

Quantifying Temporal and Spatial Localities
in Storage Workloads and Transformations by Data Path Components

Cory Fox, Dragan Lojpur, and An-I Andy Wang
Florida State University, Department of Computer Science, 253 Love Building,

Tallahassee, FL 32306, USA.
{fox, lojpur, awang}@cs.fsu.edu

Abstract

 Temporal and spatial localities are basic concepts in
operating systems, and storage systems rely on localities to
perform well. Surprisingly, it is difficult to quantify the
localities present in workloads and how localities are
transformed by storage data path components in metrics
that can be compared under diverse settings.

In this paper, we introduce stack- and block-affinity
metrics to quantify temporal and spatial localities. We
demonstrate that our metrics (1) behave well under
extreme and normal loads, (2) can be used to validate
synthetic loads at each stage of storage optimization, (3)
can capture localities in ways that are resilient to
generations of hardware, and (4) correlate meaningfully
with performance.

Our experience also unveiled hidden semantics of
localities and identified future research directions.

1. Introduction

 To increase performance, modern storage consists of
many data path components, from the front-end file system
cache and disk layout management to the back-end disk
controller cache and on-disk caching. Various components
generally exploit the temporal and spatial localities in
workloads to achieve performance gain. However, how
localities of a workload are transformed through individual
optimizations is not well understood, resulting in designs
that are more reflective of the understanding of the front-
end workload than that of the locality characteristics
immediately before the component. The problem worsens
as the storage data path components proliferate over time.
 This research aims to develop metrics that quantify
temporal and spatial localities in workloads as well as
transformations by various data path components. These
metrics can help us understand (1) how front-end
workloads (e.g., references sent from a user-level
application to the operating system) stress back-end data

path components (e.g., disks), (2) how synthesized front-
end workloads have different effects within the data path
from the original workloads from which they are derived,
and (3) how each storage component shapes localities.
 Although conceptually simple, quantifying localities in
the context of a storage data path is challenging for many
reasons: (1) Storage components such as the file system
cache can introduce internal system traffic due to
prefetching, buffered writes, page replacement policies,
metadata accesses, and system events that are sensitive to
physical time and memory resources. Therefore, the
accesses before one storage component do not always have
a one-to-one mapping to the accesses after a storage
component. (2) The semantics of locality depend on the
granularity of analysis. At a high level, accesses can be
analyzed in files and directories (although internal storage
components do not operate at these granularities). At a low
level, accesses can be analyzed in blocks and sectors.
Locality computed based on the distance between adjacent
references to files is likely to be poorer than locality based
on the distance between references to blocks, since many
blocks are referenced sequentially within files. (3) Locality
metrics need to be comparable across workloads and
system environments. A workload that exhibits a “90%
spatial locality” on a 50-GB drive should exhibit
meaningful behaviors when applied to a 100-GB drive.
 Existing quantifications of locality are largely
performed within the context of caching. Studies on
temporal and spatial localities also exist independently.
However, there are limitations. The popular metric of the
cache-hit rate [21] measures the effectiveness of various
caching policies, but the metric is not applicable when
evaluating data path components such as the disk
scheduler. Commonly used stack and block distances [4]
can measure how temporal and spatial localities are
transformed by caches. However, they are highly sensitive
to various system settings, and are difficult to use to
compare workloads from different environments. Some
studies evaluate the effects of caching algorithms and cache
sizes on the reference stream using analytical and

simulation methods. However, these analyses often
exclude the effects of traffic internal to a storage system
[18]. Researchers have also studied tiered cache
management [3, 12, 22], but their focus remained on
improving I/O efficiency within a system, not on making
measured effects comparable across workloads and
environments.
 This paper proposes two affinity metrics to evaluate
how data path components transform workloads in terms of
temporal and spatial localities. Through analysis of
workloads with extreme locality characteristics, as well as
applying normal workloads on different data path
components under different environments, we were able to
show that our metrics behave well, are meaningful when
comparing workloads from different environments, and
reflect performance characteristics. Our exploration further
unveiled the intricacy of locality concepts and identified
research directions to refine our metrics.

2. Background & related work

 This section highlights the existing ways to quantify
temporal and spatial localities.

2.1. Spatial locality

 For disk-based storage, spatial locality measures the
degree to which data objects stored in the physical vicinity
of one and other are used together (i.e., within a short
timeframe), since accessing nearby objects is faster on
disks. Although the mapping of logical disk blocks to
physical sectors and the timing behavior of modern disks
are not straightforward [2], good spatial locality can be
often achieved by accessing logical disk blocks
consecutively.
 Interestingly, spatial locality is a by-product of physical
disk layout policies, which are governed by file systems.
Therefore, spatial locality measures how well a workload
matches the underlying disk layout. That is, should a
workload make references to random disk blocks, and
should the disk layout pack those blocks contiguously in
the same random order, the spatial locality of this workload
is high. However, sequential access of randomly stored
disk blocks exhibits poor spatial locality.
 Most file systems exploit spatial localities in three ways:
(1) sequentially accessed disk blocks are stored
contiguously [14], (2) files stored in the same directory are
collocated [13], and (3) disk blocks are prefetched,
assuming that most accesses are sequential [16, 4]. Given
these assumptions, the “spatial locality” of a workload is
often measured in block distance.
 With knowledge of the underlying disk layout, block
distance measures the differences in block numbers
between adjacent references. Figure 2.1 shows that the

