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Abstract 
 

 Temporal and spatial localities are basic concepts in 
operating systems, and storage systems rely on localities to 
perform well.  Surprisingly, it is difficult to quantify the 
localities present in workloads and how localities are 
transformed by storage data path components in metrics 
that can be compared under diverse settings.   

In this paper, we introduce stack- and block-affinity 
metrics to quantify temporal and spatial localities.  We 
demonstrate that our metrics (1) behave well under 
extreme and normal loads, (2) can be used to validate 
synthetic loads at each stage of storage optimization, (3) 
can capture localities in ways that are resilient to 
generations of hardware, and (4) correlate meaningfully 
with performance. 

Our experience also unveiled hidden semantics of 
localities and identified future research directions. 
 
 
1. Introduction 
 
 To increase performance, modern storage consists of 
many data path components, from the front-end file system 
cache and disk layout management to the back-end disk 
controller cache and on-disk caching.  Various components 
generally exploit the temporal and spatial localities in 
workloads to achieve performance gain.  However, how 
localities of a workload are transformed through individual 
optimizations is not well understood, resulting in designs 
that are more reflective of the understanding of the front-
end workload than that of the locality characteristics 
immediately before the component.  The problem worsens 
as the storage data path components proliferate over time. 
 This research aims to develop metrics that quantify 
temporal and spatial localities in workloads as well as 
transformations by various data path components.  These 
metrics can help us understand (1) how front-end 
workloads (e.g., references sent from a user-level 
application to the operating system) stress back-end data 

path components (e.g., disks), (2) how synthesized front-
end workloads have different effects within the data path 
from the original workloads from which they are derived, 
and (3) how each storage component shapes localities. 
 Although conceptually simple, quantifying localities in 
the context of a storage data path is challenging for many 
reasons:  (1) Storage components such as the file system 
cache can introduce internal system traffic due to 
prefetching, buffered writes, page replacement policies, 
metadata accesses, and system events that are sensitive to 
physical time and memory resources.  Therefore, the 
accesses before one storage component do not always have 
a one-to-one mapping to the accesses after a storage 
component.  (2) The semantics of locality depend on the 
granularity of analysis.  At a high level, accesses can be 
analyzed in files and directories (although internal storage 
components do not operate at these granularities).  At a low 
level, accesses can be analyzed in blocks and sectors.  
Locality computed based on the distance between adjacent 
references to files is likely to be poorer than locality based 
on the distance between references to blocks, since many 
blocks are referenced sequentially within files.  (3) Locality 
metrics need to be comparable across workloads and 
system environments.  A workload that exhibits a “90% 
spatial locality” on a 50-GB drive should exhibit 
meaningful behaviors when applied to a 100-GB drive. 
 Existing quantifications of locality are largely 
performed within the context of caching.  Studies on 
temporal and spatial localities also exist independently.  
However, there are limitations.  The popular metric of the 
cache-hit rate [21] measures the effectiveness of various 
caching policies, but the metric is not applicable when 
evaluating data path components such as the disk 
scheduler.  Commonly used stack and block distances [4] 
can measure how temporal and spatial localities are 
transformed by caches.  However, they are highly sensitive 
to various system settings, and are difficult to use to 
compare workloads from different environments.  Some 
studies evaluate the effects of caching algorithms and cache 
sizes on the reference stream using analytical and 



simulation methods.  However, these analyses often 
exclude the effects of traffic internal to a storage system 
[18].  Researchers have also studied tiered cache 
management [3, 12, 22], but their focus remained on 
improving I/O efficiency within a system, not on making 
measured effects comparable across workloads and 
environments.  
 This paper proposes two affinity metrics to evaluate 
how data path components transform workloads in terms of 
temporal and spatial localities.  Through analysis of 
workloads with extreme locality characteristics, as well as 
applying normal workloads on different data path 
components under different environments, we were able to  
show that our metrics behave well, are meaningful when 
comparing workloads from different environments, and 
reflect performance characteristics.  Our exploration further 
unveiled the intricacy of locality concepts and identified 
research directions to refine our metrics. 
 
2. Background & related work 
 
 This section highlights the existing ways to quantify 
temporal and spatial localities.   
 
