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A B S T R A C T

The legacy storage data path is largely structured in black-box layers and has four major limitations: (1) func-
tional redundancies across layers, (2) poor cross-layer coordination and data tracking, (3) presupposition of high- 
latency storage devices, and (4) poor support for new storage data models. 

While addressing all these limitations is a daunting challenge, we introduce ADAPT, an auxiliary storage data 
path toolkit that complements the legacy storage data path to help mitigate these limitations. This toolkit enables 
all storage layers to coordinate and track data using shared data structures constructed through the ADAPT API. 
Our case studies have shown that we can directly support applications such as a key-value store without going 
through the file system. We also built an ADAPT-based file system and prioritized caching to demonstrate the 
usability, extensibility, and robustness of ADAPT. In addition, we built per-file secure deletion via our ADAPT- 
based file system to demonstrate data-path-wide coordination and data tracking.   

1. Introduction

The legacy storage data path is structured in layers and is largely
disk-centric. Layering offers good abstraction, which hides underlying 
details, enabling each layer to evolve swiftly. The storage-wide disk- 
centric assumptions reflect the decades-long standing of storage devices 
as a system-wide bottleneck. 

However, hard disk drives (HDDs) are routinely replaced by low- 
latency solid-state storage devices (SSDs), which have very different 
traits. Applications also demand more coordination and control across 
storage layers (e.g., tracking and deleting remnants of sensitive data 
across storage layers). These driving forces caused us to rethink how to 
preserve the advantages of layering, grant more cross-layer control, and 
provide a data model with more support for different emerging storage 
media. 

We propose ADAPT, an auxiliary storage data path toolkit, to com-
plement the legacy storage data path. ADAPT enables various data path 
components to build cross-layer data structures, even across kernel and 
application boundaries. ADAPT also enables cross-layer coordination 
and data tracking, supports both disks and SSDs, and eases the extension 
of new data path features. 

1.1. Legacy storage data path 

The legacy storage data path is composed of layers (Fig. 1.1.1). 
Under UNIX, the bottom layer consists of device-specific drivers. A 
higher-level device-driver layer provides services for mapping. Exam-
ples include multi-device driver layer that can coordinate multiple de-
vices, a flash translation layer (FTL), and a light non-volatile memory 
(NVM) subsystem [2]. The logical, device-independent file-system layer 
provides file names for data, organization for files, and data layouts on 
storage media to minimize access overhead. The virtual file system 
(VFS) layer allows multiple file systems to coexist and contains common 
file-system functions, including caching. Applications issue storage re-
quests via file-system system calls. (Since the Windows and UNIX stor-
age data paths apply a similar organization, we use UNIX terminology in 
the remainder of this paper.) 

The legacy storage data path has four major limitations. First, storage 
layers are black boxes and introduce unnecessary functional re-
dundancies and missed opportunities for optimizations. For example, 
both logical and physical layers attempt to manage data layouts. 
Therefore, B-trees in database applications can be remapped to extent- 
based trees at the file-system layer [21] and then remapped to linked 
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lists at the flash-translation layer, rendering the original optimization 
ineffective. Logical pointers used in memory also need to be serialized 
into a storage format so that the stored pointers can be resurrected or 
deserialized into different memory addresses after a reboot. While not 
redundant, serialization and deserialization can be avoided with the 
right system architecture. Another example is logging. A database 
application has its own commit log; a journaling file system has its own 
recovery log and uses a copy-on-write log at the flash layer. As a result, 
several tailored solutions have been designed to consolidate redundant 
logging [36]. 

Second, layered abstraction makes coordination and data tracking 
difficult. For example, a file system interacts with a device driver via 
reading and writing blocks, and a device driver cannot discern the file 
membership of a block, whether a block is currently in use or free, or 
whether a block contains data or metadata [28]. These characteristics 
make it difficult to implement data-path-wide features, such as per-file 
secure deletion in which the device driver does not know whether a 
block belongs to a file to be securely deleted because information is only 
available at the file-system layer [4]. 

Third, the legacy data path is not designed for low-latency storage. 
Thus, for small IO requests, the storage-stack latency can no longer be 
masked by low-latency SSDs [32]. 

Finally, the legacy data path has limited support for new storage data 
models (e.g., key-value store); these models suffer fates similar to those 
in the B-tree example and are remapped to underlying storage layers. 

1.2. Alternatives 

One approach to these limitations is to bypass the legacy storage data 
path by accessing the storage device directly (e.g., direct IOs, DAX [35]). 
The downside to this is that application programmers may need to 
duplicate existing services in the legacy storage stack. Some solutions 
insert layers to separate the management of metadata and data (e.g., 
[14]) or to deduce information across layers (e.g., [27]). However, these 
solutions do not address the issues of redundant services and 
medium-specific mechanisms. Imperfectly deduced information (e.g., 
whether a block belongs to a file to be securely deleted) may lead to 
optimizations based on conservative decisions [1] (when in doubt, 
delete a block securely). To streamline storage requests and avoid 
redundant services, integrated design across multiple layers is possible 
(e.g., [31]). However, some solutions are tailored for specific workloads 
[24], or the black-box treatment of layers (e.g., the device-driver layer) 
remains and hinders the information flow. 

1.3. In search of a remedy 

The semantic gap between storage services and the block interface is 
fundamentally large. While many services, such as [7], fill this gap with 
local file systems, this solution comes with a significant cost in terms of 
performance. Our approach consists of a shared data-path-wide library 
of useful storage primitives to mitigate the limits of the legacy data path. 
While many solutions address the limitations of the storage data path in 
specific problem domains, our approach aims to be broadly applicable. 
Unlike solutions that revamp the entire storage data path, our approach 
supplements the legacy storage data path, so that storage components 
that use our library can reap the benefits, while legacy components can 
still operate. 

2. ADAPT conceptual overview 

We introduce ADAPT, an auxiliary data path storage toolkit library 
that enables the coordination of legacy storage components and allows 
for the quick construction of new storage data path components 
(Fig. 2.1). 