first reference has a block distance initialized to the block
number (i.e., 1,000). If block 4,000 is referenced next, its
block distance is 3,000. Thus, the spatial locality of a
workload is the average block distance for all references.
A smaller average indicates a better spatial locality.
 Block distance is sensitive to the number of unique data
objects referenced in a workload. Suppose analyses are
performed at the granularity of a 4-KB block and a 256-KB
block. Two identical reference streams that request 256-
KB at a time can yield very different block distance
numbers. The average block distance based on 4-KB
blocks may be 64 times higher than that computed in 256-
KB blocks. The a priori knowledge that both workloads
are identical allows us to trivially convert the block
distance based on one block size into the distance of
another. However, such knowledge is not always available.
Should published numbers only present block distance in
arbitrary block sizes, results obtained would not be easily
comparable.

Block distance is also sensitive to access patterns with
different block ranges, which are in many cases a by-
product of the disk size. Therefore, if workload A (perhaps
with a large disk) contains the 10 block references 1, 2, 3,
4, 5, 1001, 1002, 1003, 1004, and 1005, the average block
distance is 100.5. If workload B (perhaps with a small
disk) contains the 10 block references 1, 50, 100, 150, 200,
250, 300, 350, 400, and 450, the average block distance is
45. Based on the averages, one can conclude that workload
B has a better spatial locality, while workload A has more
references made to adjacent blocks. Therefore, it is
difficult to use block distance alone to compare workloads
running in different environments.

Figure 2.1. Block distance calculation.

2.2. Temporal locality

 Temporal locality measures how frequently the same
data object is accessed. Temporal locality exhibited in
workloads is crucial for many storage optimizations (e.g.,
caching) and thus is an essential characteristic to quantify.
 One common metric to measure temporal locality is
stack distance [17], defined as the number of references to
unique data objects before referencing the same object.
Since our proposed metrics are built on this concept, we
shall detail it further.
 Suppose the granularity of a reference is a file, and the
algorithm begins with an empty stack. When a file is first

1000 4000 2000 6000

1000 3000 2000 4000

block read

block distance

1000 4000 2000 6000

1000 3000 2000 4000

Time

referenced, it is pushed onto the top of the stack. The stack
distance for this reference is either infinite or a pre-defined
Max (> maximum number of unique files). Whenever a
file is accessed again, the depth (> 0) of the file in the stack
is the stack distance. The referenced file is then removed
from the stack and pushed onto the top of the stack again.
 To illustrate, Figure 2.2 begins with an empty stack
(NULL). File A is referenced for the first time, its stack
distance becomes Max, and the stack now contains one file
(A). Files B and C then are referenced consecutively for
the first time, and the stack distance for each is again Max;
B and C are each pushed onto the top of stack in order of
reference, and the stack now contains three files (C, B, A).
At this point, if file B is referenced, the stack distance of
this reference is 1, which is the depth of File B. File B then
is removed from the stack, and pushed onto the top of stack
(B, C, A). A low average stack distance across all
references in a workload indicates a good temporal locality.
While stack distance can quantify the temporal locality of a
workload, it has limitations. First, similar to block
distance, stack distance is sensitive to the granularity of
analysis (e.g. file vs. 4-Kbyte blocks vs. 512-byte sectors).
 Second, while the lowest possible stack distance is 0,
the Max value is not bounded. To one extreme, when Max
>> the total number of unique data objects, the average
stack distance approaches (Max*the number of unique data
objects)/the number of references, reflecting little about the
ordering of the data references. Although some variants of
stack distance computation omit first-time references, it
becomes problematic when a significant fraction of the
references are first-time (e.g., Web workloads).

Third, since stack distance is sensitive to Max, the
number of unique data objects, and the total number of
references, the resulting average stack distance has no
reference point other than 0 and an arbitrary Max to
indicate whether a workload exhibits good temporal
locality. The metric is mostly useful when performing
relative comparisons between two workloads under similar
settings and applied to similar environments. When a
given workload is exercised in different environments, the
results represented by this metric are not comparable.

Figure 2.2. Sample stack distance.

2.3. Effectiveness of caching

Locality has been widely studied within the context of
caching. However, the fact that we are still seeing major
storage innovations based on exploiting locality reflects
ample opportunities to advance this area [7, 11, 5, 23]. In
particular, few studies address the issue of quantifying
localities. A popular metric is the cache-hit ratio, which is
computed by dividing the number of references served
from the cache by the total number of references, in either
files or blocks. Variants of cache-hit ratios are used to
compare various caching policies [9, 3].
 Cache-hit ratios can reveal information such as the
working set size. However, a high cache-hit ratio can be
caused by a cache size greater than the working set size,
effective caching policy, or good temporal locality within a
workload. Therefore, this metric provides confounding
information on how a workload is transformed in terms of
spatial and temporal localities. Most important, cache-hit
ratios cannot be applied to analyze non-cache-related
storage data path components (e.g., disk scheduler).

