
Modeling VANET Deployment in Urban Settings

Atulya Mahajana, Niranjan Potnisb, Kartik Gopalanc, Andy Wangb

aLehman Brothers, New York, NY, USA
bComputer Science, Florida State University, Tallahassee, FL, USA

cComputer Science, State University of New York at Binghamton, Binghamton, NY, USA
Contact: kartik@cs.binghamton.edu, awang@cs.fsu.edu

ABSTRACT
The growing interest in wireless Vehicular Ad Hoc Networks
(VANETs) has prompted greater research into simulation
models that better reflect urban VANET deployments. Still,
we lack a systematic understanding of the required level of
simulation details in modeling various real-world urban con-
straints. In this work, we developed a series of simulation
models that account for street layout, traffic rules, multi-
lane roads, acceleration-deceleration, and RF attenuation
due to obstacles. Using real and controlled synthetic maps,
we evaluated the sensitivity of the simulation results toward
these details. Our results indicate that the delivery ratio and
packet delays in VANETs are more sensitive to the cluster-
ing effect of vehicles at intersections and their acceleration-
deceleration. The VANET performance appears to be only
marginally affected by the simulation of multiple lanes and
careful synchronization at traffic signals. We also found that
the performance in dense VANETs improves significantly
when routing decisions are limited to a wireless backbone of
mesh nodes, whereas in sparse VANETs, performance im-
proves when vehicles also participate in ad hoc routing. Fi-
nally, through measurement and analysis of signal strengths
around urban city blocks, we show that the effect of signal
attenuation due to physical obstacles can potentially be pa-
rameterized in simulations. Our work provides a starting
point for further understanding and development of more
accurate VANET simulation models.
Categories and Subject Descriptors: C.2, I.6
General Terms: Measurement, Performance

1. INTRODUCTION
Wireless vehicular ad hoc networks (VANETs) consist of

vehicles traveling on urban streets, capable of communi-
cating with each other with/without the aid of a fixed in-
frastructure. VANETs have generated considerable research
and commercial interest with promising applications, such
as mobile communication, traffic monitoring, safety, and
public utility management. The current simulation models
used in popular wireless simulators such as NS-2 [15] tend
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to ignore real-world constraints. For example, the widely
used Random-Waypoint Model (RWM) [13] assumes that
the nodes move in an open field without obstructions and ig-
nores important factors such as street layouts, intersections
with traffic signs, or inter-vehicle interactions. Similarly, the
commonly used two-ray ground radio propagation model ig-
nores effects such as RF attenuation due to buildings and
other obstacles. Consequently, the simulation results are un-
likely to reflect the protocol performance in the real world.
In addition, a wide spectrum of VANET deployment scenar-
ios are possible ranging from pure vehicle-to-vehicle (V2V)
communication, routing through a fixed wireless mesh net-
work (WMN) backbone, or even a hybrid deployment of
V2V and mesh-based routing. These range of deployment
possibilities are not adequately captured by current models.

To address these limitations, researchers have become in-
terested in modeling ’realistic’ VANET deployments [7, 19,
22, 4, 10, 8, 24, 3, 12, 9]. Although these studies capture
different levels of simulation details and realism, existing
research has shed little light on the actual level of details
required and the sensitivity of simulation results to those
details. Excessive details may prolong the running time of a
simulation with little or no impact on the results, while too
few details invariably lead to inaccurate results.

This paper addresses the following question: what is the
sensitivity of VANET simulation results toward individual
modeling details? We aim to identify factors that signifi-
cantly affect the VANET performance, and also factors that
marginally affect the performance and could potentially be
ignored. We developed a series of simulation models that
systematically capture various urban constraints at increas-
ing levels of detail. Our purpose is not to advocate one
model over another, but to use them as a means to gain
better insights into the sensitivity of simulations results to
different levels of realism.

• Our results indicate that the clustering effect of vehi-
cles at intersections significantly affects the VANET
performance. Increasing either the wait times at the
intersections or the number of nodes lead to increased
clustering. Consequently, increased clustering can pro-
duce different results depending upon whether the neigh-
boring intersections are within or beyond each other’s
transmission range, the former leading to higher deliv-
ery ratios than the latter.

• We also find that VANET performance is sensitive to
physical topology (block sizes and street layouts) and
the acceleration and deceleration of vehicles.

• On the other hand, we find that adding additional



complexity to the models, such as simulating multiple
lanes and the synchronization of traffic lights, yields
marginal impact on VANET performance.

• Comparing two mesh-enhanced VANET deployment
strategies, we found that the delivery ratio in dense
VANETs improves when routing decisions are limited
to a wireless backbone of mesh nodes, whereas, in
sparse VANETs, the performance improves when ve-
hicles also participate in routing.