The ADAPT toolkit provides two different deployment models. Leg-
acy applications that are not ADAPT-aware can use either the legacy 
storage data path or our ADAPT-based POSIX-compliant file system to 
take advantage of ADAPT-enabled capabilities. Coordination can be 
achieved through legacy data path components communicating with 
ADAPT components (via the dashed lines). Examples of ADAPT-enabled 
capabilities include prioritized caching and secure deletion, as detailed 
in Section 5. Alternatively, an ADAPT-aware application can go through 
an ADAPT storage front end (e.g., an ADAPT-based key-value store or a 
front end based on new data models) and rely on ADAPT to manage data 
storage. Data structures directly implemented via ADAPT can bypass the 
common overhead of serialization and deserialization. Having both 
deployment models simultaneously enables the parts of the system that 
need the performance to use the right interface while also allowing the 
legacy applications to continue working. The key to data-path-wide 
coordination is to allow storage components to use the same set of li-
brary primitives to build shared data structures. In designing these 
primitives, we attempted to explore the lowest common denominator for 
storage systems. In essence, a storage system minimally provides storage 
and retrieval of data with some ability to tag data for persistence and 
control. Based on these observations, we designed our primitives to 
resolve the notion of tags. 

Conceptually, each piece of data is associated with one or more tags, 
which indicate how the data pieces are related and should be handled 

Fig. 1.1.1. Conventional storage data path [2].  Fig. 2.1. The ADAPT library and its interactions with various storage data 
path components. 
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within the data path. The collection of data pieces and tags forms a 
single-level store. To ease coordination, operations on these tags provide 
global and logical communications throughout the data path. Tags can 
also serve as a common denominator for high-level storage layers and 
applications, enabling redundant services (e.g., data structure remap-
ping) to be bypassed and allowing for the direct construction of name-
spaces via file systems and of indices by way of databases. New data 
models and access methods can also be constructed directly using tags 
and supported in the ADAPT-based front end. ADAPT can also be used to 
track data as they flow through the storage data path. 

We demonstrated ADAPT by showing how easily we can build native 
support for key-value systems and file systems. Then, we measured the 
performance of these systems and confirmed that they have comparable 
performance to state-of-the-art systems. 

To summarize our contribution, we (1) designed and prototyped the 
ADAPT storage toolkit framework to supplement (not replace) the leg-
acy storage data path and (2) conducted case studies to show that 
ADAPT can support new data models, avoid redundant serialization and 
deserialization overheads, be used to build applications as complex as 
file systems, enable prioritized caching based on file system information 
made available via ADAPT, and provide data-path-wide per-file secure- 
deletion functionality. 

3. ADAPT design 

Before diving into design details, we will first describe the properties 
and guiding principles of our design. 

Backward compatibility: While the legacy storage data path has 
limitations, many tailor-optimized feature-rich applications and storage 
data-path components cannot be easily replaced. Therefore, this design 
point allows ADAPT-aware components to coexist with and complement 
existing storage components, provide additional data-path-wide 
communication channels to mitigate existing limitations and build 
new features. Storage components built from the ground up using 
ADAPT can coexist with legacy components with and without ADAPT 
enhancements. 

Fine-grained primitives: ADAPT provides fine-grained common de-
nominator primitives for storage components to build shared data 
structures with arbitrary topologies. 

Single-level store: Given that ADAPT aims to allow different storage 
components across applications and kernel to share data structures, 
ADAPT uses a single-level store backplane, in which storage components 
use the ADAPT allocation/deallocation interface to weave and share 
data structures using persistent pointers. 

Atomicity of updates: While fine-grained primitives enable de-
velopers to weave complex data structures, ADAPT must provide 
atomicity of updates to ensure the consistency of the data structure in 
the event of a crash or failure. 

Efficient permission model: Fine-grained primitives can come with 
high overhead to provide permission control. Therefore, we seek to 
design mechanisms to lower this overhead. 

The following research challenges must be met to realize our storage 

library approach: (1) providing an API expressive enough to construct 
complex storage components, (2) streamlining program flow con-
structed by our API, (3) keeping various metadata and data updates 
consistent, (4) representing our internal states, and (5) providing fine- 
grained access control. The following subsections address these design 
challenges. 

3.1. Graph-based API 

Conceptually, each piece of data is associated with a globally unique 
ID (e.g., <0, “example data”>). Each data ID can be associated with one 
or more types of globally registered and extensible tags, each in the form 
of <tag type ID, data ID>. Fig. 3.1.1 shows that the ID for “example 
data” is 0. The access permission tag for “example data” refers to the 
data ID of 1, which is 0x444. If another piece of data has the same 
permission, it can also be tagged with the same permission tag. The 
owner tag for “example data” refers to the data ID of 2, which is an 
owner ID of 1234. This contrived example demonstrates an extreme use 
of tags, in which each attribute is a tag. However, a more conglomerate 
use of in which a tag can represent a set of attributes, is more practical. 

Although the data model is simple, storage modules can use tags as a 
common denominator while building data structures that are intended 
for cross-layer coordination and tracking. For example, through data ID 
indirections, we can build hierarchical graphs commonly used in file 
systems. 

Because a tag expresses the relationship between two pieces of data 
(e.g., 0x444 is the permission of “data”), we can transform the repre-
sentation in Fig. 3.1.1 logically in terms of nodes and edges, with the 
nodes holding data and the tag types representing directional edges 
(Fig. 3.1.2). While it is possible for permission node 1 to have its own 
permission node to specify who can change the permission of node 0, we 
can recursively define permission to infinity. Practically, after a few 
layers, the permission will fall back on the administrative root privilege, 
which is the end of the recursion. The owner ID of node 0 can also be 
inherited by its sub-nodes, so that each sub-node does not need to specify 
the owner. The size of a piece of data is tracked by the ADAPT allocator, 
so that a programmer does not need to worry about recursively 

Fig. 3.1.1. ADAPT primitive example.  

Fig. 3.1.2. Graph-based representation of ADAPT.  

Fig. 3.1.3. Core API for ADAPT.  
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specifying the size of the size tag. 
Fig. 3.1.3 shows the core API for ADAPT. A node can be created to 

hold a dynamically allocated piece of data. A node can be destroyed 
given a node ID. An edge-type global unique ID can be created with a 
given name. To create or delete an edge, we must specify the IDs of the 
source, destination nodes, and edge type. Because dangling edges (those 
without end nodes) may lead to corrupted graphs, this API requires that 
the end nodes be created first, before the edge between the two. Before 
an edge can be deleted, the nodes must exist on both ends, and the user 
must delete the edge before deleting the end nodes. Since newly created 
nodes cannot be accessed until they are attached by at least an edge, 
nodes can be created in parallel. In the case of failure, nodes can be 
garbage collected without any effects visible to end users. 

