
Journal of Systems Architecture xxx (xxxx) xxx

Please cite this article as: Weisu Wang, Journal of Systems Architecture, https://doi.org/10.1016/j.sysarc.2020.101902

Available online 13 October 2020
1383-7621/© 2020 Elsevier B.V. All rights reserved.

ADAPT: An auxiliary storage data path toolkit

Weisu Wang a, Christopher Meyers b, Robert Roy a, Sarah Diesburg c, An-I Andy Wang a,*

a Florida State University, USA
b Ansible, Inc, USA
c University of Northern Iowa, USA

A R T I C L E I N F O

Keywords:
Storage data path and file systems

A B S T R A C T

The legacy storage data path is largely structured in black-box layers and has four major limitations: (1) func-
tional redundancies across layers, (2) poor cross-layer coordination and data tracking, (3) presupposition of high-
latency storage devices, and (4) poor support for new storage data models.

While addressing all these limitations is a daunting challenge, we introduce ADAPT, an auxiliary storage data
path toolkit that complements the legacy storage data path to help mitigate these limitations. This toolkit enables
all storage layers to coordinate and track data using shared data structures constructed through the ADAPT API.
Our case studies have shown that we can directly support applications such as a key-value store without going
through the file system. We also built an ADAPT-based file system and prioritized caching to demonstrate the
usability, extensibility, and robustness of ADAPT. In addition, we built per-file secure deletion via our ADAPT-
based file system to demonstrate data-path-wide coordination and data tracking.

1. Introduction

The legacy storage data path is structured in layers and is largely
disk-centric. Layering offers good abstraction, which hides underlying
details, enabling each layer to evolve swiftly. The storage-wide disk-
centric assumptions reflect the decades-long standing of storage devices
as a system-wide bottleneck.

However, hard disk drives (HDDs) are routinely replaced by low-
latency solid-state storage devices (SSDs), which have very different
traits. Applications also demand more coordination and control across
storage layers (e.g., tracking and deleting remnants of sensitive data
across storage layers). These driving forces caused us to rethink how to
preserve the advantages of layering, grant more cross-layer control, and
provide a data model with more support for different emerging storage
media.

We propose ADAPT, an auxiliary storage data path toolkit, to com-
plement the legacy storage data path. ADAPT enables various data path
components to build cross-layer data structures, even across kernel and
application boundaries. ADAPT also enables cross-layer coordination
and data tracking, supports both disks and SSDs, and eases the extension
of new data path features.

1.1. Legacy storage data path

The legacy storage data path is composed of layers (Fig. 1.1.1).
Under UNIX, the bottom layer consists of device-specific drivers. A
higher-level device-driver layer provides services for mapping. Exam-
ples include multi-device driver layer that can coordinate multiple de-
vices, a flash translation layer (FTL), and a light non-volatile memory
(NVM) subsystem [2]. The logical, device-independent file-system layer
provides file names for data, organization for files, and data layouts on
storage media to minimize access overhead. The virtual file system
(VFS) layer allows multiple file systems to coexist and contains common
file-system functions, including caching. Applications issue storage re-
quests via file-system system calls. (Since the Windows and UNIX stor-
age data paths apply a similar organization, we use UNIX terminology in
the remainder of this paper.)

The legacy storage data path has four major limitations. First, storage
layers are black boxes and introduce unnecessary functional re-
dundancies and missed opportunities for optimizations. For example,
both logical and physical layers attempt to manage data layouts.
Therefore, B-trees in database applications can be remapped to extent-
based trees at the file-system layer [21] and then remapped to linked

CCS conceptsInformation systems → Information storage Systems
* Correposnidng author.

E-mail address: awang@cs.fsu.edu (A.-I.A. Wang).

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

https://doi.org/10.1016/j.sysarc.2020.101902
Received 10 June 2020; Received in revised form 8 September 2020; Accepted 2 October 2020

mailto:awang@cs.fsu.edu
www.sciencedirect.com/science/journal/13837621
https://www.elsevier.com/locate/sysarc
https://doi.org/10.1016/j.sysarc.2020.101902
https://doi.org/10.1016/j.sysarc.2020.101902
https://doi.org/10.1016/j.sysarc.2020.101902

Journal of Systems Architecture xxx (xxxx) xxx

2

lists at the flash-translation layer, rendering the original optimization
ineffective. Logical pointers used in memory also need to be serialized
into a storage format so that the stored pointers can be resurrected or
deserialized into different memory addresses after a reboot. While not
redundant, serialization and deserialization can be avoided with the
right system architecture. Another example is logging. A database
application has its own commit log; a journaling file system has its own
recovery log and uses a copy-on-write log at the flash layer. As a result,
several tailored solutions have been designed to consolidate redundant
logging [36].