• We performed empirical signal strength measurements
around urban city blocks and analyzed the data to
show that the effect of signal attenuation due to obsta-
cles can potentially be parameterized in simulations.

We now describe a series of enhancements to VANET sim-
ulation models, each successive model capturing increasing
levels of detail.

2. STOP SIGN MODEL
In the Stop Sign Model, every street at an intersection has

a stop sign. Any vehicle approaching the intersection must
stop at the signal for a specified time, which is configurable.
On the road, each vehicle’s motion is constrained by the
vehicle in front of it. That is – a vehicle cannot move further
than the vehicle in front of it, unless it is a multi-lane road
and the vehicles are allowed to overtake each other. When
vehicles follow each other to a stop sign, they form a per-
street queue at the intersection. Each vehicle waits for at
least the required wait time once it gets to the head of the
intersection after other vehicles ahead in the queue clear
up. Vehicle crossings at the intersection are not coordinated
among different directions. Although in practice, an urban
layout is unlikely to have stop signs at every intersection,
this model does serve as a useful first step to understand
the effect of mobility dynamics on VANET performance.

3. PROBABILISTIC TRAFFIC SIGN MODEL
Next, we refined SSM by replacing stop signs with traf-

fic signals. Although it is possible to simulate the detailed
coordination of traffic lights from various directions, we did
not do so at this stage. The rationale was to understand
whether such levels of detail would produce a significant
impact on routing performance. As an intermediate step,
we developed the Probabilistic Traffic Sign Model (PTSM),
which approximates the operation of traffic signs by not co-
ordinating among different directions. When a node reaches
an intersection with an empty queue, it stops at the signal
with a probability p and crosses the signal with a probabil-
ity (1− p). If it decides to wait, the amount of wait time is
randomly chosen between 0 and w seconds. Any node that
arrives later at a non-empty queue will have to wait for the
remaining wait time of the previous node plus the startup de-
lay between queued cars. Whenever the signal turns green,
the vehicles begin to cross the signal at the delay interval,
until the queue becomes empty. The next vehicle to arrive
at the head of an empty queue again makes a decision to
stop with a probability p and so on. Like SSM, there is no
coordination among vehicles crossing an intersection from
different directions. This model reduces excessive stopping,
while approximating the behavior of traffic lights.

4. TRAFFIC LIGHT MODEL
SSM and PTSM coarsely model vehicular mobility. In or-

der to understand which other level of detail besides street

topology is absolutely essential, we further refined PTSM
with incremental levels of mobility details. We call this
model and its variants, the Traffic Light Model (TLM).

Coordinated traffic lights: Under TLM, traffic lights
at each intersection are coordinated. First, consider an in-
tersection with an even number of roads with single-lane
opposing traffic. The lights turn green for one pair of oppos-
ing sides at a time to cross the intersection simultaneously,
while the remaining lights stay red. Vehicles that need to
turn follow the free turn rule once they reach the head of
the queue. After a fixed period, green signals are rotated to
another pair of roads with opposing traffic. The case of an
odd number of roads meeting at an intersection (e.g., a T
intersection) is modeled by permitting one of the roads to
periodically have a green light by itself.

Acceleration and Deceleration: The next level of de-
tail we added to TLM was the acceleration and deceleration
of vehicles. With this feature, vehicles do not change their
state between rest and the top speed abruptly. Instead, they
accelerate gradually from rest up to the maximum speed.
Similarly, when approaching a stop sign or red light, they
decelerate gradually to a stop.

Multiple Lanes: Another feature of the TLM is the in-
troduction of multiple lanes. For real maps, the number of
lanes can be determined by the type of the road specified
in the street database. When a vehicle enters a new road,
e.g. when crossing or turning at an intersection, it selects
the lane with the least number of vehicles.

Generating Variants of TLM: To study the sensitivity
of VANET performance to mobility details, various features
of TLM can be independently enabled or disabled to obtain
different TLM variants. In particular, four variants of TLM
can be obtained by enabling or disabling the acceleration-
deceleration and multi-lane features. Hence, the basic TLM
with neither features still has one enhancement over PTSM,
namely the coordinated traffic lights.

5. MESH-ENHANCED DEPLOYMENT
We also implemented two alternative VANET deployment

models in urban settings, where a wireless multi-hop net-
work of stationary mesh nodes enables or supplements the
network connectivity among mobile nodes. Mesh nodes can
be strategically positioned at a subset of street intersec-
tions. Such a wireless backbone of mesh nodes can po-
tentially reduce churn in network connectivity and increase
route stability when the static mesh nodes participate in
the ad hoc routing protocol. We implemented and evalu-
ated two deployment scenarios: (1) mesh-enhanced peer-
to-peer routing (MEPPR) where both the mobile nodes
and static mesh nodes participate in routing, and (2) mesh-
enhanced infrastructural routing (MEIR) where only
the static mesh nodes route packets generated by the mo-
bile nodes. For both MEPPR and MEIR, the TLM mobility
pattern generator was altered to designate a subset of nodes
as mesh nodes that are positioned at street intersections and
remain stationary throughout the simulation.