2.1. Spatial locality 
 
 For disk-based storage, spatial locality measures the 
degree to which data objects stored in the physical vicinity 
of one and other are used together (i.e., within a short 
timeframe), since accessing nearby objects is faster on 
disks.  Although the mapping of logical disk blocks to 
physical sectors and the timing behavior of modern disks 
are not straightforward [2], good spatial locality can be 
often achieved by accessing logical disk blocks 
consecutively.  
 Interestingly, spatial locality is a by-product of physical 
disk layout policies, which are governed by file systems.  
Therefore, spatial locality measures how well a workload 
matches the underlying disk layout.  That is, should a 
workload make references to random disk blocks, and 
should the disk layout pack those blocks contiguously in 
the same random order, the spatial locality of this workload 
is high.  However, sequential access of randomly stored 
disk blocks exhibits poor spatial locality.   
 Most file systems exploit spatial localities in three ways:  
(1) sequentially accessed disk blocks are stored 
contiguously [14], (2) files stored in the same directory are 
collocated [13], and (3) disk blocks are prefetched, 
assuming that most accesses are sequential [16, 4].  Given 
these assumptions, the “spatial locality” of a workload is 
often measured in block distance.   
 With knowledge of the underlying disk layout, block 
distance measures the differences in block numbers 
between adjacent references.  Figure 2.1 shows that the 

first reference has a block distance initialized to the block 
number (i.e., 1,000).  If block 4,000 is referenced next, its 
block distance is 3,000.  Thus, the spatial locality of a 
workload is the average block distance for all references.  
A smaller average indicates a better spatial locality.   
 Block distance is sensitive to the number of unique data 
objects referenced in a workload.  Suppose analyses are 
performed at the granularity of a 4-KB block and a 256-KB 
block.  Two identical reference streams that request 256-
KB at a time can yield very different block distance 
numbers.  The average block distance based on 4-KB 
blocks may be 64 times higher than that computed in 256-
KB blocks.  The a priori knowledge that both workloads 
are identical allows us to trivially convert the block 
distance based on one block size into the distance of 
another.  However, such knowledge is not always available.  
Should published numbers only present block distance in 
arbitrary block sizes, results obtained would not be easily 
comparable. 

Block distance is also sensitive to access patterns with 
different block ranges, which are in many cases a by-
product of the disk size.  Therefore, if workload A (perhaps 
with a large disk) contains the 10 block references 1, 2, 3, 
4, 5, 1001, 1002, 1003, 1004, and 1005, the average block 
distance is 100.5.  If workload B (perhaps with a small 
disk) contains the 10 block references 1, 50, 100, 150, 200, 
250, 300, 350, 400, and 450, the average block distance is 
45.  Based on the averages, one can conclude that workload 
B has a better spatial locality, while workload A has more 
references made to adjacent blocks.  Therefore, it is 
difficult to use block distance alone to compare workloads 
running in different environments. 

 
Figure 2.1. Block distance calculation. 

  
2.2. Temporal locality 
 
 Temporal locality measures how frequently the same 
data object is accessed.  Temporal locality exhibited in 
workloads is crucial for many storage optimizations (e.g., 
caching) and thus is an essential characteristic to quantify. 
 One common metric to measure temporal locality is 
stack distance [17], defined as the number of references to 
unique data objects before referencing the same object.  
Since our proposed metrics are built on this concept, we 
shall detail it further.   
 Suppose the granularity of a reference is a file, and the 
algorithm begins with an empty stack.  When a file is first 
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referenced, it is pushed onto the top of the stack.  The stack 
distance for this reference is either infinite or a pre-defined 
Max (> maximum number of unique files).  Whenever a 
file is accessed again, the depth (> 0) of the file in the stack 
is the stack distance.  The referenced file is then removed 
from the stack and pushed onto the top of the stack again.  
 To illustrate, Figure 2.2 begins with an empty stack 
(NULL).  File A is referenced for the first time, its stack 
distance becomes Max, and the stack now contains one file 
(A).  Files B and C then are referenced consecutively for 
the first time, and the stack distance for each is again Max; 
B and C are each pushed onto the top of stack in order of 
reference, and the stack now contains three files (C, B, A).  
At this point, if file B is referenced, the stack distance of 
this reference is 1, which is the depth of File B.  File B then 
is removed from the stack, and pushed onto the top of stack 
(B, C, A).  A low average stack distance across all 
references in a workload indicates a good temporal locality. 
While stack distance can quantify the temporal locality of a 
workload, it has limitations.  First, similar to block 
distance, stack distance is sensitive to the granularity of 
analysis (e.g. file vs. 4-Kbyte blocks vs. 512-byte sectors).   
 Second, while the lowest possible stack distance is 0, 
the Max value is not bounded.  To one extreme, when Max 
>> the total number of unique data objects, the average 
stack distance approaches (Max*the number of unique data 
objects)/the number of references, reflecting little about the 
ordering of the data references.  Although some variants of 
stack distance computation omit first-time references, it 
becomes problematic when a significant fraction of the 
references are first-time (e.g., Web workloads).   