2.4. Effects of cache transformations

 The effects of cache transformations have also been
studied in distributed systems. For example, the concept of
log-based file systems was introduced based on the
observation that the client cache absorbs the majority of
reads, leaving the write-mostly traffic to the server side
[16]. Multi-tiered coordinated caching examines how to
remove unwanted interactions between cache layers [12,
22].
 Not until recently has the size of caches become
sufficiently large for standalone machines [20], and their
transformations on temporal and spatial localities have thus
become an area of research interest. [24] examined the
effects of L1 and L2 caches on memory references. Our
study extends this study to the entire storage data path.
 Temporal and spatial localities in Web reference
streams have been analyzed using stack distance and the
number of unique sequences, respectively [1]. Although
our studies share similarities in methodology, we focus on
the transformations at various data path locations.
 Researchers have advocated a more thorough analysis of
real-world workloads before creating accurate synthetic
workloads [19, 15]. Hsu et al. [9] introduced a way of
viewing reference streams. By plotting a referenced
address modulo 32MB against the access number, they
demonstrated differences between real-world workloads
and synthetically generated ones.

A B C B A

A

B

A

B

A

C

A

C

B

C

B

A

Max Max Max 1 2

reference stream

stack

stack distance
Time

2.5. Aggregate statistics

 Various high-level statistics are used to characterize the
localities of a workload [1, 15]. For example, a workload
can be analyzed for the average number of bytes referenced
per unit of time, which can be decomposed into bytes from
unique block locations, or unique bytes [6]. The ratio of
unique bytes to total bytes can be used to quantify temporal
locality, in terms of how often bytes are repeatedly
referenced.
 One concern is that very different reference patterns can
yield similar aggregate statistics, which is particularly
pronounced in synthetic workloads that mimic real-life
workloads via matching aggregate statistics [9]. For
example, synthetic workloads often match well with
aggregate statistics before the file system cache, but their
after-cache behavior can deviate from the after-cache
behavior of the real-life workload significantly, as
demonstrated in this paper.

3. Affinity metrics

 We propose two metrics to measure temporal and
spatial localities of workloads—stack affinity and block
affinity respectively.

()diststack
affinitystack

_10log
1_

10 +
= (1)

)_10(log
1_

10 distblock
affinityblock

+
= (2)

Although our metrics seem simple and are built on existing
stack and block distances, our metrics ease comparing
different workloads in different environments.
Conceptually, locality is inversely proportional to the
orders of magnitude changes in stack and block distances.
The rationale reflects the exponential speed of hardware
evolution and how certain performance metrics (e.g., cache
hit rate) improve linearly as the system resources increase
exponentially (e.g., memory size) [15]. We will first
demonstrate the inherent characteristics of these metrics,
and use them to measure how storage data path components
transform localities.
 Resiliency to different maximum values: One
drawback of distance metrics is the high sensitivity to the
maximum value due to first-time references and the size of
the disk. To reduce such sensitivity, we first move the
distance metrics to the denominator. So, large distance
values due to various causes push locality metrics toward a
common minimum 0, which means poor locality.
Additionally, we take a logarithmic weighting of the
distance, to achieve two effects. (1) Since hardware
improvements in terms of performance, disk/cache
capacity, and cost are exponential, the logarithmic function

dampens the computed affinity differences due to nearby
generations of hardware. For example, referencing a block
200 GB away on a disk degrades spatial locality just as
significantly as referencing a block 500 GB away. (2)
First-time references skew the affinity numbers only in a
limited way, such that the resulting affinity values still
largely depend on the ordering of references.
 Boundary conditions: Another drawback of distance
metrics is the difficulty in interpreting locality when the
maximum value is not bounded and specific to
environments. With affinity metrics, we can describe
localities between 0% (poorest) and 100% (highest). The
addition of 10 to the denominator makes the minimum
value of denominator 1 when either the stack distance or
block distance is 0, which represents 100% in both metrics.
 References that lead to good locality behavior are more
exponentially weighted based on the observed relationships
between performance metrics and available system
resources [15]. Recall Section 2.1, workloads with good
localities may exhibit worse original distance values than
those of workloads with poor localities. Consider the same
example from Section 2.1: with the block-affinity metric,
the reference stream on blocks 1, 2, 3, 4, 5, 1001, 1002,
1003, 1004, and 1005 yields a 90% spatial locality, while
the reference stream on blocks 1, 50, 100, 150, 200, 250,
300, 350, 400, and 450 on a small disk yields a 61% spatial
locality. These numbers are more reflective of how
adjacent disk blocks are referenced as opposed to the
differences in block ranges.
 Granularity of analyses: Although our simple
alterations of the stack and block distance metrics
overcome many existing limitations, affinity can yield very
different numbers for different granularity of analyses.
Above the operating system, logged references are directed
to files and directories, although the storage data path
operates in blocks. Our current solution is to convert the
analysis granularity to blocks, which is the highest common
denominator between the two. (Note that we do not
preclude the possibility of analyzing reference affinities at
the level of physical data locations on the disk).
 This conversion requires locating file blocks on the disk.
However, in many cases, there is no one-to-one mapping of
the referenced blocks, which poses challenges when
applying our metrics to evaluate data path components such
as file system caching. First, the file system cache
generates internal references to the storage systems; thus,
reference blocks after cache may have no corresponding
reference before cache. One example is the prefetching of
consecutive blocks into the cache in anticipation of
sequential access patterns. Another is the committing of
modified memory content to the disk when the available
memory is running low. Second, references to cached
content may not have corresponding after-cache references.
For example, reads (and sometimes writes) to cached data

and resolved cached file path components will not yield
after-cache references. Thus, the total number of unique
data requests can be different across individual data path
components, which is captured by our affinity metrics.