When an edge must point to NULL, an empty node can be used to 
ensure that each edge is formed between two nodes. Certain edge types 
involve enumeration (e.g., block ID edge type); thus, when operating on 
edges (adapt_create_edge and adapt_delete_edge) or accessing 
a node through an enumerated edge (adapt_get_dest_node_ID), an 
additional optional edge_info parameter is used to pass in the 
enumerated number. For example, suppose we want to connect a file 
node to data blocks 1 and 2. 

To connect to block 1, we can call adapt_create_edge(file node 
ID, enumerated edge type ID, edge_info with the edge number field 
set to 1). To connect to block 2, we can call adapt_create_edge(file 

node ID, enumerated edge type ID, edge_info with the edge number 
field set to 2). To access the node ID for the second data block of a file, 
we can issue adapt_get_dest_node_ID(file node ID, enumerated 
edge type ID, edge_info with the edge number field set to 2). 

A node’s data can be accessed through its ID (adapt_no-
de_ID_to_data), and a node’s ID can be accessed through the 
incoming edge of another node (adapt_get_dest_node_ID). 
Although a node can potentially be reached from different nodes 
through the same in-bound edge type, a node can also only be associated 
with unique out-bound edge types. For example, for a node in a doubly 
linked list to be associated with the previous node and the next node, it 
must have two separate previous-node and next-node edge types. 
Although the underlying node pointer type is the same, we must define 
two separate edge types to distinguish the two. 

Fig. 3.1.4 shows an example of how to use the ADAPT API to 
implement a singly linked list of character strings, with error checking 
omitted. Line 1 declares node pointers for the list head and the null, 
which are sentinel elements, indicating the start and end of the list. Line 
2 declares variables to hold unique IDs for the list head, null node, and 
edge type ID representing the edge to access the next node. Line 3 de-
clares the dummy variable edge_info, which does not hold any 
meaningful information for this example. 

In line 6, the init procedure initializes the head and null nodes to 
the “NULL” string. Line 7 creates an edge type ID that is used to connect 

Fig. 3.1.4. An example use of the ADAPT API.  
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and access the next node in a linked list. In lines 8-9, the list head and the 
null node are allocated with adapt_create_node, which returns 
global unique IDs. In line 10, the head node is connected to the null node 
via adapt_create_edge with a next node edge type ID. 

Since ADAPT maintains direct mapping between node IDs and nodes, 
one can invoke adapt_node_ID_to_data with a node ID to access a 
node’s data (line 14). There is no need to traverse the linked list to locate 
a node. 

To insert a node, the insert_node function prepends a new node 
between the head node and the next node (lines 17–25). To delete a 
node, delete_node uses two node IDs; that is, similar to the use of 
pointers to traverse a linked list and identify the target node for removal. 
Then, the previous node’s next node edge is set to bypass the target node 
to be deleted (lines 35-36), with the remaining used edge and node 
deleted (lines 37-38). The example code shows similar logic as the 
normal in-memory linked list data structure with pointers replaced by 
ADAPT primitives. 

In this pointer-rich example, the use of node and edge routines is 
somewhat verbose; however, the non-pointer-rich part of programs is 
expected to be the same as the non-ADAPT code. The resulting linked list 
has persistent pointers (Section 3.4) that can survive reboots. Therefore, 
if the head of the linked list and the list interface are exported, we can 
have different storage components and applications to directly access 

this persistent linked list (or any other data structures such as key-value 
stores or b-trees). By doing so, the persistent linked list does not need to 
be transformed into the file system storage format. 

3.2. Transactions 

One problem with using the graph-based API on fine-grained tags is 
the difficulty of achieving atomicity across many ADAPT operations. 
Any failure (e.g., out of memory) along a sequence of operations would 
require lengthy cleanup code. Fig. 3.2.1 shows the execution flow of a 
typical fallback code structure. During the fallback process, the node and 
edge structures created before the failure are cleared. Multiple undo 
execution paths can obscure the program flow. 

To mitigate this issue, we added transactions to roll back multiple 
operations (Fig. 3.2.2). If an error occurs between the begin and commit 
calls, the abort call automatically performs graph cleanup and rollback 
to the graph states. The execution control flow graph shown in Fig. 3.2.1 
is transformed into the graph presented in Fig. 3.2.3. 

3.3. Consistency and correctness properties 

ADAPT maintains three copies of metadata: one in memory for 
metadata updates (MM), one on storage as (previously checkpointed) 
metadata (MS) for rolling back, and one on storage for committing in- 
transit updates (MS’). ADAPT maintains two copies of data: one in 
memory (DM) and one in storage (DS). Therefore, we must ensure that 
ADAPT can recover to a consistent state in the case of a system crash. 

A group of operations is first journaled in memory. To process 
transactions of updating nodes and edges, ADAPT performs the various 
steps in three phases: 

Phase 1 (commit data): Update data items from DM to DS. Deleted 
data items are marked to be deleted in MM until the metadata commit is 
complete. If a failure occurs before Phase 1 is committed, then no 
updated metadata will be written. In the case of a crash, it may be 
possible for old metadata to point to newly updated data items; how-
ever, the consistency semantics are akin to those of the ordered mode for 
ext4. Data nodes without edges can be detected and deleted via delayed 
garbage collection. 

Phase 2 (commit metadata): Commit metadata creations, updates, and 
deletions from MM to MS’. If a failure occurs before Phase 2 is completed 
(e.g., some pages are msynced while others are not), then MM and MS’ 
will be restored to the previously checkpointed metadata (MS). 

Phase 3 (deletion and metadata checkpoint): Delete data items that are 
marked to be deleted. Propagate metadata creations, updates, and de-
letions from MM to MS. If a failure occurs before this phase is complete, 
then the transaction can be replayed (rolled forward) from the commit. 

We recognize that the current implementation of transactions in-
volves writing metadata twice and can cause performance overhead 
similar to that of the popular file system ext4 (our baseline comparison). 
However, given that a small percentage of written blocks are metadata 
blocks, updated in batches to aggregate updates, the journaling over-
head is approximately 6-13% (see Section 5.1). 