6. MODELING OBSTACLES
Besides confining the vehicular movements to streets, phys-

ical obstacles also affect radio signal propagation through at-
tenuation, reflection, diffraction, and refraction. This is in
addition to the free-space attenuation of radio signals with
distance. Since a receiver needs a minimum signal-to-noise



 

Figure 1: Signal strengths (dBm) around a down-
town Tallahassee block. AP is the access point.

ratio to receive data, accounting for the obstacles is impor-
tant when evaluating VANETs through simulations.

Traditional analytical models have limitations in captur-
ing complex real-world factors that influence radio signal
strengths. Our approach is to use empirically measured data
from real urban settings to capture the impact of different
factors on radio signals in a few simulation parameters.

We measured the signal strength variation from a com-
modity access point around two city blocks in downtown
Tallahassee – including a 100m x 100m block with several
three-story buildings and a 200m x 50m block with one-
story buildings. We placed an 802.11b Linksys wireless ac-
cess point at a corner of the block being measured. We
then used the Wavemon [23] tool running on a Linux laptop
equipped with a wireless PCI card to take signal strength
measurements at various locations around the block. The
empirical data were composed of the distances from the ac-
cess point and the associated signal strength A logarithmic
transformation was performed on collected distances before
a linear regression was applied on the signal strength S (in
decibels/milliwatts or dBm), as a function of distance d (in
meters) [11]. Logarithmic linear regressions yielded the fol-
lowing formulas, with R2 (coefficient of determination) of
0.6836 and 0.9698, indicating that 68% and 97% of the vari-
ances in data are explained by these equations respectively.

Block1 : S = −25.809− 29.773 ∗ log(d) (1)

Block2 : S = −20.089− 33.012 ∗ log(d) (2)

From the structure of Equations 1 and 2, we can derive a
simplified parameterization of the received signal strength.

Pr = Pt + A−B log(d) (3)

Pr and Pt are the signal strengths (in dBm) at the receiver
and the sender respectively; d is the distance between the
two in meters, and A and B are tunable parameters (whose
significance we will explore below). Intriguingly, the prop-
agation models used in NS2 can also be represented in the
form of Equation 3. The NS2 propagation models are the
Friis model for free space and the two-ray ground model that
accounts for multipath reflection from the ground.

Friis : Pr(d) =
PtGtGrλ

2

(4π)2d2L
(4)

Two ray ground : Pr(d) =
PtGtGrh

2
t h

2
r

d4L
(5)

Pr(d) is the received power (watts) at distance d, Pt is the
transmit power (watts), Gt and Gr are antenna gains for
transmitter and receiver respectively, ht and hr are the an-
tenna heights for the transmitter and the receiver respec-
tively, L is the system loss, and λ is the wavelength. Both

Equations 4 and 5 could be represented in the form of Equa-
tion 3, after converting watts into dBm. The default values
of A and B in NS2 for the Friis model are A = −31 and
B = 20; for the two-ray ground model, A = 7.5 and B = 40.

Assuming that the received signal strength largely de-
pends on the presence of obstacles and the distance from
the sender, we can interpret A and B as follows. Parameter
A captures the constant factor reduction in signal strength
due to the presence of obstacles in a particular terrain. Pa-
rameter B captures the order of magnitude reduction in the
signal strength with the distance from sender, the order of
magnitude being determined by nature of the obstacles. We
will refer to A as the constant factor and B as the distance
factor in the remainder of the paper.

Of course, the actual values of A and B would be quite
different for various urban settings, and even across different
regions within a single urban setting. Regardless, these two
parameters give us convenient knobs to capture and explore
the effect of obstacles in VANET simulations.

7. IMPLEMENTATION
The mobility models are implemented as independent C++

programs that output mobility files, which serve as input to
the NS2 simulations. The initial vehicle positions and their
destinations are uniformly random. Each vehicle follows the
shortest path to its destination. Upon reaching a destina-
tion, the vehicle begins its journey to another random des-
tination. Each model takes a time parameter (in seconds).
For SSM, this parameter denotes the duration each vehicle
stops at intersections; for PTSM it denotes the maximum
duration that each vehicle stops at the head of empty in-
tersections; for TLM, it denotes the green light duration for
each opposing pair of roads at an intersection. PTSM and
TLM have a 1s vehicle startup delay.

The street topology is specified in a file that stores the
road identifiers and the starting and ending road coordi-
nates. All roads are modeled as bidirectional roads. SSM
and PTSM assume a single lane in each direction of every
road, whereas TLM provides the option for modeling multi-
ple lanes. In SSM and PTSM, vehicles always travel within
5 miles/hour of the street speed limit. TLM has a slightly
different mechanism with vehicles accelerating from rest to
reach the speed limit, and then decelerating to stops. The
acceleration and deceleration rates were 3 meter/second2.