Third, since stack distance is sensitive to Max, the 
number of unique data objects, and the total number of 
references, the resulting average stack distance has no 
reference point other than 0 and an arbitrary Max to 
indicate whether a workload exhibits good temporal 
locality.  The metric is mostly useful when performing 
relative comparisons between two workloads under similar 
settings and applied to similar environments.  When a 
given workload is exercised in different environments, the 
results represented by this metric are not comparable. 

 
Figure 2.2. Sample stack distance. 

 
 
 

2.3. Effectiveness of caching 
 
Locality has been widely studied within the context of 
caching.  However, the fact that we are still seeing major 
storage innovations based on exploiting locality reflects 
ample opportunities to advance this area [7, 11, 5, 23].  In 
particular, few studies address the issue of quantifying 
localities.  A popular metric is the cache-hit ratio, which is 
computed by dividing the number of references served 
from the cache by the total number of references, in either 
files or blocks.  Variants of cache-hit ratios are used to 
compare various caching policies [9, 3].   
 Cache-hit ratios can reveal information such as the 
working set size.  However, a high cache-hit ratio can be 
caused by a cache size greater than the working set size, 
effective caching policy, or good temporal locality within a 
workload.  Therefore, this metric provides confounding 
information on how a workload is transformed in terms of 
spatial and temporal localities.  Most important, cache-hit 
ratios cannot be applied to analyze non-cache-related 
storage data path components (e.g., disk scheduler).   
 
2.4. Effects of cache transformations 
 
 The effects of cache transformations have also been 
studied in distributed systems.  For example, the concept of 
log-based file systems was introduced based on the 
observation that the client cache absorbs the majority of 
reads, leaving the write-mostly traffic to the server side 
[16].  Multi-tiered coordinated caching examines how to 
remove unwanted interactions between cache layers [12, 
22].   
 Not until recently has the size of caches become 
sufficiently large for standalone machines [20], and their 
transformations on temporal and spatial localities have thus 
become an area of research interest.   [24] examined the 
effects of L1 and L2 caches on memory references.  Our 
study extends this study to the entire storage data path. 
 Temporal and spatial localities in Web reference 
streams have been analyzed using stack distance and the 
number of unique sequences, respectively [1].  Although 
our studies share similarities in methodology, we focus on 
the transformations at various data path locations.  
 Researchers have advocated a more thorough analysis of 
real-world workloads before creating accurate synthetic 
workloads [19, 15].  Hsu et al. [9] introduced a way of 
viewing reference streams.  By plotting a referenced 
address modulo 32MB against the access number, they 
demonstrated differences between real-world workloads 
and synthetically generated ones.   
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2.5. Aggregate statistics 
 
 Various high-level statistics are used to characterize the 
localities of a workload [1, 15].  For example, a workload 
can be analyzed for the average number of bytes referenced 
per unit of time, which can be decomposed into bytes from 
unique block locations, or unique bytes [6].  The ratio of 
unique bytes to total bytes can be used to quantify temporal 
locality, in terms of how often bytes are repeatedly 
referenced.   
 One concern is that very different reference patterns can 
yield similar aggregate statistics, which is particularly 
pronounced in synthetic workloads that mimic real-life 
workloads via matching aggregate statistics [9].  For 
example, synthetic workloads often match well with 
aggregate statistics before the file system cache, but their 
after-cache behavior can deviate from the after-cache 
behavior of the real-life workload significantly, as 
demonstrated in this paper.  
 
3. Affinity metrics 
 
 We propose two metrics to measure temporal and 
spatial localities of workloads—stack affinity and block 
affinity respectively.   
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Although our metrics seem simple and are built on existing 
stack and block distances, our metrics ease comparing 
different workloads in different environments.  
Conceptually, locality is inversely proportional to the 
orders of magnitude changes in stack and block distances.  
The rationale reflects the exponential speed of hardware 
evolution and how certain performance metrics (e.g., cache 
hit rate) improve linearly as the system resources increase 
exponentially (e.g., memory size) [15].  We will first 
demonstrate the inherent characteristics of these metrics, 
and use them to measure how storage data path components 
transform localities. 
 Resiliency to different maximum values:  One 
drawback of distance metrics is the high sensitivity to the 
maximum value due to first-time references and the size of 
the disk.  To reduce such sensitivity, we first move the 
distance metrics to the denominator.  So, large distance 
values due to various causes push locality metrics toward a 
common minimum 0, which means poor locality.  
Additionally, we take a logarithmic weighting of the 
distance, to achieve two effects.  (1) Since hardware 
improvements in terms of performance, disk/cache 
capacity, and cost are exponential, the logarithmic function 

