarity of these two algorithms in the comments on
the Traditional Server experiments above.) Under ideal
circumstances the SS implementation should not allow
τ2 to miss a deadline until its execution time exceeds
the sum of its own initial budget and the execution
time of τ1. In this experiment our implementation of
the SS fell short of this by 3 msec. In continuing re-
search, we plan to narrow this gap by reducing the
accounting granularity of our implementation and in-
creasing the number of pending replenishments, and
determine how much of the currently observed gap is
due to the inevitable overhead for time accounting, con-
text switches, and priority queue reordering.

6 Related Work

Previous research has considered a variety of tech-
niques for dealing with interference between interrupt-
driven execution of device-driver code and the schedul-
ing of application threads. We classify these techniques
into two broad groups, according to whether they apply
before or after the interrupt occurs.

The first technique is to “schedule” hardware in-
terrupts in a way that reduces interference, by reduc-
ing the number of interrupts, or makes it more pre-
dictable, by limiting when they can occur. On some
hardware platforms, including the Motorola 68xxx se-
ries of microprocessors, this can be done by assign-
ing different hardware priorities to different interrupts.
The most basic approach to scheduling interrupts in-
volves enabling and disabling interrupts intelligently.
The Linux network device driver model called NAPI
applies this concept to reduce hardware interrupts dur-
ing periods of high network activity[11]. Regehr and
Duongsaa [13] propose two other techniques for reduc-
ing interrupt overloads, one through special hardware
support and the other in software. RTLinux can be
viewed as also using this technique. That is, to re-
duce interrupts on the host operating system RTLinux
interposes itself between the hardware and the host op-
erating system[18]. In this way it relegates all device
driver execution for the host to background priority,
unless there is a need for better I/O performance. In

the latter case, RTLinux allows device driver code to
run as a RTLinux thread (see below).

The second technique, followed in the current paper,
is to defer most interrupt-triggered work to scheduled
threads. Hardware interrupt handlers are kept as short
and simple as possible. They only serve to notify a
scheduler that it should schedule the later execution of
a thread to perform the rest of the interrupt-triggered
work. There are variations to this approach, depend-
ing on whether the logical interrupt handler threads
execute in borrowed (interrupt) context or in indepen-
dent contexts (e.g. normal application threads), and on
whether they have an independent lower-level scheduler
(e.g. RTLinux threads or vanilla Linux softirq han-
dlers) or are scheduled via the same scheduler as nor-
mal application threads. The more general the thread
scheduling mechanism, the more flexibility the system
developer has in assigning an appropriate scheduling
policy and priority to the device-driven threads. The
job of bounding device driver interference then focuses
on analyzing the workload and scheduling of these
threads. This technique has been the subject of sev-
eral studies, including [7, 4, 17, 5], and is implemented
in Windows CE and real-time versions of the Linux
kernel.

Facchinetti et al. [6] recently proposed an instance of
the work deferral approach, in which a system executes
all driver code as one logical thread, at the highest sys-
tem priority. The interrupt server has a CPU time
budget, which imposes a bound on interference from
the ISRs. They execute the ISRs in a non-preemptable
manner, in interrupt context, ahead of the applica-
tion thread scheduler. Their approach is similar to the
softirq mechanism of the vanilla Linux system, in that
both schedule interrupt handlers to run at the highest
system priority, both execute in interrupt context, and
both have a mechanism that limits server bandwidth
consumption. However, time budgets are enforced di-
rectly in [6].

Zhang and West [19] recently proposed another vari-
ation of the work deferral approach, that attempts to
minimize the priority of the bottom halves of driver
code across all current I/O consuming processes. The
algorithm predicts the priority of the process that is
waiting on some queued I/O, and then executes the
bottom half in its own thread at the highest predicted
priority per interrupt. Then it charges the execution
time to the predicted process. This approach makes
sense for device driver execution that can logically be
charged to an application process.

The above two techniques partially address the
problem considered in this paper. That is, they re-
structure the device-driven workload in ways that po-

10

tentially allow more of it to be executed below inter-
rupt priority, and schedule the execution according to
a policy that can be analyzed if the workload can be
modeled. However, they do not address the problem of
how to model the workload that has been moved out of
the ISRs, or how to model the workload that remains
in the ISRs.