Implementations of MEPPR, MEIR, and obstacle mod-
els used the TLM mobility model. MEPPR and MEIR in-
volved enhancing the NS2 simulator. The identity of the
mesh nodes and their positions are specified from a separate
file. Mesh nodes were positioned at a subset of street inter-
sections chosen using the uniform random distribution. The
implementation of MEPPR reuses AODV’s implementation
in NS2, which allows every node to participate in routing
decisions. However, the MEIR deployment required changes
in AODV to ensure that only the mesh nodes participate in
routing and forwarding, whereas mobile nodes act as sources
and destinations. For modeling obstacles, NS2’s radio prop-
agation model is modified according to Equation 3, such that
parameters A and B can be configured.

8. PERFORMANCE EVALUATIONS
Table 1 summarizes the default values of parameters using

NS-2 simulator [15]. We compared SSM, PTSM, TLM, the
Random Waypoint Model (RWM) [13] and the Rice Uni-
versity Model (RUM) [19]. RWM captures mobility in an



Parameter Default Value(s)
Simulation Time 900s (plus 450s warmup)
Routing Protocol AODV
Transmit Range 250m

Number of Nodes 100
CBR Sources 4 pkts/sec and 64 byte pkt

Mobility Models RWM, RUM, SSM, PTSM, TLM
Topologies 1200 × 1200m Grid, Real Map

Max. Wait Time SSM–3s, PTSM–30s(p = 0.5), TLM–30s
Max. Node Speed 35 mph

Accel./Decel. 3 meters/sec2 for TLM

Table 1: NS2 Wireless Simulation Parameters

open field with no obstacles, roads, or intersections. RUM
simulates roads in a real map, but vehicles do not stop at in-
tersections. For controlled experiments, we varied the block
sizes in a grid topology over a 1200m × 1200m area. We
also used real world street maps extracted from the US Cen-
sus Bureau TIGER [21] database, which specifies road type,
speed limit, and number of lanes. Each simulation run lasted
900s, preceded by 450s warmup period. Each data point is
averaged over 5 to 10 different mobility patterns and node
placements to attain a 95% confidence interval.

8.1 Number of Mobile Nodes
This section compares various mobility models with vary-

ing numbers of mobile nodes in a 1200m×1200m grid topol-
ogy with a block size of 200m× 50m. Figures 2 and 3 com-
pare the delivery ratio and end-to-end delay among all mo-
bility models. SSM had a wait time of 3 seconds. PTSM had
a maximum wait time of 30 seconds. TLM switched signals
with a periodicity of 30 seconds and used two lanes in each
direction with acceleration-deceleration of vehicles enabled.

The results indicated that the RWM yields the lowest de-
livery ratio and the maximum end-to-end delay, for this par-
ticular topology. The range of performance variation across
various models highlights our point regarding the impor-
tance of fidelity of mobility models in VANET simulations.

We observe that the delivery ratio increases with the num-
ber of nodes, up to 100 nodes, as the connectivity of the com-
munication graph increases. Then the delivery ratio starts
decreasing as the number of nodes increases further. This
behavior is due to the increased channel contention as the
large number of nodes leads to a flood of control messages
in the network. The end-to-end delay in Figure 3 displays
the opposite trend: it first decreases as the number of nodes
increases, and then there is a sharp increase thereafter. We
also experienced certain NS2 constraints as the number of
nodes increased. The simulation time became a concern be-
cause we needed to explore a large parameter space. Also,
the resource requirements of memory and storage (for out-
put traces) became prohibitive. Additionally, with a large
number of nodes, the confidence intervals of performance
numbers widen significantly, further requiring more repeti-
tions to reduce the variance of the results. Unless specified,
we used 100 nodes in the remaining evaluations.

To understand the sensitivity of various mobility features
(e.g. multi-lane roads and acceleration-deceleration of ve-
hicles), we repeated the same experiment on TLM, with
combinations of features enabled/disabled (Figure 4). The
results indicate that acceleration-deceleration led to a sig-
nificant increase in the delivery ratio because this feature
reduces the average speed of vehicles. Thus, network routes
are more stable. Additionally, the performance difference
between the single-lane and multilane models is not notice-
able below 100 nodes. However, with acceleration-deceleration
disabled, it becomes noticeable beyond 100 nodes as the

channel contention begins to rise. It is interesting to note
that, once the acceleration-deceleration is enabled, the dif-
ference between the single-lane and multi-lane models be-
comes negligible. At first glance, multiple lanes without
acceleration and deceleration differ from single lanes with-
out acceleration and deceleration. However, the confidence
interval is rather wide. After checking the average vehi-
cle speed (Figure 10), and the average percentage of nodes
moving at a given time (Figure 8), the two models appear
to have the same clustering effects at intersections with cars
moving at a similar average speed. Therefore, we believe
that the difference is largely within margins of statistical er-
rors. Thus, with our experimental settings, the additional
complexity of modeling multiple lanes does not seem to sig-
nificantly affect performance.