dampens the computed affinity differences due to nearby 
generations of hardware.  For example, referencing a block 
200 GB away on a disk degrades spatial locality just as 
significantly as referencing a block 500 GB away.  (2) 
First-time references skew the affinity numbers only in a 
limited way, such that the resulting affinity values still 
largely depend on the ordering of references.   
 Boundary conditions:  Another drawback of distance 
metrics is the difficulty in interpreting locality when the 
maximum value is not bounded and specific to 
environments.  With affinity metrics, we can describe 
localities between 0% (poorest) and 100% (highest).  The 
addition of 10 to the denominator makes the minimum 
value of denominator 1 when either the stack distance or 
block distance is 0, which represents 100% in both metrics. 
 References that lead to good locality behavior are more 
exponentially weighted based on the observed relationships 
between performance metrics and available system 
resources [15].  Recall Section 2.1, workloads with good 
localities may exhibit worse original distance values than 
those of workloads with poor localities.  Consider the same 
example from Section 2.1: with the block-affinity metric, 
the reference stream on blocks 1, 2, 3, 4, 5, 1001, 1002, 
1003, 1004, and 1005 yields a 90% spatial locality, while 
the reference stream on blocks 1, 50, 100, 150, 200, 250, 
300, 350, 400, and 450 on a small disk yields a 61% spatial 
locality.  These numbers are more reflective of how 
adjacent disk blocks are referenced as opposed to the 
differences in block ranges. 
 Granularity of analyses:  Although our simple 
alterations of the stack and block distance metrics 
overcome many existing limitations, affinity can yield very 
different numbers for different granularity of analyses.  
Above the operating system, logged references are directed 
to files and directories, although the storage data path 
operates in blocks.  Our current solution is to convert the 
analysis granularity to blocks, which is the highest common 
denominator between the two.  (Note that we do not 
preclude the possibility of analyzing reference affinities at 
the level of physical data locations on the disk).   
 This conversion requires locating file blocks on the disk.  
However, in many cases, there is no one-to-one mapping of 
the referenced blocks, which poses challenges when 
applying our metrics to evaluate data path components such 
as file system caching.  First, the file system cache 
generates internal references to the storage systems; thus, 
reference blocks after cache may have no corresponding 
reference before cache.  One example is the prefetching of 
consecutive blocks into the cache in anticipation of 
sequential access patterns.  Another is the committing of 
modified memory content to the disk when the available 
memory is running low.  Second, references to cached 
content may not have corresponding after-cache references.  
For example, reads (and sometimes writes) to cached data 



and resolved cached file path components will not yield 
after-cache references.  Thus, the total number of unique 
data requests can be different across individual data path 
components, which is captured by our affinity metrics.  
 
4. Evaluation 
 
 Our experiments included (1) stressing affinity metrics 
under workloads with extreme temporal and spatial 
localities, (2) observing affinity metrics under normal trace 
replays, (3) applying affinities to compare characteristics of 
a trace-replayed workload and a synthetic workload based 
on the trace, (4) studying the sensitivity of affinity metrics 
across nearby generations of hardware, (5) correlating 
affinity and performance metrics, and (6) testing affinity 
metrics under workloads from more environments. 
 To see the locality transformations by the entire storage 
data path, we gathered the affinity values at the data path 
front end before going through the file system cache, and at 
the back end before requests are forwarded to disk.  To see 
the effects of individual optimizations, we could selectively 
disable optimizations.  To illustrate the effects of disk 
scheduling, we could bypass file system caching.  
Additionally, we can minimize the effects of write-back 
policies by using a read-mostly workload. 
 Web workloads:  We gathered HTTP access logs from 
two Web servers; one from the Department of Computer 
Science at Florida State University (FSU) between 
11/14/2004 and 12/7/2004 and the other from the 
Laboratory of Advanced Systems Research at UCLA, 
between 5/8/2005 and 6/7/2005.  We selected the week 
with the most bytes referenced.  Table 1 summarizes the 
chosen workloads. 
 For each log, we also obtained the file system snapshot, 
which consists of all files, directories, and links as well as 
their i-node creation, modification, and access timestamps.  
Before replaying our traces, we recreated each file system 
in the order of their creation dates.   
 The Web workloads were replayed on two machines, 
one acting as a server and the other as a client (Table 2).  
The server hosted an Apache 2.2.2 Web server while 
HTTP requests were generated via a multi-threaded replay 
program running on the client machine.  Each thread 
corresponded to a unique IP address.    