Correctness: We applied the file system consistency properties 
defined in [29] to reason the correctness of our transactions. 

The reuse-ordering property ensures that once a file’s data block (an 
ADAPT node) is freed, the block will not be reused by another file before 
its free status becomes persistent. Otherwise, a crash may lead a file’s 
metadata (an ADAPT edge) to point to the wrong file’s content. In 
ADAPT, all edges are deleted and committed prior to deleting the con-
nected node, assuring that the node is no longer reachable from the 
remaining graph before the node is deleted and reused. 

The pointer-ordering property ensures that a reference data block (an 
ADAPT node) in memory will become persistent before the metadata (an 
ADAPT edge) in memory that references the data block. If this ordering 
were reversed, a crash could cause the persistent metadata to point to a 
persistent data block location that has not yet been written. In ADAPT, 

Fig. 3.2.1. ADAPT’s error handling execution flow without transactions.  

Fig. 3.2.2. Transactions for ADAPT.  

Fig. 3.2.3. ADAPT’s error handling execution flow with the use of transactions.  
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all nodes are flushed prior to the edges. 
The non-rollback property ensures that older data or metadata ver-

sions will not persistently overwrite newer versions. ADAPT fulfills this 
property because journaled entries are ordered and applied to the global 
transactions chronologically. 

3.4. Physical representation 

In brief, ADAPT is a single-level store with operations revolving 
around nodes and edges. 

Nodes: One way to manage nodes is to create a node manager, which 
is responsible for allocating storage, assigning unique IDs, and main-
taining ID-to-storage mappings. However, as we observed similarities 
between node management and memory management, we overloaded 
the memory management functionality for node management. ADAPT 
nodes are variable-sized, memory-mapped storage chunks governed by a 
memory allocator. A node’s memory address (offset by the starting 
memory-mapped address) is used as a unique ID for that node, so we do 
not need to worry about having two nodes mapped to the same ID. 
Additionally, a node’s ID can give us direct access to the node’s storage 
location. This approach implies that we must make the memory allo-
cator persistent across reboots, and the storage device must map to the 
same memory address across reboots. 

Edges: ADAPT edges are implicitly stored in an extensible hash table 
[6] with collisions handled by double hashing. The key of the edge hash 
table edge_table is generated from the source node ID, the edge type ID, 
and edge info, which may contain a number for enumerated edge types 
(see an example use in Section 3.1). edge_table[key] returns the desti-
nation node ID. The destination node can be tagged with a magic 
number to perform a dynamic type check before accessing the node’s 
content. For example, the magic number can confirm whether the node 
content “123” will be accessed as a string type or an integer type. To 
update an edge, we just update the edge_table[key] to a new destination 
node ID. To delete an edge, the edge_table[key] entry is deleted. 

Persistence: Since applications and various data path components 
can use ADAPT to build data structures that will survive across reboots, 
and we leverage memory-mapped addresses as unique IDs and persistent 
pointers, the memory allocator’s states for ADAPT must be persistent. 
(We implemented a separate memory allocator for ADAPT.) The gov-
erned memory is divided into regions for metadata, data, ephemeral 
states (to optimize the ADAPT internal data structures), and storing 
critical start-up information (e.g., offset of active persistent state stor-
age). The metadata region includes the states of the memory allocator 
and the edge table. Metadata and data regions (except for the ephemeral 
states) are flushed from memory and disk according to the snapshot 
protocols in Section 3.3. 

Data layout: Within the storage organization for ADAPT, data lay-
outs are largely governed by the memory allocator for nodes and the 
representation of the hash table for edges. We first allocate a memory 
pool and then perform customized allocation within it. To encourage 
locality, we use a customized slab allocator [3] for sizes below one page: 
this encourages objects of similar sizes to be collocated within a memory 
page. For memory allocation requests greater than one page, we use a 
buddy allocator [19]. Currently, we do not support resizing an existing 
allocation if a node needs to grow in size. Instead, the user or developer 
needs to reallocate a new larger node. 

Since hashing has poor locality, we modified it to encourage desti-
nation node IDs from the same source node ID to be collocated. As a 
simplified 32-bit example, suppose that a from_node_ID has a hash key of 
0x0011011F. We use the upper 20 bits of the source node to determine 
the storage of the key in a 4KB memory bucket 0x00110. If a to_node_ID 
has a hash key of 0x00001100, then it will use the upper bits of its source 
node 0x00110 to determine in which memory bucket to store the 
to_node_ID, and it will use the lower 12-bits to locate the to_node_ID 
within the bucket. As the hash table increases in size, fewer upper bits 
will be used to locate bigger memory buckets. 

Note that it is possible to reach the same to_node_ID from different 
from_node_IDs, and each from_node_ID can have its own cluster of 
to_node_IDs (which are persistent pointers to the destination node) 

3.5. Access control 

Since ADAPT aims to create primitives smaller than the granularity 
of common data structures, we anticipate many small tags, rendering 
high overhead for per-node permission checks. Allowing edges to be 
created between any two nodes is an unwieldy way of enforcing 
permission to access nodes in a general graph. However, since many tags 
share the same permission, it is logical to check and enforce permissions 
at fewer locations. Also, a certain degree of restrictions on how edges 
can be formed can manage the access control properties of the resulting 
graph topology. 

Super nodes: The idea of super nodes (s-nodes) is to use fewer places 
to check permissions. In other words, only s-nodes have edges to 
permission nodes (e.g., ownership and permissions). All nodes 
belonging to the same s-node share the same permissions. In terms of 
restrictions, edges can be created from an s-node to its nodes 
(Table 3.5.1). Edges can also be created from any node to an s-node, 
since the destination s-node can enforce access permissions. However, 
forming edges between nodes that are under different s-nodes is pro-
hibited, and a source s-node cannot create an out-bound edge to a node 
under another s-node. For example, for a file system to support “.”, an 
edge can be formed from a directory node N1 to itself with the same s- 
node S1. For a file system to support “..”, an edge can be formed from N1 
to its parent directory’s s-node S2. Then, N1 can follow the directory 
edge from S2 to locate N2, which the parent directory node of is N1’. 