4. Evaluation

 Our experiments included (1) stressing affinity metrics
under workloads with extreme temporal and spatial
localities, (2) observing affinity metrics under normal trace
replays, (3) applying affinities to compare characteristics of
a trace-replayed workload and a synthetic workload based
on the trace, (4) studying the sensitivity of affinity metrics
across nearby generations of hardware, (5) correlating
affinity and performance metrics, and (6) testing affinity
metrics under workloads from more environments.
 To see the locality transformations by the entire storage
data path, we gathered the affinity values at the data path
front end before going through the file system cache, and at
the back end before requests are forwarded to disk. To see
the effects of individual optimizations, we could selectively
disable optimizations. To illustrate the effects of disk
scheduling, we could bypass file system caching.
Additionally, we can minimize the effects of write-back
policies by using a read-mostly workload.
 Web workloads: We gathered HTTP access logs from
two Web servers; one from the Department of Computer
Science at Florida State University (FSU) between
11/14/2004 and 12/7/2004 and the other from the
Laboratory of Advanced Systems Research at UCLA,
between 5/8/2005 and 6/7/2005. We selected the week
with the most bytes referenced. Table 1 summarizes the
chosen workloads.
 For each log, we also obtained the file system snapshot,
which consists of all files, directories, and links as well as
their i-node creation, modification, and access timestamps.
Before replaying our traces, we recreated each file system
in the order of their creation dates.
 The Web workloads were replayed on two machines,
one acting as a server and the other as a client (Table 2).
The server hosted an Apache 2.2.2 Web server while
HTTP requests were generated via a multi-threaded replay
program running on the client machine. Each thread
corresponded to a unique IP address.

To accelerate the evaluation process, we sped up the
trace replay by a constant factor derived using the
following method. (1) We replayed the trace with a zero-
time delay between references to measure the maximum
speed-up factor. (2) We divided this factor by two, and
approximated it with the nearest power of two. With this
method, we sped up both traces by a factor of 128.

The front-end reference stream data were captured on
the server side. To extract file and directory block
numbers, we used debugfs provided by ext2. In

addition, we had to account for the implicit traffic
generated during path resolutions when applying our
affinity metrics for analysis. For example, a reference to
/dirA/file1 involves a reference to / and /dirA
before referencing /dirA/file1.

Table 1. Workload characteristics.
 FSU UCLA Desktop OS-

class
Bytes referenced 4.3 GB 19 GB 50 GB 2.0 GB
Unique bytes
 referenced

133 MB 668 MB 11 GB 1.5 GB

Number of requests 150K 841K 13M 532K
Mean interarrival
 time

4.03 secs 3.08 secs 3.16
msec

27.9
msec

Table 2. Experimental hardware configurations.
 Server Client

Processor 2.8GHz Pentium 4,
 1024-KB cache

2.4GHz Intel Xeon
 512-KB cache

RAM 512-MB Netlist DDR
 PC3200

2-GB Micron DDR
 PC2100

Disks 2 160-GB 7200-RPM
 Seagate Barracuda
 7200.7

40-GB 7200-RPM
 Maxtor 6E040l0

Network Intel 82547Gi Gigabit
 Ethernet Controller

Intel 82545EM
Gigabit
 Ethernet Controller

Operating system Linux 2.6.5 Linux 2.6.16.16
File system Ext2 0.5b Ext2 0.5b

 We monitored bios, which are the Linux internal
representations of block requests. We timestamped a bio
in generic_make_request() in ll_rw_blk.c
before it was submitted to the I/O scheduler. When the
bio returned and called its finalization code, we logged
the start time, end time, and block number in the memory
and dumped them at the end of the replay. We set aside
preallocated memory for logging, specified as a kernel
parameter in grub.conf, to ensure the same memory
size setting as the original Web servers.
 Software development workloads: We gathered
traces from machines used for operating system research
and undergraduate course projects at FSU. The former
desktop trace was taken from 8/20/07 to 8/22/07, and
contained 32K processes. The latter OS-class trace was
gathered from 3/8/07 to 3/14/07, and contained 33K
processes. Unlike the read-mostly Web traces, these
desktop traces consist of both read and (up to 24%) write
activities.
 We used Forensix [8] to gather front-end traces, which
required a different playback system. The file system
recreation and block mapping steps are identical to the
Web workload ones. However, replaying was performed
only on the server, with one process created for each
process in the trace. We sped up both traces by 32 times.
 For data gathering, the front-end references were logged
as the system replays. Each process kept its own list of

files referenced and bytes accessed. On replay completion,
these file references, including path resolutions, were
mapped to the block level. The back-end reference stream
data were recorded by reusing the Web logging framework.
 We used the front-end reference stream to calculate the
blocks referenced during the trace. For the backend, we
used the blocks reported by our modified kernel.
 Metrics: In addition to affinity metrics, we also
measured the bandwidth and latency. The backend was
measured right before the block I/O was sent to the storage
device and as soon as the block I/O returned. The latency
was measured on a block-by-block basis.
 For the front end, the latency and bandwidth could be
measured based on either the requested data only
(excluding metadata) or all blocks related to a data request
(including metadata). To align the front-end measurement
with the back, we chose the latter. The front-end
bandwidth and latency for the Web workloads were
measured on the client, and include network effects, while
the software-development measurements were performed
on the server. The performance numbers reflect the end-
user experience.