A difference between the Facchinetti approach and
our use of aperiodic server scheduling is that we have
multiple threads, at different priorities, executing in
independent contexts and scheduled according to stan-
dard thread scheduling policies which are also available
to application threads. We have observed that differ-
ent devices (i.e. NIC, disk controller, etc) all gener-
ate unique workloads, which we believe warrant dif-
ferent scheduling strategies and different time budgets.
In contrast, all devices in the Facchinetti system are
forced to share the same budget and share the same pri-
ority; the system is not able to distinguish between dif-
ferent priority levels of I/O, and is forced to handle all
I/O in FIFO order. Imagine a scenario where the real
time system is flooded with packets. In the Facchinetti
system the NIC could exhaust the ISR server’s bud-
get. If a high priority task requests disk I/O while the
ISR server’s budget is exhausted, the disk I/O will be
delayed until the ISR server budget is replenished, and
the high priority task may not receive its disk service in
time to meet its deadline. This scenario is pessimistic,
but explains our motivation to move ISR execution into
multiple fully-schedulable threads.

A difference between the Zhang and West approach
and ours is that we focus on the case where there is no
application process to which the device-driven activity
can logically be charged. Our experiments use ICMP
packets, which are typically processed in the context of
the kernel and cannot logically be charged to a process.

Another difference is that our model is not subject
to a middle-priority process delaying the execution of
a higher priority process, by causing a backlog in the
bottom-half processing of I/O for a device on which the
high priority process depends. Consider a system with
three real time processes, at three different priorities.
Suppose the low priority process initiates a request for
a stream of data over the network device, and that be-
tween packets received by the low priority process, the
middle-priority process (which does not use the net-
work device) wakes up and begins executing. Under
the Zhang and West scheme, the network device server
thread would have too low priority for the network de-
vice’s bottom half to preempt the middle-priority pro-
cess, and so a backlog of received packets would build
up in the DMA buffers. Next, suppose the high priority
process wakes up and during its execution, attempts to

read from the network device. This will raise the bot-
tom half’s priority to that of the high priority process.
However, since the typical network device driver han-
dles packets in FIFO order, the bottom half is forced to
work through the backlog of the low-priority process’s
input before it gets to the packet destined for the high
priority process. This additional delay could be enough
to cause the high priority process to miss its deadline.
That would not have happened if the low-priority pack-
ets had been cleared out earlier, as if the device bottom
half had been able to preempt the middle-priority task.
In contrast, with our approach the bottom half still
handles incoming packets in FIFO order, but by exe-
cuting the bottom half in a server with a budget of high
priority time we are able to empty the incoming DMA
queue more frequently. This can prevent the scenario
above from occurring unless the input rate exceeds the
bottom-half server’s budgeted bandwidth.

7 Conclusion

We have described two ways to approach the prob-
lem of accounting for the preemptive interference ef-
fects of device driver tasks in demand-based schedula-
bility analysis. One is to model the worst-case inter-
ference of the device driver by a hyperbolic load-bound
function derived from empirical performance data. The
other approach is to schedule the device driver by an
aperiodic server algorithm that budgets processor time
consistent with the analytically derived load-bound
function of a periodic task. We experimented with
the application of both techniques to the Linux device
driver for Intel Pro/1000 Ethernet adapters.

The experimental data show hyperbolic load bounds
can be derived for base system activity, network receive
processing, and network transmit processing. Further,
the hyperbolic load bounds may be combined with an-
alytically derived load bounds to predict the schedula-
bility of hard-deadline periodic or sporadic tasks. We
believe this technique of using empirically derived hy-
perbolic load-bound functions to model processor inter-
ference may also have potential applications outside of
device drivers, to aperiodic application tasks that are
too complex to apply any other load modeling tech-
nique.

The data also show preliminary indications that
aperiodic-server scheduling algorithms, such as Spo-
radic Server, can be useful in balancing device driver
interference and quality of I/O service. This provides
an alternative in situations where neither of the two
extremes otherwise available will do, i.e., where run-
ning the device driver at a fixed high priority causes
unacceptable levels of interference with other tasks,

11

and running the device driver at a fixed lower prior-
ity causes unacceptably low levels of I/O performance.

In future work, we plan to study other device types,
and other types of aperiodic server scheduling algo-
rithms. We also plan to extend our study of empir-
ically derived interference bounds to include memory
cycle interference. As mentioned in this paper, our
load measuring task can execute out of cache, and so
does not experience the effects of memory cycle steal-
ing due to DMA. Even where there is no CPU inter-
ference, DMA memory cycle interference may increase
the time to complete a task past the anticipated worst-
case execution time, resulting in missed deadlines. We
plan to perform an analysis of DMA interference on
intensive tasks. By precisely modeling these effects,
increases in the execution time due to cycle stealing
will be known and worst-case execution times will be
more accurately predicted. Further, by coordinating
the DMA and memory intensive tasks, the contention
for accessing memory can be minimized.