One challenge of permission lookups is that of finding a node’s s- 
node without additional edges or lookup tables. Since our unique node 
IDs are based on 64-bit memory-mapped addresses, we borrowed un-
used S high-order bits. An s-node ID is a unique S-bit number, zero- 
extended to form a 64-bit ID. To access its nodes, the s-node must be 
connected to at least one of its nodes. To locate the permission from a 
node under an s-node, we use hash(zero-extended upper S bit of the node 
ID, permission edge-type ID). 

In terms of the API, a programmer can use a special call to produce s- 
node IDs and create node IDs alongside with them (Fig. 3.5.1). The s- 
node tracks the number of nodes created beneath it. To delete an s-node, 
all its nodes must first be deleted. Otherwise, the permission of the 
undeleted node will be either undefined or defined by a newly allocated 
s-node with a reused s-node ID. 

In this model, the s-nodes can form loops themselves without a 
conflict access rights problem. Developers can determine whether to use 

Table 3.5.1 
Rules for creating edges.  

From \ to s-node 
A 

s-node 
B 

s-node A’s 
nodes 

s-node B’s 
nodes 

s-node A Yes Yes Yes No 
s-node B Yes Yes No Yes 
s-node A’s 

nodes 
Yes Yes Yes No 

s-node B’s 
nodes 

Yes Yes No Yes  

Fig. 3.5.1. Super-node operations.  
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this feature, and they must consider the data model to divide normal 
nodes into different access rights groups. 

Suppose that a developer decides to change the design of the graph 
and wants a node N1 under s-node S1 to have a different permission. 
This change will involve creating a new s-node S2 so that the prefix of 
the s-node ID can be used to create a new node N2, which is a copy of N1. 
All existing relationships between N2 and nodes under S1 must be 
created or reestablished through S2 as an intermediary node for 
permission checks, and N1 can be removed from the graph. Given the 
complexity and potential associated overhead of this operation, a user 
should not change the access control points lightly. 

4. Implementation 

ADAPT is prototyped in C as a user-level library. ADAPT applications 
link and load the library to use the API to perform storage tasks. Fig. 4.1 
shows how an ADAPT-based key-value store uses the ADAPT library to 
interact with the kernel and communicates with the kernel via memory 
mapping and shared memory. 

For the logical management of ADAPT (2,258 lines), we imple-
mented the graph API for data-tagging and data tracking, nodes and 
edges, transactions, and access control. For the physical management 
component of ADAPT (1,980 lines), we implemented the persistent 
memory allocator, which also controls the layout of physical data. The 
ADAPT library currently does not support multi-threaded and nested 
transactions. Multi-threaded transactions could potentially speed up 
ADAPT further. However, this speedup is not automatic because trans-
actions may have dependencies. For example, if we rename file A to file 
B in transaction 1, and rename file B to file C in transaction 2, then 
transaction 2 cannot proceed until transaction 1 is completed. 

To demonstrate ADAPT, we implemented (1) an ADAPT-based key- 
value store (493 lines) to show how ADAPT can natively support a 
different access method, (2) a B+tree (581 lines) to show how ADAPT 
can natively support a slightly more complicated data model, (3) a file 
system (1,837 lines) to show how ADAPT API is rich enough to build a 
complex application, (4) a prioritized caching scheme (464 lines) to 
show how legacy storage components can benefit the enhancement of 
ADAPT, and (5) secure deletion (380 lines) to show how ADAPT facili-
tates storage-data-path-wide data tracking. 

5. Evaluation via case studies 

While evaluating ADAPT, we aimed to demonstrate its ability to (1) 
avoid redundant layered features, (2) achieve usability and robustness 

when building complex software, (3) extend and support new data 
models and features beyond those provided by the legacy data path, (4) 
coordinate and track data across layers, and (5) perform well with both 
HDD and SSD storage media. 

To show that ADAPT can perform well with HDDs and SSDs, we 
conducted benchmarks on both media in each experimental setting. 
Each experiment was repeated five times and is presented at the 95% 
confidence interval. Table 5.1 shows the system configuration. 

5.1. ADAPT-based key-value store 

To show the benefit of direct support for new data models, we pro-
totyped a key-value store using the ADAPT library. The ADAPT data 
path had no file system or associated redundant efforts to manage the 
data layout (Fig. 4.1). 

Given that ADAPT is built on a hash table that stores edges to nodes, 
its operations can be directly mapped to support key-value store oper-
ations. We began by creating a root node. For the key-value Put(key, 
data) operation, we created a node to store the data and used the key as 
an edge-type ID. For Get(key), we called adapt_node_ID_to_data 
(adapt_get_dest_node_ID(root node ID, key)) to retrieve the 
data. For Delete(key), we called adapt_delete_edge(root node 
ID, node ID), followed by adapt_delete_node(node ID). 

We compared the ADAPT-based key-value store with LevelDB 1.20 
[7]. We also measured LevelDB using the raw mode, which bypasses the 
file system, to see the performance overhead imposed by the file system 

Fig. 4.1. Storage data paths for an ADAPT-based key-value store (shaded 
boxes) and LevelDB [7]. 

Table 5.1 
System configuration.  

CPU 2.2Ghz Intel® Xeon® E5-2430, 15MB cache 

Memory 8 GB RDIMM 1333 MT/s 
HDD Seagate® SAS 146GB 15K RPM 
SSD Intel® S3500 200 GB SATA Value MLC 
OS Linux Mint 4.4  

Fig. 5.1.1. Key-value store performance for HDD.  

Fig. 5.1.2. Key-value store performance for SSD.  
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layer. We further measured ADAPT without journaling to see the over-
head of maintaining consistency. 

Fig. 4.1 shows the differences between the two data paths. For the 
workload, we inserted 10 million 100-byte key-value pairs, each with 
16-byte keys. Figs. 5.1.1 and 5.1.2 show the results in kilo key-value 
store operations per second. 

For both storage media, ADAPT and LevelDB have similar read 
performance because both systems use memory-mapped IOs to avoid 
copying. Both systems also use bulk updates (transactions for ADAPT) to 
speed up small updates. This also explains why the SSD performance 
(bandwidth-bound) is only twice as fast as the HDD performance 
numbers. For HDDs, ADAPT can outperform LevelDB by a factor of 1.3 
for inserts and 1.7 for deletes. For SSDs, ADAPT can outperform LevelDB 
by a factor of 1.2 for inserts and deletes. 