To accelerate the evaluation process, we sped up the 
trace replay by a constant factor derived using the 
following method.  (1) We replayed the trace with a zero-
time delay between references to measure the maximum 
speed-up factor.  (2) We divided this factor by two, and 
approximated it with the nearest power of two.  With this 
method, we sped up both traces by a factor of 128.   

The front-end reference stream data were captured on 
the server side.  To extract file and directory block 
numbers, we used debugfs provided by ext2.  In 

addition, we had to account for the implicit traffic 
generated during path resolutions when applying our 
affinity metrics for analysis.  For example, a reference to 
/dirA/file1 involves a reference to / and /dirA 
before referencing /dirA/file1.   

Table 1. Workload characteristics. 
 FSU UCLA Desktop OS-

class 
Bytes referenced 4.3 GB 19 GB 50 GB 2.0 GB 
Unique bytes  
  referenced 

133 MB 668 MB 11 GB 1.5 GB 

Number of requests 150K 841K 13M 532K 
Mean interarrival  
  time  

4.03 secs 3.08 secs 3.16 
msec 

27.9 
msec 

Table 2. Experimental hardware configurations. 
 Server Client 

Processor 2.8GHz Pentium 4,  
  1024-KB cache 

2.4GHz Intel Xeon  
 512-KB cache 

RAM 512-MB Netlist DDR  
  PC3200 

2-GB Micron DDR  
  PC2100  

Disks 2 160-GB 7200-RPM  
  Seagate Barracuda  
  7200.7  

40-GB 7200-RPM  
  Maxtor 6E040l0  

Network Intel 82547Gi Gigabit  
  Ethernet Controller 

Intel 82545EM 
Gigabit  
  Ethernet Controller 

Operating system Linux 2.6.5 Linux 2.6.16.16 
File system Ext2 0.5b Ext2 0.5b 

 We monitored bios, which are the Linux internal 
representations of block requests.  We timestamped a bio 
in generic_make_request() in ll_rw_blk.c 
before it was submitted to the I/O scheduler.  When the 
bio returned and called its finalization code, we logged 
the start time, end time, and block number in the memory 
and dumped them at the end of the replay.  We set aside 
preallocated memory for logging, specified as a kernel 
parameter in grub.conf, to ensure the same memory 
size setting as the original Web servers. 
 Software development workloads:  We gathered 
traces from machines used for operating system research 
and undergraduate course projects at FSU.  The former 
desktop trace was taken from 8/20/07 to 8/22/07, and 
contained 32K processes.  The latter OS-class trace was 
gathered from 3/8/07 to 3/14/07, and contained 33K 
processes. Unlike the read-mostly Web traces, these 
desktop traces consist of both read and (up to 24%) write 
activities.  
 We used Forensix [8] to gather front-end traces, which 
required a different playback system.  The file system 
recreation and block mapping steps are identical to the 
Web workload ones.  However, replaying was performed 
only on the server, with one process created for each 
process in the trace.  We sped up both traces by 32 times. 
 For data gathering, the front-end references were logged 
as the system replays.  Each process kept its own list of 



files referenced and bytes accessed.  On replay completion, 
these file references, including path resolutions, were 
mapped to the block level.  The back-end reference stream 
data were recorded by reusing the Web logging framework.  
 We used the front-end reference stream to calculate the 
blocks referenced during the trace.  For the backend, we 
used the blocks reported by our modified kernel.   
 Metrics:  In addition to affinity metrics, we also 
measured the bandwidth and latency.  The backend was 
measured right before the block I/O was sent to the storage 
device and as soon as the block I/O returned.  The latency 
was measured on a block-by-block basis. 
 For the front end, the latency and bandwidth could be 
measured based on either the requested data only 
(excluding metadata) or all blocks related to a data request 
(including metadata).  To align the front-end measurement 
with the back, we chose the latter.  The front-end 
bandwidth and latency for the Web workloads were 
measured on the client, and include network effects, while 
the software-development measurements were performed 
on the server.  The performance numbers reflect the end-
user experience. 
 