8.2 Maximum Speed and Wait Times
We varied the maximum speed limit of vehicles in Figure 5

and observed that mobility models that place greater restric-
tions on node movement yield higher delivery ratios. One
such restriction is the wait time at intersections. To further
understand this effect, we varied the maximum wait time
of nodes at intersections (Figure 6). The results brought
out an interesting aspect of this study. As expected, the
RUM model yields the lowest delivery ratio due to its highly
dynamic pattern of mobility. However, in contrast to our
earlier experiments, SSM yields a higher delivery ratio com-
pared to PTSM. The reason is that SSM results in a more
static network than PTSM does, where nodes are forced
to stop at all intersections. On the other hand, PTSM
nodes at intersections decide with a 50% probability to wait.
The single-lane, no acceleration-deceleration TLM displays
a marginally lower delivery ratio than PTSM for the same
wait time because coordinated traffic lights provide a slightly
higher rate of churn compared to PTSM. However, the addi-
tion of multiple lanes and acceleration-deceleration to TLM
yields the highest delivery ratio among these models. This
result, combined with our earlier observation about negligi-
ble impact of modeling multiple lanes, suggests that the in-
troduction of acceleration-deceleration effectively slows down
the vehicle speeds most significantly and dampens the changes
in the network topology. However, these results are also de-
pendent upon other factors, such as block sizes, which we
will consider next.

8.3 Effect of Block Sizes
The block sizes in the topology play an important role in

determining the performance of VANETs. With large block
sizes, vehicles spend more time in traversing between inter-
sections; thus, nodes are mobile more often. This increased
mobility leads to a weakened connectivity in the network,
and a corresponding drop in the delivery ratio. To vali-
date this hypothesis, we conducted experiments with vary-
ing block sizes in a 1200m × 1200m area. Figure 7 largely
confirmed our hypothesis – as the block size increases, the
delivery ratio decreases. The RUM model is not sensitive to
block sizes, since nodes do not stop at intersections. With
the largest evaluated block, SSM outperforms PTSM due
to a lower churn rate of routes, illustrating the interplay
between block sizes and wait times in VANET simulations.

8.4 Analysis of Increased Mobility
The results of our experiments showed a distinct trend

between the performance of various mobility models -TLM
resulted in the highest delivery ratios, and the performance
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Figure 2: Delivery ratio vs. number
of mobile nodes.
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Figure 3: End-to-end delay vs. num-
ber of mobile nodes.
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Figure 4: Delivery ratio vs. number
of mobile nodes for TLM variants.
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Figure 5: Delivery ratio vs. maxi-
mum speed of vehicles.
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Figure 6: Delivery ratio vs. maxi-
mum wait time at intersections.
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Figure 7: Delivery ratio vs. increase
in block size.

did not degrade considerably with an increase in the num-
ber of mobile nodes; PTSM showed a higher delivery ra-
tio than SSM, and the throughput obtained through use
of these models was considerably higher than RUM. This
brings into context our hypothesis that varying the degree
of mobility (node speed) within these networks is the reason
for differing performance. In SSM, each node is forced to
stop at each intersection. On the other hand, PTSM nodes
stop only at non-empty intersections and some of the empty
intersections. However, the default wait times for PTSM
are higher as compared to SSM. This leads to a network
that is effectively more static when compared to SSM, with
better connectivity and corresponding performance improve-
ments. TLM eliminates the probabilistic behavior of traffic
lights and introduces acceleration and deceleration of vehi-
cles, which leads to an even more stable network. To gain a
detailed understanding, we identified metrics that measured
the mobility of the nodes and the clustering of vehicles at
intersections. The first metric provided us with a measure
of the fraction of nodes we expected to actually be mobile
at any given instant. The second metric was the extent of
clustering at intersections. The number of clusters of vehi-
cles could be treated as an effective number of nodes in the
network, since all the nodes in a cluster displayed similar
connectivity to nodes outside the cluster. The third metric
measured the average speed.
Average Number of Mobile Nodes: To compute this
metric we determined the number of nodes that are not
waiting in a queue at any intersection. We took samples
each second, averaged them over the simulated lifetime, and
represented the result as a percentage of total nodes.