In comparing the numbers between LevelDB and LevelDB running 
with the raw mode, we can see that the file system layer imposes 12-26% 
overhead for HDD and 3-12% overhead for SSD. In comparing LevelDB 
running with the raw mode with ADAPT, we can see that the remaining 
overhead can be attributed to serialization and deserialization. We 
further compared ADAPT with and without the use of journaling to 
ensure consistency, revealing 7-13% overhead for HDD and 6-9% 
overhead for SSD. 

5.2. Tags-based B+tree implementation 

Another example of ADAPT’s capability to support new data models 
is the implementation of B+tree using ADAPT. Similar to the key-value 
store, the B+tree is built on the ADAPT library and involves no file 
system. 

The nodes in B+tree are represented by ADAPT nodes, and the 
connections between the nodes are represented by ADAPT edges. 

We compared ADAPT-based B+tree implementation with normal 
B+tree implementation, which utilizes the serialization/deserialization 
method to load from/save to files on storage media. The serialization/ 
deserialization method takes a breadth-first way to process the nodes in 
a B+tree into data in a file. 

The dataset for our experiment contains five B+trees, each having a 

depth of 3 and a fan-out factor of 342. The key size is 4 bytes and the 
pointer size is 8 bytes; therefore, each node occupies approximately 4KB. 
The entire size of each tree is approximately 480 MB, and the total size of 
all the trees is approximately 2.4 GB. 

We assessed performance in terms of query, deletion, and insertion to 
ADAPT-based and file-based implementation. For query, we performed 
500K queries for random-key-mapped pointers to an 80% full B+tree. 
For insertion, we performed 500K insertion operations to a 40% full 
B+tree with random key-pointer pairs. For deletion, we performed 500K 
deletion operations to an 80% full B+tree. Figs. 5.2.1 and 5.2.2 show the 
results. For the B+tree insertions, we can see that the overhead of 
ADAPT persistent pointer creation can offset the benefit of bypassing 
serialization and deserialization. However, ADAPT still performs better 
for queries and deletions. 

5.3. ADAPT-based (POSIX-compliant) file system 

To demonstrate usability, we prototyped an ADAPT-based file system 
(ADAPT-FS) to show that the interface and primitives provided by 
ADAPT are expressive enough to build meaningful complex applica-
tions. While users of ADAPT need to learn a new interface, ADAPT saves 
them from writing serialization and deserialization code. ADAPT-FS also 
functions as a POSIX-compatibility layer for legacy applications and 
users; it is not necessary to rewrite these applications. The ADAPT-FS 
was implemented at the user space via the FUSE framework [33]. 
Fig. 5.3.1 illustrates the flow of data requests. 

The ADAPT-FS translates POSIX file-system calls into ADAPT nodes 
and edges; this task involves many node and edge operations that are 
simplified by transactions. Basically, all i-nodes (permission-holding 

Fig. 5.2.1. B+tree performance for HDD.  

Fig. 5.2.2. B+tree performance for SSD.  

Fig. 5.3.1. The ADAPT-FS and the ADAPT library (shaded).  

Fig. 5.3.2. The ADAPT representation of a file system.  
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nodes) are replaced with s-nodes, and all attributes are accessed through 
edges (Fig. 5.3.2). Directory entries can be accessed via ID hashes. For 
traversals, a directory entry can locate the next and previous entries 
through hash(current ID, next-edge type) or hash(current ID, previous- 
edge type). Data blocks are accessed through enumerated edges to 
support indexing on top of the hashing data structure. 

Although we could use a single node to contain all the attributes of an 
i-node, we explored this scenario to show that, we can still configure the 
system to achieve reasonable performance even if tags are naively 
applied. We compared our ADAPT-FS stacked on FUSE with ext4 stacked 
on FUSE. The elapsed times for ADAPT-FS and ext4 + FUSE to compile 
the OpenSSL (v1.1.0f) [17] were statistically the same (87 ± 0.19 sec-
onds). We were concerned that hashing-based data structures may 
perform poorly for directory traversals. Thus, we prepared a directory 
containing Linux 4.1 (after a complete build) and examined the elapsed 
time spent for recursively listing through the directory (Table 5.3.1). 
The hash-based doubly linked list of directory entries in ADAPT is 
marginally slower than ext4 + FUSE for both HDD and SSD. 

For LFS large-file and small-file benchmarks [22], ADAPT-FS per-
formed reasonably well when its block size was configured to 32KB to 
amortize the cost of fine-grained access to attribute nodes and dynamic 
type checks (Tables 5.3.2-5.3.3). We admit that using a larger data block 
is not a fair comparison (4KB for ext4 + FUSE); however, our objective 
was to show that ADAPT’s API is sufficiently rich and that its imple-
mentation is robust enough to build software with comparable 
complexity to a file system with reasonable performance. As a side effect 
of the large block size of ADAPT-FS, it increases the performance of 
random reads (due to unintended cache warmup per read access). The 
random write bandwidth numbers for both ext4 + FUSE and ADAPT-FS 
+ FUSE are higher than expected due to buffering. However, the over-
head of fine-grained per-file-attribute ADAPT appears on the creation 
and deletion benchmarks, for which each operation involves creating 
and deleting many tags. 

5.4. Prioritized caching 

The ability of ADAPT to provide data-path-wide annotation and 
communication enables the addition of new features into file systems. 
To demonstrate how ADAPT can be extended to support features beyond 
the legacy data path, we implemented a prioritized caching similar to 
[15], which allows different classes of data to be treated differently. In 
our example, we defined large files, small files, and metadata as different 
classes, and we modified the LRU cache to give preference to caching 
small files and metadata to achieve performance gains. 

In terms of ADAPT, we leveraged the per-file permission lookup 
mechanism to directly access a file’s s-node and reach its subsidiary 
node tagged with the data class. The caching mechanism can then pri-
oritize caching for blocks tagged as small files and metadata.We 
compared the performance of ADAPT-FS with prioritized caching 
enabled to its performance with prioritized caching disabled. The 
workload involves a zero-think-time replay of a departmental web 
server trace, which contains 8.6M file references to 1.0 TB of data, 
among which 1.5M files are unique with 12 GB of unique data. We 
classified files under 18 KB (75% of files) as small. 

Fig. 5.4.1 shows that by the end of the trace replay, up to 95% of the 
cache is populated with small files and metadata. Fig. 5.4.2 shows that 

Table 5.3.1 
Time to recursively list Linux 4.1 build.   