5. Extreme localities 
  

To understand the dynamic range of our metrics when 
being transformed by the entire storage data path, we 
synthesized workloads to exercise all combinations of high 
and low temporal and spatial localities.  These workloads 
are based on the FSU trace, so the affinity values can be 
compared with regular FSU replays.  Although these loads 
are read-mostly, they serve as a starting point to understand 
the rich locality behaviors.  As a further simplification, 
these replays were single-threaded.  The synthesized load 
has the total number of references equal to that of the FSU 
trace.  The request timing is based on an exponential 
distribution, with the mean set to the average interarrival 
time of the FSU trace.  Figure 5.1 summarizes the median 
affinity values for various locality settings.  We used the 
median since the lack of back-end traffic sometimes leads 
to 0 affinity values.   

High temporal and spatial localities:  To achieve high 
spatial and high temporal localities, we created two 1-MB 
files in / and read those files alternatively and repeatedly.   
 Figure 5.1 shows that the front-end stack and block 
affinities are about 0.77 and 0.73, respectively.  The front-
end stack affinity was higher than expected, given that each 
file sequentially accessed 256 4-KB blocks should result in 
affinity ~0.4.  It turned out that repeated references to ext2 
i-nodes and indirect index blocks improved the temporal 
affinity.   

However, the front-end block affinity was not as high as 
the expected value, which would be close to 1 for all 
sequential accesses.  This is because accessing a file also 

involves referencing directories in the file path.  Although 
we created our files in / to minimize directory lookups, for 
the purpose of accounting, each front-end file reference 
still involves looking up /, which is not stored near the 
files, thus, driving down the front-end block affinity 
significantly.    
 The back-end affinities show values above the 0.95 
range.  This value is slightly misleading since frequent 
directory traversal causes directories to be cached, leaving 
mostly timestamp updates to the disk.   
 High temporal locality and low spatial locality:  For 
this workload, we created a reference stream that reads the 
two files with the lowest and highest logical block 
numbers.  
 Figure 5.1 shows that the front-end stack affinity was 
0.72; block affinity, 0.22.  The back-end stack affinity 
increased to 0.94, while the block affinity increased to 
0.56.     
 Low temporal locality and high spatial locality:  This 
case is achieved by reading files in the order of increasing 
block numbers, while references within a file remain 
sequential.  Figure 5.1 shows that the front-end stack 
affinity was 0.41; block affinity, 0.47.  The back-end stack 
affinity was 0.01 and block affinity, 0.94. 
 Low temporal and spatial localities: One way to 
generate a workload with poor localities is to shuffle the 
reference ordering of files randomly in the FSU trace.   

Figure 5.1 shows that the front-end stack and block 
affinities were 0.62 and 0.22, respectively.  The front-end 
stack affinity is relatively high, suggesting that temporal 
locality is inherent in the file systems’ hierarchical naming 
structure.  Also, the random reference stream does not 
generate the worst-case locality, because the previous 
scenario shows worse front-end stack affinity numbers.  
The back-end stack- and block-affinity values were 0.00 
and 0.17, respectively. 
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Figure 5.1. Affinities for combinations of 
temporal and spatial localities, at the front 
end (before file system cache) and backend 
(before disk) of a storage data path. 

Overall:  The dynamic range of affinity can capture 
both high and low values for temporal and spatial 
localities.  Front-end stack affinity values tend to reflect the 



directory structure captured by the trace, while the back-
end affinity values can span the entire dynamic range. 
 
6. Web workloads 
 
 Understanding how affinity metrics behave under 
extreme localities enables us to better interpret the numbers 
under the FSU and UCLA Web workloads.  Figure 6.1 
shows affinity values over time.  The affinity values are 
averaged (within each hour) because our notion of locality 
is inversely correlated with the average orders of 
magnitude changes in stack and block distances.  The front-
end affinity values are in the mid-range, with high back-end 
block affinity and low back-end stack affinity.  In reference 
to Figure 5.1, the Web workload displays the case of low 
temporal and high spatial localities.  The back-end stack 
affinity increases over time as compulsory misses taper, but 
its growth appears to be asymptotic.  We confirmed that the 
compulsory misses within Web traces are more uniformly 
scattered throughout the trace.   

Figure 6.2 shows affinities for the UCLA trace.  The 
front-end stack affinity was 0.74, which is higher than the 
FSU case.  The variance of affinity typically reflects the 
number of references.  In this case, the UCLA front end has 
eight times more references per interval than the FSU case.  
Also, front-end affinity numbers typically have a lower 
variance compared to the backend because the number of 
references in the backend tends to be orders of magnitude 
lower than the front end due to caching.  The front-end 
block affinity was only 0.28, which is lower than the FSU 
case, also with a lower variance. 
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Figure 6.1. Affinities for the FSU trace. 
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Figure 6.2. Affinities for the UCLA trace. 