The first observation is that for the same wait time, vary-
ing the number of nodes does not appear to affect the per-
centage of mobile nodes significantly. This implies that the
topology and wait time are more influential to the percent-
age of moving nodes compared to the number of nodes, up
to 400 nodes within a 1200m × 1200m area. Under simi-
lar conditions of wait time and topology, SSM is less mo-

bile when compared to PTSM as expected. The introduc-
tion of acceleration-deceleration of vehicles to TLM increases
the percentage of moving nodes in the network significantly,
as slower average speeds reduce the chance of nodes being
queued at intersections. To illustrate the effect of the wait
time, we also evaluated both PTSM and TLM with a similar
value of the wait time. The plots indicate that for the same
wait time of 10 seconds, PTSM is more mobile than SSM,
with PTSM having an average of 85% of the nodes moving
at any time compared to 68% for SSM.
Average Number of Clusters: Stopping of nodes at in-
tersections effectively creates many clusters all over the net-
work. Connectivity among the nodes within a cluster is near
perfect (minus the network contention effects). On the other
hand, if one node in the cluster cannot reach a distant node
outside the cluster, then most likely all nodes in the clus-
ter are unable to reach the same distant node. The number
of such clusters can be treated as the effective number of
(logical) nodes in the VANET at any time. Thus, we pos-
tulate that clustering has an effect similar to decreasing the
number of nodes in the network.

To estimate the number of effective nodes, we divided the
topology into 60m × 60m regions, counted the number of
regions containing at least a node each second, and took the
average. Figure 9 shows that when the number of nodes
increases, the number of effective nodes grows sub-linearly
as more nodes are clustered at intersections. TLM resulted
in a marginally greater number of effective nodes as com-
pared to PTSM, for a similar wait duration of 30 seconds.
This indicates a reduced clustering effect in TLM – a con-
sequence of the reduced average speeds of the vehicles. We
also studied the variation of this effect with the maximum
wait time at intersections. With a wait time of 10 seconds,
we observed that SSM with a wait time of 3 seconds resulted
in a similar value as that of PTSM, which is consistent with
our findings in Figure 8. Interestingly, we observed that
acceleration-deceleration and multiple lanes do not signifi-
cantly impact the difference in clustering level between the
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Figure 9: Clustering Effect: De-
creasing slope of plots indicates in-
creased clustering.
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Figure 10: Average speed for various
models.

various versions of TLM. This indicates that the difference
across TLM variants is mainly due to average speed.
Average Speed of Vehicles: We computed the average
speed for each vehicle as the ratio of the entire distance it
travels during the simulation and the simulated time (Fig-
ure 10). We observed that PTSM results in lower average
speeds compared to SSM, because of the longer wait times
involved at intersections. For TLM variants, the addition
of acceleration-deceleration leads to a significant decrease in
average speed, which translates into higher delivery ratios.
Also observe that TLM with multiple lanes does not notice-
ably affect the average speed compared to single lane.

8.5 Real Map Results
Having the insights into the various factors affecting VANET

performance in grid topologies, we conducted experiments
using real maps extracted from the TIGER database. We
performed a set of experiments using a smaller section of
the map used by RUM [19]. The original map was 2400m×
2400m, but the NS2 simulations at this size do not scale
due to the large number of nodes required (or conversely,
one needs to set unrealistic transmission ranges) to main-
tain meaningful delivery ratios. To address this problem,
RUM [19] used a transmission range of 500 meters, which
we considered to be too large for our settings. Hence, we
decided to maintain the original default NS-2 setting of 250
meters transmission range, with a truncated map size of
1200m× 1200m. In our experiments using this map, we ob-
served that the delivery ratio for each model increased with
the number of nodes up to 100 nodes, followed by a rapid
degradation in performance thereafter. However, the per-
formance using TLM remained constant up to almost 200
nodes. These results reconfirm our understanding regarding
the correlation between topology and mobility, and between
the mobility and performance.

For another experiment, we extracted a map of Tallahas-
see, over an area of 2000m × 2000m. The results in this
case were different from what we had seen so far, owing to
a much larger area as compared to the first map. In this
experiment, we were able to observe the effect of network
partitioning due to the large area and the initial low den-
sity of nodes. This effect was also strengthened due to the
stoppages enforced by our mobility models – once a node is
in the waiting state at an intersection, it is highly likely to
communicate with other nodes in other intersections due to
the large size of the map. The delivery ratios were initially
very low with a small number of nodes, and the performance
actually improved as the number of nodes was increased up
to 200. This was in contrast to the results obtained with
the smaller map, where the performance went down with an
increase in the number of nodes, perceivably due to network

saturation. This reinforces our observation that these simu-
lation results must be analyzed with the topology in mind.
However, our basic understanding remains valid. The de-
livery ratio with TLM still remains higher than that with
PTSM, SSM, and RUM due to a lower network churn.