HDD SSD 

ext4 þ FUSE 2.8 (±0.018) secs 0.57 (±0.0050) secs 
ADAPT-FS þ FUSE 3.0 (±0.029) secs 0.65 (±0.0080) secs  

Table 5.3.2 
LFS large-file benchmark numbers with one 4GB file for HDD and SSD.  

HDD ext4 þ FUSE ADAPT-FS þ FUSE 

sequential write 110 (± 1.3) MB/s 100 (±1.0) MB/s 
random write 46 (±1.9) MB/s 12 (±0.73) MB/s 
sequential read 190 (±2.1) MB/s 170 (±4.9) MB/s 
random read 2.7 (±0.21) MB/s 13 (±0.65) MB/s 
SSD   
sequential write 160 (±2.8) MB/s 180 (±3.4) MB/s 
random write 100 (±2.4) MB/s 100 (±1.5) MB/s 
sequential read 350 (±4.9) MB/s 300 (±6.6) MB/s 
random read 63 (±0.59) MB/s 94 (±1.2) MB/s  

Table 5.3.3 
LFS small-file benchmark numbers with 20K 16KB files for HDD and 100K 16KB 
files for SSD.   

operation ext4 þ FUSE (files/s) ADAPT-FS þ FUSE (files/s) 

HDD create 1,700 (±66) 1,100 (±41)  
read 2,700 (±100) 3,300 (±85)  
delete 7,400 (±360) 4,000 (±120) 

SSD create 3,900 (±79) 3,400 (±60)  
read 5,300 (±80) 9,500 (±250)  
delete 20,000 (±1,500) 17,000 (±500)  

Fig. 5.4.1. Percentage of bytes cached for each IO class.  

Fig. 5.4.2. Elapsed times for web trace replay.  

Fig. 5.4.3. Percentage of individual HDD requests completed within a given 
time frame in seconds (log scale). 
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the overall elapsed time for the trace replay is improved by 40% for both 
HDD and SSD. Figs. 5.4.3 and 5.4.4 show the cumulative distribution 
function (CDF) of request completion times. In Fig. 5.4.3, approximately 
90% of prioritized HDD requests were completed within 0.0001 seconds, 
while only 60% of requests for the baseline system were completed 
within the same time frame. In Fig. 5.4.4, nearly, 90% of prioritized SSD 
requests were completed within 0.0001 seconds, while only 70% of re-
quests for the baseline system were completed within the same time 
frame. 

5.5. Per-file secure deletion 

To demonstrate cross-layer coordination and tracking, we 
augmented the ADAPT-FS with a per-file secure-deletion feature akin to 
that of [4]. First, a user can use chattr +s to set the secure-deletion bit 
of a file at the file-system layer. However, by the time a storage request 
arrives at the device-driver layer, the layer can no longer identify the file 
membership of a block. 

Since each group of nodes in the ADAPT-FS is governed by an s-node 
to manage the permission, any node (e.g., a data block node) under an s- 
node can reach the s-node (see Section 3.4). Consequently, the ADAPT- 
FS can access the permission. The secure-deletion bit indicates that the 
corresponding overwrite or truncate should be handled securely. 

For disk, we borrowed the ioctl call mechanism from FUSE to 
allow the block layer to issue calls from the kernel space to ADAPT to 
query whether a block belongs to a file that has the secure-deletion bit 
set. If so, the block layer would perform triple writes of random bits to 
ensure secure deletion. Updates to blocks belonging to a file marked for 
secure deletion are prepended with triple writes of random bits to 
securely delete the previous content. We also modified the truncate 
mechanism, so that it would issue calls to erase data blocks. 

Without the open FTL and raw flash setup, we did not implement this 
feature for SSD. Note that the TRIM command is insufficient; it only 
specifies which pages are obsolete to prevent migrating these as live 
pages during the garbage collection process [26]. 

To evaluate the performance overhead introduced by secure 

deletion, we used the LFS small-file benchmark with the same setting as 
that we used in Section 5.2, with the first 5% of files marked to be 
securely deleted to reflect locality. Fig. 5.5.1 shows that secure deletion 
does not slow down file creations and reads, but significantly degrades 
the performance of deletions as expected. 

6. Limitations 

ADAPT provides a framework for different layers to coordinate 
through a single unified interface, but this does not necessarily mean 
that such coordination is possible. For example, consider two databases 
that want to share the same dataset to optimize the data layout: one for 
row access, and the other for column access. Efforts to reconcile con-
flicting goals across storage components that want to coordinate is 
beyond the scope of this work. 

The white-box approach will also interact with storage software 
components developed by people who wish to keep their internal rep-
resentations proprietary. One possible solution is to have enriched 
permission semantics, so that only a limited subset of translated edge 
type IDs is made available for external use. 

7. Related work 

Since the advent of SSDs, research systems have attempted to address 
the limitations posed by the legacy storage data path. 

7.1. Cross-layer redundancy removal 

JFFS [36] consolidates logging for the file-system and 
flash-device-driver layers. ADAPT complements JFFS in terms of 
extensibility to new features and data models. 

DevFS [9] moves the file-system component into the storage device 
so that applications can directly access a storage device without being 
trapped into the OS for most operations while maintaining integrity, 
consistency, and security guarantees. DevFS also leverages device-level 
power-loss-protection capacitors to eliminate redundant writes caused 
by logging and associated garbage collection mechanisms. ADAPT, on 
the other hand, focuses on the legacy software storage stack rather than 
altering the behavior of hardware storage devices. 

7.2. Cross-layer coordination 

Existing methods to coordinate across layers are mostly designed to 
solve specific problems (e.g., secure deletion and performance), and are 
not suitable for arbitrary extension of new functionalities. 

Shen et al. [24] showed that different file-system journaling modes 
can be changed dynamically for database files to achieve better per-
formance. ADAPT can be used to support this feature and propagate 
per-file journaling status to the underlying file system. 

The differentiated storage services [15] coordinate IO class infor-
mation by expanding the block IO data structure to propagate this in-
formation. ADAPT uses a data-path-wide repository to store the 
additional coordination information, so that all storage components can 
have direct access to their information. 