 
 

7. Trace vs. synthetic workloads 
 
 Affinity metrics enable us to verify the fidelity of 
synthetic workloads against trace replays, beyond the front- 
end aggregate statistics.  Figure 7.1 shows affinities over 
time for the low temporal and spatial locality case, based 
on random shuffling of references in the FSU trace used in 
Section 6.  This synthesis technique also preserves many 
front-end aggregate statistics (e.g., file size distribution).   
 Since the frequency of referencing popular files is 
preserved, the synthesized load can preserve front-end 
stack affinity.  However, random shuffling of references 
degrades front-end block affinity significantly.  The 
uniform distribution of references significantly increases 
the number of references for many time intervals, resulting 
in lower variance of affinities throughout.  This uniformity 
also fails to capture how real world workloads can change 
significantly from hour to hour. 

The back-end stack affinity values diverge over time as 
the number of back-end references decreases.  Unlike the 
original trace, toward the end of the trace, we saw more 
repeated references to the popular blocks for timestamp 
updates, and fewer compulsory misses (Figure 7.2).   
 The back-end and front-end block affinities shared 
similar initial values, reflecting initial compulsory misses.  
The back-end block affinity then declined asymptotically to 
0.20 as most directory and metadata blocks are cached 60 
hours into the trace.   
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Figure 7.1. Affinities for the synthetically 
generated FSU trace.  
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Figure 7.2. Compulsory misses over time 
show a log-log-linear relationship in a Web 
trace with randomly shuffled references.   



In addition, the back-end affinity numbers reveal that 
the front end and the backend of a system reach steady 
states at different times.  Studies conducted without this 
awareness can yield misleading results and system designs. 
 
8. Portability of affinities  
 

To show the portability of affinity metrics across 
neighboring generations of hardware, we recreated the file 
system snapshots according to the file creation dates, on 
hard drives with 40 GB and 160 GB.  With a larger drive, 
we verified that the data blocks were stored over a larger 
range of block locations.  Although the range of reference 
data block increased by 4 times, Figure 8.1 shows affinity 
characteristics that are very similar to those in Figure 6.1, 
suggesting our logarithmic transformations in the metrics 
enable us to characterize traces in a way that is more 
resilient to the exponential rate of hardware evolutions. 
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Figure 8.1:  Affinities for the FSU trace with 4 
times the disk size. 

 
9. Affinity vs. performance  
 

To demonstrate the relationship between our affinity 
metrics and performance, we measured the locality 
transformation by the default anticipatory disk scheduler 
[10] in Linux 2.6.5.  We replayed the FSU traced blocks 
with multiple threads on the server, with the O_DIRECT 
flag to bypass file system caching.  The anticipatory 
scheduler attempts to reduce ‘deceptive idleness’ by 
waiting for additional requests from a process before 
switching to requests from another process. Without this 
style of scheduling the localities inherent in a program 
would be broken up by request switching.  

The baseline comparison is the noop scheduler, which 
sends disk requests in a FIFO order.  To ensure sufficient 
requests for reordering, we replayed the FSU traces with 
zero-think-time delays.  To provide a fuller context, we 
compared these results with the normal FSU replay 
(Section 6) with half of the zero-think-time speed-up factor, 
and with both the file system cache and the anticipatory 
scheduler running. 

Figures 9.1, 9.2, and 9.3 show that the noop scheduler 
had the same front-end and back-end affinity values and 

performance numbers, since the scheduler performs no 
transformations on locality.  The anticipatory scheduler 
improved the stack affinity by 10% and block affinity by 
54%.  Interestingly, although the back-end bandwidth 
increased by 111%, the front-end bandwidth improved by 
only 18%.  In terms of latency, the improvement is by two 
orders of magnitude, reflecting a significant reduction in 
disk seeks due to switching requests among processes.  
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Figure 9.1:  Affinities for FSU trace replay 
under different configurations. 
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Figure 9.2:  Bandwidth for FSU trace replay 
under different configurations. 
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Figure 9.3:  Latency for FSU trace replay 
under different configurations. 

For the third case, the FSU trace replay speed was 
halved, effectively reducing the number of concurrent 
request streams and the probability of sequential requests 
being fragmented due to request multiplexing.  As a result, 
front-end spatial affinity was 50% better than that of the 
noop scheduler.  Surprisingly, front-end stack affinity is 
less sensitive to the ordering of requests compared to block 
affinity.  As long as the number of unique blocks 
referenced within a time frame is within a similar order of 
magnitude, stack affinity would not change much.  On the 



other hand, minor reordering of requests to distant block 
locations can change block affinity significantly. 