5. Extreme localities

To understand the dynamic range of our metrics when
being transformed by the entire storage data path, we
synthesized workloads to exercise all combinations of high
and low temporal and spatial localities. These workloads
are based on the FSU trace, so the affinity values can be
compared with regular FSU replays. Although these loads
are read-mostly, they serve as a starting point to understand
the rich locality behaviors. As a further simplification,
these replays were single-threaded. The synthesized load
has the total number of references equal to that of the FSU
trace. The request timing is based on an exponential
distribution, with the mean set to the average interarrival
time of the FSU trace. Figure 5.1 summarizes the median
affinity values for various locality settings. We used the
median since the lack of back-end traffic sometimes leads
to 0 affinity values.

High temporal and spatial localities: To achieve high
spatial and high temporal localities, we created two 1-MB
files in / and read those files alternatively and repeatedly.
 Figure 5.1 shows that the front-end stack and block
affinities are about 0.77 and 0.73, respectively. The front-
end stack affinity was higher than expected, given that each
file sequentially accessed 256 4-KB blocks should result in
affinity ~0.4. It turned out that repeated references to ext2
i-nodes and indirect index blocks improved the temporal
affinity.

However, the front-end block affinity was not as high as
the expected value, which would be close to 1 for all
sequential accesses. This is because accessing a file also

involves referencing directories in the file path. Although
we created our files in / to minimize directory lookups, for
the purpose of accounting, each front-end file reference
still involves looking up /, which is not stored near the
files, thus, driving down the front-end block affinity
significantly.
 The back-end affinities show values above the 0.95
range. This value is slightly misleading since frequent
directory traversal causes directories to be cached, leaving
mostly timestamp updates to the disk.
 High temporal locality and low spatial locality: For
this workload, we created a reference stream that reads the
two files with the lowest and highest logical block
numbers.
 Figure 5.1 shows that the front-end stack affinity was
0.72; block affinity, 0.22. The back-end stack affinity
increased to 0.94, while the block affinity increased to
0.56.
 Low temporal locality and high spatial locality: This
case is achieved by reading files in the order of increasing
block numbers, while references within a file remain
sequential. Figure 5.1 shows that the front-end stack
affinity was 0.41; block affinity, 0.47. The back-end stack
affinity was 0.01 and block affinity, 0.94.
 Low temporal and spatial localities: One way to
generate a workload with poor localities is to shuffle the
reference ordering of files randomly in the FSU trace.

Figure 5.1 shows that the front-end stack and block
affinities were 0.62 and 0.22, respectively. The front-end
stack affinity is relatively high, suggesting that temporal
locality is inherent in the file systems’ hierarchical naming
structure. Also, the random reference stream does not
generate the worst-case locality, because the previous
scenario shows worse front-end stack affinity numbers.
The back-end stack- and block-affinity values were 0.00
and 0.17, respectively.

0
0.2

0.4
0.6

0.8
1

high
temporal
& spatial
localities

high
temporal

& low
spatial

localities

low
temporal

& high
spatial

localities

low
temporal
& spatial
localities

front-end stack affinity

front-end block affinity

backend stack affinity

backend block affinity

Figure 5.1. Affinities for combinations of
temporal and spatial localities, at the front
end (before file system cache) and backend
(before disk) of a storage data path.

Overall: The dynamic range of affinity can capture
both high and low values for temporal and spatial
localities. Front-end stack affinity values tend to reflect the

directory structure captured by the trace, while the back-
end affinity values can span the entire dynamic range.

6. Web workloads

 Understanding how affinity metrics behave under
extreme localities enables us to better interpret the numbers
under the FSU and UCLA Web workloads. Figure 6.1
shows affinity values over time. The affinity values are
averaged (within each hour) because our notion of locality
is inversely correlated with the average orders of
magnitude changes in stack and block distances. The front-
end affinity values are in the mid-range, with high back-end
block affinity and low back-end stack affinity. In reference
to Figure 5.1, the Web workload displays the case of low
temporal and high spatial localities. The back-end stack
affinity increases over time as compulsory misses taper, but
its growth appears to be asymptotic. We confirmed that the
compulsory misses within Web traces are more uniformly
scattered throughout the trace.

Figure 6.2 shows affinities for the UCLA trace. The
front-end stack affinity was 0.74, which is higher than the
FSU case. The variance of affinity typically reflects the
number of references. In this case, the UCLA front end has
eight times more references per interval than the FSU case.
Also, front-end affinity numbers typically have a lower
variance compared to the backend because the number of
references in the backend tends to be orders of magnitude
lower than the front end due to caching. The front-end
block affinity was only 0.28, which is lower than the FSU
case, also with a lower variance.