The gray-box approach leverages inferred information across layers 
for coordination [1]. Since inferences may occasionally be incorrect, 
mechanisms based on these inferences must make conservative de-
cisions (e.g., when in doubt, delete a data block securely). 

TrueErase [4] provides an auxiliary data path, so that a file system 
can propagate information to the device layer to indicate whether a file 
needs to be securely deleted or overwritten. The auxiliary data path is 
tailored for secure deletion, so it may not be readily applicable to the 
addition of new features such as prioritized caching. 

Willow [23] expands the interface for SSDs to exploit built-in storage 
processor units within SSDs to run tailored applications. Different stor-
age components can issue RPC calls to interact with SSDs. The 

Fig. 5.4.4. Percentage of individual SSD requests completed within a given 
time frame in seconds (log scale). 

Fig. 5.5.1. LFS small-file benchmark numbers with 20K 16KB files for HDD.  
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applications that can run under Willows are limited by the amount of 
built-in memory and processing power on SSDs. ADAPT, on the other 
hand, focuses on the software stack instead of altering the behavior 
within storage devices. 

Spiffy [30] allows file-system developers to annotate 
file-system-specific data structures and then compiles and generates a 
library so that application developers can write file-system-aware util-
ities using only generic library calls without knowing the specific file 
system’s format. In a sense, Spiffy creates another abstraction layer that 
integrates the knowledge of file systems, while ADAPT aims to pierce 
through the abstraction of layers. 

Strata [10] leverages the strengths of NVM, SSD, and HDD and 
provides an integrated cross-layer design (NVM at the user level and SSD 
and HDD at the kernel level) to achieve both high throughput and low 
latency. Strata coordinates layers for performance. However, ADAPT 
can be used to extend Strata for new system features. 

7.3. Support for low-latency storage 

DAX [35] uses direct IOs and bypasses memory caching designed for 
high-latency storage. However, applications may need to duplicate the 
functionalities (e.g., storage allocation, mapping, and serialization) 
originally provided by the bypassed legacy storage components. 

The Persistent Memory Development Kit (PMDK) [20] provides 
user-space libraries and tools for allocating persistent memory objects, 
performing transactions, object typing, and so on. The PMDK exposes 
persistent pointers for developers to weave persistent data structures, 
while ADAPT uses the abstraction of nodes and edges to weave data 
structures. ADAPT also provides a POSIX-compliant deployment model. 

PMFS [5] uses memory mapping and bypasses the block layer to 
achieve substantial performance gains for byte-addressable persistent 
memory. Although ADAPT can bypass the legacy VFS caching layer, the 
internal representation of ADAPT does not contain tailored optimiza-
tions for byte-addressable persistent memory. Data structures such as 
[16] will be incorporated in future work. 

Arrakis [18] removes the kernel from the data IO path. Both network 
and storage IO requests are routed to and from the applications’ address 
spaces. To perform IOs, applications rely on a user-level IO stack that is 
provided as a library. Unlike ADAPT, Arrakis does not provide a 
backward-compatible, POSIX-compliant interface for storage, and leg-
acy applications must be modified to interact with the internal repre-
sentation of Arrakis. 

File systems as processes (FSP) [13] move the entire legacy 
kernel-level storage stack into userspace. Combined with lightweight 
IPC, FSP can provide sub-microsecond latency while accessing NVM. 
Similar to FSP, the ADAPT-FS is implemented as a user-level library. 
Unlike DashFS, a prototype using the concept of FSP, ADAPT supports 
crash consistency. With the use of a byte-addressable data structure [16] 
and direct communication with a user-level NVMe device driver [37], 
the performance of the ADAPT-FS can improve significantly. 

In the high-performance computing domain, Distributed Asynchro-
nous Object Storage (DAOS) [8] shares a similar architecture with 
ADAPT. DAOS operates in the user space and provides a layer of libraries 
to handle legacy semantics (e.g., POSIX). DAOS also uses the Apache 
Arrow format to avoid serialization and deserialization for 
data-analytics applications. Unlike DAOS, ADAPT supports communi-
cation and coordination across layers. 

7.4. Support for new storage data models 

Shetty et al. [25] showed that mixed workloads from file systems and 
databases can be efficiently handled using separate KVFS and KVDB 
layers. Similarly, ADAPT can attach different data models (e.g., B-tree 
and key-value store) into the same namespace and provide direct access 
to different data structures without translating them into the internal 
representation of the file system. 

Cassandra [12] uses a customized table API to store and retrieve data 
objects. ADAPT uses the general notion of nodes and edges. 

Aerie [34] provides a user-level library to give applications direct 
access to storage-class memory. Each application can define its own 
storage access interface built on a primitive called a memory file. Since 
Aerie user-level processes can directly access storage hardware, a rogue 
process can issue stylized write patterns to significantly shorten the 
lifespan of storage-class memory. 

In the context of high-performance computing, JULEA [11] is a 
user-space layer that provides different interfaces (e.g., key-value store 
and file system) to different applications. On the other hand, ADAPT also 
provides an additional communication channel and coordination across 
the entire storage data path. 

7.5. Overall 

Various solutions have been devised to mitigate a subset of con-
straints in the legacy storage data path. Table 7.1 summarizes the 
comparisons between ADAPT and existing solutions. 

8. Conclusions 

We have presented ADAPT, a storage-data-path toolkit to address the 
constraints of the legacy storage data path. Using a shared primitive and 
an API of nodes and edges, we have shown how ADAPT can be used to 
build applications as complex as a file system and robust enough to 
compile the Linux kernel. The ADAPT-based key-value store shows how 
direct system support and bypassing redundant services can signifi-
cantly improve performance for both disks and SSDs. ADAPT also eases 
data-path-wide tracking and coordination to support features such as 
prioritized caching and per-file secure deletion. 
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Table 7.1 
Related work comparison.   

Support for 
low latency 
storage 

Support for 
new data 
model 

Avoid redundant 
functions across 
layers 

Support for 
coordination 
across layers 

[36] √  √ √ 
[24]    √ 
[9] √  √ √ 
[15,23]  √  √ 
[1,4, 

30]    
√ 

[10] √   √ 
[5,13, 

35] 
√    

[18] √  √  
[25] √ √  √ 
[12]  √   
[34] √ √ √  
[8] √ √ √  
[20] √ √ √  
[11] √ √   
ADAPT √ √ √ √  
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