The enabled file system caching absorbed 45% of stack 
affinity from the front, and sequential prefetches improved 
spatial affinity in the backend by another 31%.   

In terms of performance, caching improved bandwidth 
by 16 times.  The front-end latency of the original FSU 
replay is not directly comparable due to the inclusion of the 
network component.  The significant latency variance can 
be attributed to either the network or the low back-end 
stack affinity.  The lack of opportunities for the 
anticipatory scheduler to reorder requests due to slowed 
replay allowed only 34% latency improvement over the 
noop case.   

Overall, back-end block affinity correlates with 
improved bandwidth.  While back-end stack affinity does 
not seem to contribute to bandwidth, poor back-end stack 
affinity seems to introduce high variance to latency. 
Intriguingly, front-end and back-end affinities are poorly 
correlated. 
 
10. Read & write workloads 
 
 Web traces show how affinity metrics interact with read-
mostly workloads.  The next step is to understand the 
behaviors of affinities with the presence of writes.   
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Figure 10.1. Affinities for the desktop trace. 
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Figure 10.2. Affinities for the OS-class trace. 

Figures 10.1 and 10.2 show the behavior of affinity 
metrics under software development workloads.  In both 
cases, the front-end affinities were high, which have not 
been observed in the read-mostly workloads.  One 
explanation is that Web accesses mostly read files in their 
entirety.  In the software development environment, writes 

are often made to the same block (e.g., compilation), 
resulting in high block and stack affinities.  

Interestingly, the back-end stack affinity was relatively 
high in both cases compared to the Web traces, reflecting 
synchronous write-through activities (e.g., updating 
directory blocks).  The correlation coefficients between 
front-end and back-end stack affinities for the OS-class 
trace and the desktop trace were 0.20 and 0.86 
respectively. 
 
11. Lessons learned 
 
Although temporal and spatial localities are basic concepts 
in the OS arena, our attempt to quantify localities illustrates 
that we do not know locality as well as we think. 
 First, cache-hit rates, aggregate statistics, stack distance, 
and stack affinity actually do not capture the notion of time.  
Therefore, two consecutive references to the same object, 
spaced one month apart, can still be considered to exhibit 
good temporal locality.  Interestingly, this property was not 
obvious until we replayed traces at different speeds.  

Second, ironically, spatial locality is more sensitive to 
replay speeds because of the interruption of sequential 
transfers due to switching among concurrent reference 
streams.  While our initial observation is not conclusive, 
future investigation will help us better understand the 
intricate effects caused by trace accelerations. 
 Third, spatial locality defines how well the reference 
stream matches the back-end disk layout.  Therefore, when 
we quantify the spatial locality in a workload, we assume 
disk layout optimizations shared by common file systems.  
 Fourth, in many cases locality transformations are 
relevant only with a sufficient volume of I/O requests.  
Otherwise, optimizations such as disk scheduling cannot 
effectively shape the reference localities. 
 Fifth, we originally thought temporal and spatial 
localities can capture workload characteristics and data 
path optimizations well, but we have just begun to grasp 
the rich behaviors of workloads and data path interactions.  
Our experience suggests that the element of time is 
captured by neither locality metric, which warrants future 
investigations.  Also, optimization concepts such as data 
alignment would not fit well with our metrics, unless we 
incorporate the notion of distance with the intricate timing 
of storage devices. 
 Finally, the community is well aware of the difficulty of 
building per-trace-format scripts and replay mechanisms, 
handling corrupted data entries, analyzing data sets with a 
large number of attributes and possible transformations, 
and extracting meaningful trends with limited help from 
automation.  Still, developing empirical metrics based on 
workloads from diverse environments will remain a 
difficult task for the foreseeable future.  
 



12. Conclusion 
 
 In this paper, we have proposed and demonstrated the 
use of stack and block affinities to quantify temporal and 
spatial localities.  Through extreme workloads, two Web 
server workloads, and two software development 
workloads, affinity metrics behave well, and provide 
meaningful comparisons across diverse workloads and 
environments.  Moreover, affinity values can be correlated 
to performance and, thus can reveal how data path 
components, such as the IO scheduler, contribute to the 
overall performance gain. 
 We have illustrated how affinity metrics can be used to 
evaluate the fidelity of workload generators beyond the 
front-end aggregate statistics.  We also discovered the 
richness of semantics behind localities and research 
directions to better characterize storage workloads and data 
path transformations.   
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