8.6 Mesh-Enhanced VANET
In this section, we try to understand the performance of

MEPPR and MEIR, without considering obstacles. Figure
11 shows the effects of varying the number of mobile nodes
on the delivery ratios and end-to-end delay in the MEPPR
deployment scenario. The two plots correspond to fixed
number of mesh nodes at 171 mesh nodes (one per inter-
section) and 40 (approximately 23% of intersections). For
171 mesh nodes, as the number of nodes participating in the
routing process increases and the network becomes dense,
the resulting channel contention increases. Consequently,
the delivery ratio of MEPPR deployment degrades. On the
other hand, with only 40 mesh nodes, the MEPPR deploy-
ment maintains a high delivery ratio (and low end-to-end
delay) with the addition of mobile nodes. To rule out the
performance degradation due to only the total number of
mobile and static nodes, we also extended the number of
mobile nodes to 170 (not shown in the plot) and observed
no significant performance degradation with only 40 mesh
nodes. These results confirm our hypothesis that the chan-
nel access contention generated by the number of nodes par-
ticipating in the routing process is an important factor in
VANET’s performance.

Figure 12 show the effects of increasing the number of
mobile nodes on the delivery ratio under the MEIR deploy-
ment. We again used 171 and 40 mesh nodes. The plot
shows that the delivery ratio does not vary significantly for
either setting as the number of mobile nodes increases. Since
the mobile nodes do not participate in the routing process
(they are merely sources and sinks for data packets), and
the mesh nodes that participate in routing decisions are sta-
tionary, the resulting routes are much more stable than in
MEPPR routes. MEIR routes change only when the mobile
endpoints move out of range of their immediate mesh node.

Interestingly, in the sparser case of 40 mesh nodes in
MEIR, since the mobile nodes do not participate in the rout-
ing process, the resulting network coverage and connectiv-
ity is poorer than the case of 171 MEIR mesh nodes (in
Figure 12) and 40 MEPPR mesh nodes (in Figure 11. Con-
sequently, the delivery ratio is also lower (around 90%).

Figure 13 shows the effect of varying the number of sta-
tionary mesh nodes, with fixed the number of mobile nodes
(30 or 35). Since both mesh nodes and mobile nodes perform
routing, a relatively small number of mobile nodes combined



with mesh nodes can achieve good routing coverage and
delivery ratio. On the other hand, too many mesh nodes
severely limit the number of mobile nodes due to channel
contention. This is seen in the case of 35 mobile nodes and
171 mesh nodes in the above graphs.

Figure 14 shows how the number of mesh nodes affects the
delivery ratios with MEIR. Clearly, a sufficient number of
mesh nodes are needed to achieve good routing coverage and
delivery ratio. However, MEIR scales better when compared
to MEPPR because the routes are more stable, resulting in
fewer route breakages, route discovery, and recovery events.

Thus, in a dense network, where the total number of nodes
is high, MEPPR deployment can lead to decreased perfor-
mance as a result of channel contention. In this case, the
MEIR deployment scenario is preferable. In addition, MEIR
deployment can scale better with increased network loads.
On the other hand, in a sparse network with a smaller num-
ber of nodes, MEPPR deployment provides better routing
coverage and higher connectivity.

8.7 Obstacle Representation
Figure 15 shows how obstacle factor A in Equation 3 af-

fects network performance for both routing configurations.
An increasingly negative value of obstacle factor A should
lead to a decrease in signal strength at receivers and lower
performance. This is observed when A < -35 for both rout-
ing configurations. The default value of A in the NS2 prop-
agation model is -31, which corresponds to a total absence
of obstacles. However, it is interesting to note that in the
MEPPR deployment scenarios, when A > -15, performance
degrades. For such a negative value of obstacle factor A, the
signal strength at the receiver is high enough to cause un-
wanted reception and interference among these receptions.
This is not observed for MEIR because the static mesh nodes
maintain a fixed distance from one another throughout the
simulations. Figure 16 shows how the distance factor B
in Equation 3 affects network performance for both mesh-
enhanced routing configurations. A more positive value of
distance factor B should reduce signal strength at receivers
and decrease performance. This is observed in cases of val-
ues of B > 21 for both routing configurations. However,
MEPPR deployment performs better as compared to MEIR
deployment. This is the result of the mobile nodes’ partici-
pation in routing to enhance connectivity and coverage. For
a high value of distance factor, network connectivity is still
better in the MEPPR deployment as more nodes are reach-
able through the mobile nodes. Thus, we see that obsta-
cles could potentially be represented in network simulation
through a few key parameters. MEPPR improves coverage
and network performance in the presence of obstacles.

9. RELATED WORK
To date, studies in the fields of mobility modeling, obstacle

modeling, and mesh networks have been largely performed in
isolation. To the best of our knowledge, our work is the first
attempt to synthesize and systematically evaluate the indi-
vidual/combined effects of various factors on urban VANET
deployment. In contrast to earlier works, the focus of our
paper is not to recommend any one model over another but
to understand and evaluate the performance impact and sig-
nificance of various factors on VANET simulations.