0

0.2

0.4

0.6

0.8

1

0 50 100

hours

front-end stack affinity

front-end block affinity

back-end stack affinity

back-end block affinity

Figure 6.1. Affinities for the FSU trace.

0

0.2

0.4

0.6

0.8

1

0 50 100

hours

front-end stack affinity

front-end block affinity

back-end stack affinity

back-end block affinity

Figure 6.2. Affinities for the UCLA trace.

7. Trace vs. synthetic workloads

 Affinity metrics enable us to verify the fidelity of
synthetic workloads against trace replays, beyond the front-
end aggregate statistics. Figure 7.1 shows affinities over
time for the low temporal and spatial locality case, based
on random shuffling of references in the FSU trace used in
Section 6. This synthesis technique also preserves many
front-end aggregate statistics (e.g., file size distribution).
 Since the frequency of referencing popular files is
preserved, the synthesized load can preserve front-end
stack affinity. However, random shuffling of references
degrades front-end block affinity significantly. The
uniform distribution of references significantly increases
the number of references for many time intervals, resulting
in lower variance of affinities throughout. This uniformity
also fails to capture how real world workloads can change
significantly from hour to hour.

The back-end stack affinity values diverge over time as
the number of back-end references decreases. Unlike the
original trace, toward the end of the trace, we saw more
repeated references to the popular blocks for timestamp
updates, and fewer compulsory misses (Figure 7.2).
 The back-end and front-end block affinities shared
similar initial values, reflecting initial compulsory misses.
The back-end block affinity then declined asymptotically to
0.20 as most directory and metadata blocks are cached 60
hours into the trace.

0

0.2

0.4

0.6

0.8

1

0 50 100

hours

front-end stack affinity

front-end block affinity

back-end stack affinity

back-end block affinity

Figure 7.1. Affinities for the synthetically
generated FSU trace.

0

0.5

1

1.5

2

2.5

3

3.5

1 10 100 1000

log(hours)

log(comp
misses)

Figure 7.2. Compulsory misses over time
show a log-log-linear relationship in a Web
trace with randomly shuffled references.

In addition, the back-end affinity numbers reveal that
the front end and the backend of a system reach steady
states at different times. Studies conducted without this
awareness can yield misleading results and system designs.

8. Portability of affinities

To show the portability of affinity metrics across
neighboring generations of hardware, we recreated the file
system snapshots according to the file creation dates, on
hard drives with 40 GB and 160 GB. With a larger drive,
we verified that the data blocks were stored over a larger
range of block locations. Although the range of reference
data block increased by 4 times, Figure 8.1 shows affinity
characteristics that are very similar to those in Figure 6.1,
suggesting our logarithmic transformations in the metrics
enable us to characterize traces in a way that is more
resilient to the exponential rate of hardware evolutions.

0

0.2

0.4

0.6

0.8

1

0 50 100

hours

front-end stack affinity

front-end block affinity

back-end stack affinity

back-end block affinity

Figure 8.1: Affinities for the FSU trace with 4
times the disk size.

9. Affinity vs. performance

To demonstrate the relationship between our affinity
metrics and performance, we measured the locality
transformation by the default anticipatory disk scheduler
[10] in Linux 2.6.5. We replayed the FSU traced blocks
with multiple threads on the server, with the O_DIRECT
flag to bypass file system caching. The anticipatory
scheduler attempts to reduce ‘deceptive idleness’ by
waiting for additional requests from a process before
switching to requests from another process. Without this
style of scheduling the localities inherent in a program
would be broken up by request switching.

The baseline comparison is the noop scheduler, which
sends disk requests in a FIFO order. To ensure sufficient
requests for reordering, we replayed the FSU traces with
zero-think-time delays. To provide a fuller context, we
compared these results with the normal FSU replay
(Section 6) with half of the zero-think-time speed-up factor,
and with both the file system cache and the anticipatory
scheduler running.

Figures 9.1, 9.2, and 9.3 show that the noop scheduler
had the same front-end and back-end affinity values and

performance numbers, since the scheduler performs no
transformations on locality. The anticipatory scheduler
improved the stack affinity by 10% and block affinity by
54%. Interestingly, although the back-end bandwidth
increased by 111%, the front-end bandwidth improved by
only 18%. In terms of latency, the improvement is by two
orders of magnitude, reflecting a significant reduction in
disk seeks due to switching requests among processes.

0
0.2
0.4
0.6
0.8

1

noop
scheduler,
zero-think
time replay

anticipatory
scheduler,
zero-think
time replay

anticipatory
scheduler +
file system

cache,
maximum
speedup/2

front-end stack affinity

front-end block affinity

backend stack affinity

backend block affinity

Figure 9.1: Affinities for FSU trace replay
under different configurations.

0

1

2

3

4

noop
scheduler,

zero-think time
replay

anticipatory
scheduler,

zero-think time
replay

anticipatory
scheduler + file
system cache,

maximum
speedup/2

bandwidth
(MB/sec)

front-end

backend

Figure 9.2: Bandwidth for FSU trace replay
under different configurations.