Second, layered abstraction makes coordination and data tracking
difficult. For example, a file system interacts with a device driver via
reading and writing blocks, and a device driver cannot discern the file
membership of a block, whether a block is currently in use or free, or
whether a block contains data or metadata [28]. These characteristics
make it difficult to implement data-path-wide features, such as per-file
secure deletion in which the device driver does not know whether a
block belongs to a file to be securely deleted because information is only
available at the file-system layer [4].

Third, the legacy data path is not designed for low-latency storage.
Thus, for small IO requests, the storage-stack latency can no longer be
masked by low-latency SSDs [32].

Finally, the legacy data path has limited support for new storage data
models (e.g., key-value store); these models suffer fates similar to those
in the B-tree example and are remapped to underlying storage layers.

1.2. Alternatives

One approach to these limitations is to bypass the legacy storage data
path by accessing the storage device directly (e.g., direct IOs, DAX [35]).
The downside to this is that application programmers may need to
duplicate existing services in the legacy storage stack. Some solutions
insert layers to separate the management of metadata and data (e.g.,
[14]) or to deduce information across layers (e.g., [27]). However, these
solutions do not address the issues of redundant services and
medium-specific mechanisms. Imperfectly deduced information (e.g.,
whether a block belongs to a file to be securely deleted) may lead to
optimizations based on conservative decisions [1] (when in doubt,
delete a block securely). To streamline storage requests and avoid
redundant services, integrated design across multiple layers is possible
(e.g., [31]). However, some solutions are tailored for specific workloads
[24], or the black-box treatment of layers (e.g., the device-driver layer)
remains and hinders the information flow.

1.3. In search of a remedy

The semantic gap between storage services and the block interface is
fundamentally large. While many services, such as [7], fill this gap with
local file systems, this solution comes with a significant cost in terms of
performance. Our approach consists of a shared data-path-wide library
of useful storage primitives to mitigate the limits of the legacy data path.
While many solutions address the limitations of the storage data path in
specific problem domains, our approach aims to be broadly applicable.
Unlike solutions that revamp the entire storage data path, our approach
supplements the legacy storage data path, so that storage components
that use our library can reap the benefits, while legacy components can
still operate.

2. ADAPT conceptual overview

We introduce ADAPT, an auxiliary data path storage toolkit library
that enables the coordination of legacy storage components and allows
for the quick construction of new storage data path components
(Fig. 2.1).

The ADAPT toolkit provides two different deployment models. Leg-
acy applications that are not ADAPT-aware can use either the legacy
storage data path or our ADAPT-based POSIX-compliant file system to
take advantage of ADAPT-enabled capabilities. Coordination can be
achieved through legacy data path components communicating with
ADAPT components (via the dashed lines). Examples of ADAPT-enabled
capabilities include prioritized caching and secure deletion, as detailed
in Section 5. Alternatively, an ADAPT-aware application can go through
an ADAPT storage front end (e.g., an ADAPT-based key-value store or a
front end based on new data models) and rely on ADAPT to manage data
storage. Data structures directly implemented via ADAPT can bypass the
common overhead of serialization and deserialization. Having both
deployment models simultaneously enables the parts of the system that
need the performance to use the right interface while also allowing the
legacy applications to continue working. The key to data-path-wide
coordination is to allow storage components to use the same set of li-
brary primitives to build shared data structures. In designing these
primitives, we attempted to explore the lowest common denominator for
storage systems. In essence, a storage system minimally provides storage
and retrieval of data with some ability to tag data for persistence and
control. Based on these observations, we designed our primitives to
resolve the notion of tags.

Conceptually, each piece of data is associated with one or more tags,
which indicate how the data pieces are related and should be handled

Fig. 1.1.1. Conventional storage data path [2]. Fig. 2.1. The ADAPT library and its interactions with various storage data
path components.

W. Wang et al.

Journal of Systems Architecture xxx (xxxx) xxx

3

within the data path. The collection of data pieces and tags forms a
single-level store. To ease coordination, operations on these tags provide
global and logical communications throughout the data path. Tags can
also serve as a common denominator for high-level storage layers and
applications, enabling redundant services (e.g., data structure remap-
ping) to be bypassed and allowing for the direct construction of name-
spaces via file systems and of indices by way of databases. New data
models and access methods can also be constructed directly using tags
and supported in the ADAPT-based front end. ADAPT can also be used to
track data as they flow through the storage data path.

We demonstrated ADAPT by showing how easily we can build native
support for key-value systems and file systems. Then, we measured the
performance of these systems and confirmed that they have comparable
performance to state-of-the-art systems.