References

[1] N. C. Audsley, A. Burns, M. Richardson, and A. J.
Wellings. Hard real-time scheduling: the deadline
monotonic approach. In Proc. 8th IEEE Workshop
on Real-Time Operating Systems and Software, pages
127–132, Atlanta, GA, USA, 1991.

[2] T. P. Baker and S. K. Baruah. Schedulability analysis
of multiprocessor sporadic task systems. In I. Lee,
J. Y.-T. Leung, and S. Son, editors, Handbook of Real-
time and Embedded Systems. CRC Press, 2007. (to
appear).

[3] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemp-
tively scheduling hard-real-time sporadic tasks on one
processor. Proc. 11th IEE Real-Time Systems Sympo-
sium, pages 182–190, 1990.

[4] L. L. del Foyo, P. Meja-Alvarez, and D. de Niz. Pre-
dictable interrupt management for real time kernels
over conventional PC hardware. In Proc. 12th IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS’06), pages 14–23, San Jose, CA,
Apr. 2006.

[5] P. Druschel and G. Banga. Lazy receiver processing
(LRP): a network subsystem architecture for server
systems. In Proc. 2nd USENIX symposium on oper-
ating systems design and implementation, pages 261–
275, Oct. 1996.

[6] T. Facchinetti, G. Buttazzo, M. Marinoni, and
G. Guidi. Non-preemptive interrupt scheduling for
safe reuse of legacy drivers in real-time systems. In
Proc. 17th IEEE Euromicro Conference on Real-Time
Systems, Palma de Mallorca, July 2005.

[7] S. Kleiman and J. Eykholt. Interrupts as threads.
ACM SIGOPS Operating Systems Review, 29(2):21–
26, Apr. 1995.

[8] J. P. Lehoczky, L. Sha, and J. K. Strosnider. En-
hanced aperiodic responsiveness in a hard real-time
environment. In Proc. 8th IEEE Real-Time Systems
Symposium, pages 261–270, 1987.

[9] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment.
Journal of the ACM, 20(1):46–61, Jan. 1973.

[10] J. W. S. Liu. Real-Time Systems. Prentice-Hall, 2000.
[11] J. Mogul and K. Ramakrishnan. Eliminating receive

livelock in an interrupt-driven kernel. ACM Transac-
tions on Computer Systems, 15(3):217–252, 1997.

[12] J. Regehr. Inferring scheduling behavior with Hour-
glass. In Proc. of the USENIX Annual Technical Conf.
FREENIX Track, pages 143–156, Monterey, CA, June
2002.

[13] J. Regehr and U. Duongsaa. Preventing interrupt
overload. In Proc. 2006 ACM SIGPLAN/SIGBED
conference on languages, compilers, and tools for em-
bedded systems, pages 50–58, Chicago, Illinois, June
2005.

[14] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions
for some practical problems in prioritizing preemptive
scheduling. In Proc. 7th IEEE Real-Time Sytems Sym-
posium, 1986.

[15] B. Sprunt, L. Sha, and L. Lehoczky. Aperiodic task
scheduling for hard real-time systems. Real-Time Sys-
tems, 1(1):27–60, 1989.

[16] J. Strosnider, J. P. Lehoczky, and L. Sha. The de-
ferrable server algorithm for enhanced aperiodic re-
sponsiveness in real-time environments. IEEE Trans.
Computers, 44(1):73–91, Jan. 1995.

[17] C. A. Thekkath, T. D. Nguyen, E. Moy, and E. La-
zowska. Implementing network protocols at user level.
IEEE Trans. Networking, 1(5):554–565, Oct. 1993.

[18] V. Yodaiken. The RTLinux manifesto. In Proc. 5th
Linux Expo, Raleigh, NC, 1999.

[19] Y. Zhang and R. West. Process-aware interrupt
scheduling and accounting. In Proc. 27th Real Time
Systems Symposium, Rio de Janeiro, Brazil, Dec. 2006.

Acknowledgment

The authors are grateful to Timesys Corporation for
providing access to their distribution of the Linux ker-
nel at a reduced price. We are also thankful to the
anonymous members of the RTAS 2007 program com-
mittee for their suggestions.

12