0
1
2
3
4
5

noop
scheduler,

zero-think time
replay

anticipatory
scheduler,

zero-think time
replay

anticipatory
scheduler +
file system

cache,
maximum
speedup/2

latency (sec)
front-end

backend

Figure 9.3: Latency for FSU trace replay
under different configurations.

For the third case, the FSU trace replay speed was
halved, effectively reducing the number of concurrent
request streams and the probability of sequential requests
being fragmented due to request multiplexing. As a result,
front-end spatial affinity was 50% better than that of the
noop scheduler. Surprisingly, front-end stack affinity is
less sensitive to the ordering of requests compared to block
affinity. As long as the number of unique blocks
referenced within a time frame is within a similar order of
magnitude, stack affinity would not change much. On the

other hand, minor reordering of requests to distant block
locations can change block affinity significantly.

The enabled file system caching absorbed 45% of stack
affinity from the front, and sequential prefetches improved
spatial affinity in the backend by another 31%.

In terms of performance, caching improved bandwidth
by 16 times. The front-end latency of the original FSU
replay is not directly comparable due to the inclusion of the
network component. The significant latency variance can
be attributed to either the network or the low back-end
stack affinity. The lack of opportunities for the
anticipatory scheduler to reorder requests due to slowed
replay allowed only 34% latency improvement over the
noop case.

Overall, back-end block affinity correlates with
improved bandwidth. While back-end stack affinity does
not seem to contribute to bandwidth, poor back-end stack
affinity seems to introduce high variance to latency.
Intriguingly, front-end and back-end affinities are poorly
correlated.

10. Read & write workloads

 Web traces show how affinity metrics interact with read-
mostly workloads. The next step is to understand the
behaviors of affinities with the presence of writes.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

hours

front-end stack affinity

front-end block affinity

back-end stack affinity

back-end block affinity

Figure 10.1. Affinities for the desktop trace.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

hours

front-end stack affinity

front-end block affinity

back-end stack affinity

back-end block affinity

Figure 10.2. Affinities for the OS-class trace.

Figures 10.1 and 10.2 show the behavior of affinity
metrics under software development workloads. In both
cases, the front-end affinities were high, which have not
been observed in the read-mostly workloads. One
explanation is that Web accesses mostly read files in their
entirety. In the software development environment, writes

are often made to the same block (e.g., compilation),
resulting in high block and stack affinities.

Interestingly, the back-end stack affinity was relatively
high in both cases compared to the Web traces, reflecting
synchronous write-through activities (e.g., updating
directory blocks). The correlation coefficients between
front-end and back-end stack affinities for the OS-class
trace and the desktop trace were 0.20 and 0.86
respectively.

11. Lessons learned

Although temporal and spatial localities are basic concepts
in the OS arena, our attempt to quantify localities illustrates
that we do not know locality as well as we think.
 First, cache-hit rates, aggregate statistics, stack distance,
and stack affinity actually do not capture the notion of time.
Therefore, two consecutive references to the same object,
spaced one month apart, can still be considered to exhibit
good temporal locality. Interestingly, this property was not
obvious until we replayed traces at different speeds.

Second, ironically, spatial locality is more sensitive to
replay speeds because of the interruption of sequential
transfers due to switching among concurrent reference
streams. While our initial observation is not conclusive,
future investigation will help us better understand the
intricate effects caused by trace accelerations.
 Third, spatial locality defines how well the reference
stream matches the back-end disk layout. Therefore, when
we quantify the spatial locality in a workload, we assume
disk layout optimizations shared by common file systems.
 Fourth, in many cases locality transformations are
relevant only with a sufficient volume of I/O requests.
Otherwise, optimizations such as disk scheduling cannot
effectively shape the reference localities.
 Fifth, we originally thought temporal and spatial
localities can capture workload characteristics and data
path optimizations well, but we have just begun to grasp
the rich behaviors of workloads and data path interactions.
Our experience suggests that the element of time is
captured by neither locality metric, which warrants future
investigations. Also, optimization concepts such as data
alignment would not fit well with our metrics, unless we
incorporate the notion of distance with the intricate timing
of storage devices.
 Finally, the community is well aware of the difficulty of
building per-trace-format scripts and replay mechanisms,
handling corrupted data entries, analyzing data sets with a
large number of attributes and possible transformations,
and extracting meaningful trends with limited help from
automation. Still, developing empirical metrics based on
workloads from diverse environments will remain a
difficult task for the foreseeable future.

12. Conclusion

 In this paper, we have proposed and demonstrated the
use of stack and block affinities to quantify temporal and
spatial localities. Through extreme workloads, two Web
server workloads, and two software development
workloads, affinity metrics behave well, and provide
meaningful comparisons across diverse workloads and
environments. Moreover, affinity values can be correlated
to performance and, thus can reveal how data path
components, such as the IO scheduler, contribute to the
overall performance gain.
 We have illustrated how affinity metrics can be used to
evaluate the fidelity of workload generators beyond the
front-end aggregate statistics. We also discovered the
richness of semantics behind localities and research
directions to better characterize storage workloads and data
path transformations.