To summarize our contribution, we (1) designed and prototyped the
ADAPT storage toolkit framework to supplement (not replace) the leg-
acy storage data path and (2) conducted case studies to show that
ADAPT can support new data models, avoid redundant serialization and
deserialization overheads, be used to build applications as complex as
file systems, enable prioritized caching based on file system information
made available via ADAPT, and provide data-path-wide per-file secure-
deletion functionality.

3. ADAPT design

Before diving into design details, we will first describe the properties
and guiding principles of our design.

Backward compatibility: While the legacy storage data path has
limitations, many tailor-optimized feature-rich applications and storage
data-path components cannot be easily replaced. Therefore, this design
point allows ADAPT-aware components to coexist with and complement
existing storage components, provide additional data-path-wide
communication channels to mitigate existing limitations and build
new features. Storage components built from the ground up using
ADAPT can coexist with legacy components with and without ADAPT
enhancements.

Fine-grained primitives: ADAPT provides fine-grained common de-
nominator primitives for storage components to build shared data
structures with arbitrary topologies.

Single-level store: Given that ADAPT aims to allow different storage
components across applications and kernel to share data structures,
ADAPT uses a single-level store backplane, in which storage components
use the ADAPT allocation/deallocation interface to weave and share
data structures using persistent pointers.

Atomicity of updates: While fine-grained primitives enable de-
velopers to weave complex data structures, ADAPT must provide
atomicity of updates to ensure the consistency of the data structure in
the event of a crash or failure.

Efficient permission model: Fine-grained primitives can come with
high overhead to provide permission control. Therefore, we seek to
design mechanisms to lower this overhead.

The following research challenges must be met to realize our storage

library approach: (1) providing an API expressive enough to construct
complex storage components, (2) streamlining program flow con-
structed by our API, (3) keeping various metadata and data updates
consistent, (4) representing our internal states, and (5) providing fine-
grained access control. The following subsections address these design
challenges.

3.1. Graph-based API

Conceptually, each piece of data is associated with a globally unique
ID (e.g., <0, “example data”>). Each data ID can be associated with one
or more types of globally registered and extensible tags, each in the form
of <tag type ID, data ID>. Fig. 3.1.1 shows that the ID for “example
data” is 0. The access permission tag for “example data” refers to the
data ID of 1, which is 0x444. If another piece of data has the same
permission, it can also be tagged with the same permission tag. The
owner tag for “example data” refers to the data ID of 2, which is an
owner ID of 1234. This contrived example demonstrates an extreme use
of tags, in which each attribute is a tag. However, a more conglomerate
use of in which a tag can represent a set of attributes, is more practical.

Although the data model is simple, storage modules can use tags as a
common denominator while building data structures that are intended
for cross-layer coordination and tracking. For example, through data ID
indirections, we can build hierarchical graphs commonly used in file
systems.

Because a tag expresses the relationship between two pieces of data
(e.g., 0x444 is the permission of “data”), we can transform the repre-
sentation in Fig. 3.1.1 logically in terms of nodes and edges, with the
nodes holding data and the tag types representing directional edges
(Fig. 3.1.2). While it is possible for permission node 1 to have its own
permission node to specify who can change the permission of node 0, we
can recursively define permission to infinity. Practically, after a few
layers, the permission will fall back on the administrative root privilege,
which is the end of the recursion. The owner ID of node 0 can also be
inherited by its sub-nodes, so that each sub-node does not need to specify
the owner. The size of a piece of data is tracked by the ADAPT allocator,
so that a programmer does not need to worry about recursively

Fig. 3.1.1. ADAPT primitive example.

Fig. 3.1.2. Graph-based representation of ADAPT.

Fig. 3.1.3. Core API for ADAPT.

W. Wang et al.

Journal of Systems Architecture xxx (xxxx) xxx

4

specifying the size of the size tag.
Fig. 3.1.3 shows the core API for ADAPT. A node can be created to

hold a dynamically allocated piece of data. A node can be destroyed
given a node ID. An edge-type global unique ID can be created with a
given name. To create or delete an edge, we must specify the IDs of the
source, destination nodes, and edge type. Because dangling edges (those
without end nodes) may lead to corrupted graphs, this API requires that
the end nodes be created first, before the edge between the two. Before
an edge can be deleted, the nodes must exist on both ends, and the user
must delete the edge before deleting the end nodes. Since newly created
nodes cannot be accessed until they are attached by at least an edge,
nodes can be created in parallel. In the case of failure, nodes can be
garbage collected without any effects visible to end users.