The most used mobility model in literature is the Random
Waypoint Model (RWM) [13]. Every node selects a random
destination and speed and then moves to that destination

with the chosen speed, pauses, and then moves again to an-
other random destination. Other similar open-field models
include the Random Walk, Random Direction Model and
the Boundless Simulation Area Model [2]. Camp [2] ob-
served that the spatial distribution of nodes in such models
is toward the center of the simulation area. [1, 16] have at-
tempted to improve RWM to make it more realistic, though
not within the context of VANETs. Bai [7] introduced the
Freeway and Manhattan mobility models on roads specified
through maps. A vehicle’s path from an intersection was de-
cided using a fixed probability. The vehicles did not pause,
stop, or queue up at intersections. Saha et al. [19] modeled
mobility of vehicles on real street maps, obtained from the
TIGER database [21]. Their model, which we call RUM in
this paper, does not enforce any traffic rules with the result-
ing performance similar to RWM. We used RUM as one of
the base cases for comparison. Choffnes and Bustamante [4]
recently introduced a vehicular mobility model for urban
environments. With their simulators configured to generate
delivery ratios between 0.05 and 0.3, they observed that the
network performance in such a network was significantly dif-
ferent from the RWM. Our evaluations confirmed their find-
ings regarding the correlation between network performance
and the simulated topology. Additionally, our evaluations
in this paper used reasonable parameter settings to gener-
ate delivery ratios over 90% that are within the usable range.
Because the model was implemented in the SWANS simula-
tor, it was difficult to evaluate it without significant porting
effort to NS2. [10] proposed several theoretical models like
city area, area zone, and unit street. [6] points out that
these models lack specific details for actual node movement
calculations. Proprietary tools for modeling transportation
systems are also available [17, 24, 5], though their details
are not fully understood.

While wireless mesh networks have been studied exten-
sively in isolation, we evaluate their impact on urban VANETs
using realistic mobility models. Microsoft [20] has proposed
self-organizing community mesh networks. RoofNet [18] pro-
vides broadband Internet access to residential subscribers.
Motorola has proposed mesh-based network solutions for in-
telligent transport systems and communication [14].

The effect of obstacles on wireless networks is relatively
little studied. [3] points out that commonly used radio prop-
agation models for indoor MANET evaluations are highly
inaccurate and relative protocol performance varies highly
depending upon the model. [12] models a terrain by spec-
ifying the shapes and sizes of obstacles. The effect of ob-
stacles on signal propagation is determined by a static table
based on the type of obstacle. [9] presented the principles
of a WCDMA radio network simulator that accounts for
path-loss, shadowing, and fast fading effects in radio signal
propagation. In contrast to earlier efforts, our work uses
empirical measurements around urban city blocks to derive
a parameterized model that can be tuned to study the effect
of obstacles on radio signal propagation in VANETs.

10. CONCLUSIONS
Simulation models play a critical role in the evaluation

of Vehicular Ad Hoc Networks (VANETs). In this paper,
we have systematically evaluated the sensitivity of various
modeling details on VANETs through step-by-step imple-
mentation of details in the mobility, radio propagation, and
deployment models in urban settings. We proposed a series
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Figure 11: Delivery ratio vs. num-
ber of mobile nodes in MEPPR.
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Figure 12: Delivery ratio vs. num-
ber of mobile nodes in MEIR.
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0 20 40 60 80 100 120 140 160 180 200
Mesh Nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
el

iv
er

y 
R

at
io

30 mobile nodes
35 mobile nodes

Figure 14: Delivery ratio vs. num-
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Figure 15: Delivery ratio vs. obsta-
cle factor A in Equation 3.
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tance factor B in Equation 3.

of simulation models that account for various urban con-
straints such as street layout, traffic rules, multi-lane roads,
acceleration-deceleration, and RF attenuation due to obsta-
cles. Our evaluations, using both real and controlled syn-
thetic maps, provide many interesting insights. VANET per-
formance is sensitive to the clustering of vehicles at intersec-
tions and acceleration-deceleration of vehicles. Simulation
of multiple lanes and synchronization at traffic signals only
marginally impact VANET performance. However, model-
ing of multiple lanes might be fundamental to applications
such as Forward Collision Warning and Lane Change Assis-
tance systems, which we do not consider. In dense VANETs,
performance improves significantly when routing decisions
are limited to a wireless backbone of mesh nodes compared,
whereas in sparse VANETs, performance improves when ve-
hicles also participate in ad hoc routing. Finally, we mea-
sured signal strengths around urban city blocks and showed
that the effect of signal attenuation due to obstacles can
potentially be parameterized via empirical real-world mea-
surements. Our evaluations provide a starting point to un-
derstand and develop better VANET simulation models.
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