Acknowledgments

We thank Kevin Eustice for providing the UCLA trace
and Ashvin Goel for providing the Forensix tool. We also
thank Peter Reiher, Geoff Kuenning, and Mark Stanovich
for reviewing early drafts of this paper. This research was
sponsored by the FSU FYAP Award and the FSU Planning
Grant. Opinions, findings, and conclusions or
recommendations expressed in this document do not
necessarily reflect the views of FSU or the U.S.
government.

References

[1] Almeida V, Bestavros A, Crovella M, deOliveira A.

Characterizing Reference Locality in the WWW. Technical
Report. UMI Order Number: 1996-011., Boston University,
1996.

[2] Anderson D. You Don’t Know Jack about Disks. Queue. 1(4),
2003.

[3] Chen Z, Zhang Y, Zhou Y, Scott H, Schiefer B. Empirical
Evaluation of Multi-level Buffer Cache Collaboration for
Storage Systems. Proc. of the 2005 ACM SIGMETRICS, June
2005.

[4] Cherkasova L, Ciardo G, Characterizing Temporal Locality
and Its Impact on Web Server Performance, Proc. of
ICCCN'2000, October 2000.

[5] Ding X, Jiang S, Chen F, Davis K, Zhang X. DiskSeen:
Exploiting Disk Layout and Access History to Enhance I/O
Prefetch. Proc. of the 2007 USENIX Annual Technical Conf.,
June 2007

[6] Ferrari D. On the Foundations of Artificial Workload Design.
Proc. of the 1984 ACM SIGMETRICS, 1984.

[7] Gill B, and Modha D. WOW: Wise Ordering for Writes—
Combining Spatial and Temporal Locality in Non-volatile
Caches. Proc. of the 4th USENIX Conf. on File and Storage
Technologies, 2005.

[8] Goel A, Feng WC, Maier D, Feng WC, Walpole J. Forensix:
A Robust, High-Performance Reconstruction System. Proc.
of the 2nd International Workshop on Security in Distributed
Computing Systems, June 2005.

[9] Hsu WW, Smith AJ, Young HC. I/O Reference Behavior of
Production Database Workloads and the TPC Benchmarks—
An Analysis at the Logical Level. ACM Trans. on Database
Systems. 26(1), pp. 96-143, March 2001.

[10] Iyer S, Druschel P, Anticipatory Scheduling: A Disk
Scheduling Framework to Overcome Deceptive Idleness in
Synchronous I/O. Proc. of the 18th ACM SOSP, October
2001

[11] Jiang S, Ding X, Chen F, Tan E, Zhang X. DULO: An
Effective Buffer Cache Management Scheme to Exploit both
Temporal and Spatial Localities. Proc. of the 4th USENIX
Conf. on File and Storage Technologies, Dec 2005.

[12] Li X, Aboulnaga A, Salem K, Sachedina A, Gao S. Second-
tier cache management using write hints. Proc. of the 4th
Conf. on USENIX Conf. on File and Storage Technologies,
September 2005.

[13] McKusick MK, Joy WN, Leffler SJ, Fabry RS, A Fast File
System for UNIX, ACM Trans. on Computer Systems 2(3),
pp. 181-197, August 1984.

[14] Ritchie D, Thompson K, The UNIX Time-Sharing System,
Communications of ACM 7(7), July 1974

[15] Roselli D, Lorch J, Anderson T. A Comparison of File
System Workloads. Proc. of the 2000 USENIX Annual
Technical Conf., June 2000.

[16] Rosenblum M, Ousterhout J, The LFS Storage Manager
Proc. of the 1990 Summer USENIX, June 1990.

[17] Spirn JR. Program Locality and Dynamic Memory
Management. Ph.D Dissertation, Dept. of Elec. Eng.,
Princeton Univ., 1973.

[18] Vanichpun S, Makowski AM, The Output of a Cache under
the Independent Reference Model – Where did the Locality of
Reference Go?, Proc. of the 2004 SIGMETRICS, June 2004.

[19] Wang AIA, Kuenning G, Reiher P, Popek G. The Effects of
Memory-rich Environments on File System
Microbenchmarks, Proc. of the 2003 International
Symposium on Performance Evaluation and Computer
Telecommunication Systems, July 2003.

[20] Wang AIA, Kuenning G, Reiher P, Popek G. The Conquest
File System: Better Performance through a Disk/Persistent-
RAM Hybrid Design. ACM Trans. on. Storage 2(3), pp. 309-
348, 2006.

[21] Williams S, Abrams M, Standbridge CR, Abdulla G, Fox
EA, Removal Policies in Network Caches for World Wide
Web Documents, Proc. of the ACM SIGCOMM, August
1996.

[22] Wong TM, Wilkes J. My Cache or Yours? Making Storage
More Exclusive. Proc. of the General Track: 2002 USENIX
Annual Technical Conf., June 2002.

[23] Yadgar G, Factor M, and Schuster A. Karma: Know-it-all
Replacement for a Multilevel Cache. Proc. of the 5th USENIX
Conf. on File and Storage Technologies, February 2007.

[24] Zhou Y, Chen Z, Li K Second-Level Buffer Cache
Management. IEEE Trans. on. Parallel and Distributed.
Systems. 15(6), pp. 505-519, June 2004.