When an edge must point to NULL, an empty node can be used to
ensure that each edge is formed between two nodes. Certain edge types
involve enumeration (e.g., block ID edge type); thus, when operating on
edges (adapt_create_edge and adapt_delete_edge) or accessing
a node through an enumerated edge (adapt_get_dest_node_ID), an
additional optional edge_info parameter is used to pass in the
enumerated number. For example, suppose we want to connect a file
node to data blocks 1 and 2.

To connect to block 1, we can call adapt_create_edge(file node
ID, enumerated edge type ID, edge_info with the edge number field
set to 1). To connect to block 2, we can call adapt_create_edge(file

node ID, enumerated edge type ID, edge_info with the edge number
field set to 2). To access the node ID for the second data block of a file,
we can issue adapt_get_dest_node_ID(file node ID, enumerated
edge type ID, edge_info with the edge number field set to 2).

A node’s data can be accessed through its ID (adapt_no-
de_ID_to_data), and a node’s ID can be accessed through the
incoming edge of another node (adapt_get_dest_node_ID).
Although a node can potentially be reached from different nodes
through the same in-bound edge type, a node can also only be associated
with unique out-bound edge types. For example, for a node in a doubly
linked list to be associated with the previous node and the next node, it
must have two separate previous-node and next-node edge types.
Although the underlying node pointer type is the same, we must define
two separate edge types to distinguish the two.

Fig. 3.1.4 shows an example of how to use the ADAPT API to
implement a singly linked list of character strings, with error checking
omitted. Line 1 declares node pointers for the list head and the null,
which are sentinel elements, indicating the start and end of the list. Line
2 declares variables to hold unique IDs for the list head, null node, and
edge type ID representing the edge to access the next node. Line 3 de-
clares the dummy variable edge_info, which does not hold any
meaningful information for this example.

In line 6, the init procedure initializes the head and null nodes to
the “NULL” string. Line 7 creates an edge type ID that is used to connect

Fig. 3.1.4. An example use of the ADAPT API.

W. Wang et al.

Journal of Systems Architecture xxx (xxxx) xxx

5

and access the next node in a linked list. In lines 8-9, the list head and the
null node are allocated with adapt_create_node, which returns
global unique IDs. In line 10, the head node is connected to the null node
via adapt_create_edge with a next node edge type ID.

Since ADAPT maintains direct mapping between node IDs and nodes,
one can invoke adapt_node_ID_to_data with a node ID to access a
node’s data (line 14). There is no need to traverse the linked list to locate
a node.

To insert a node, the insert_node function prepends a new node
between the head node and the next node (lines 17–25). To delete a
node, delete_node uses two node IDs; that is, similar to the use of
pointers to traverse a linked list and identify the target node for removal.
Then, the previous node’s next node edge is set to bypass the target node
to be deleted (lines 35-36), with the remaining used edge and node
deleted (lines 37-38). The example code shows similar logic as the
normal in-memory linked list data structure with pointers replaced by
ADAPT primitives.

In this pointer-rich example, the use of node and edge routines is
somewhat verbose; however, the non-pointer-rich part of programs is
expected to be the same as the non-ADAPT code. The resulting linked list
has persistent pointers (Section 3.4) that can survive reboots. Therefore,
if the head of the linked list and the list interface are exported, we can
have different storage components and applications to directly access

this persistent linked list (or any other data structures such as key-value
stores or b-trees). By doing so, the persistent linked list does not need to
be transformed into the file system storage format.

3.2. Transactions

One problem with using the graph-based API on fine-grained tags is
the difficulty of achieving atomicity across many ADAPT operations.
Any failure (e.g., out of memory) along a sequence of operations would
require lengthy cleanup code. Fig. 3.2.1 shows the execution flow of a
typical fallback code structure. During the fallback process, the node and
edge structures created before the failure are cleared. Multiple undo
execution paths can obscure the program flow.

To mitigate this issue, we added transactions to roll back multiple
operations (Fig. 3.2.2). If an error occurs between the begin and commit
calls, the abort call automatically performs graph cleanup and rollback
to the graph states. The execution control flow graph shown in Fig. 3.2.1
is transformed into the graph presented in Fig. 3.2.3.

3.3. Consistency and correctness properties

ADAPT maintains three copies of metadata: one in memory for
metadata updates (MM), one on storage as (previously checkpointed)
metadata (MS) for rolling back, and one on storage for committing in-
transit updates (MS’). ADAPT maintains two copies of data: one in
memory (DM) and one in storage (DS). Therefore, we must ensure that
ADAPT can recover to a consistent state in the case of a system crash.

A group of operations is first journaled in memory. To process
transactions of updating nodes and edges, ADAPT performs the various
steps in three phases:

Phase 1 (commit data): Update data items from DM to DS. Deleted
data items are marked to be deleted in MM until the metadata commit is
complete. If a failure occurs before Phase 1 is committed, then no
updated metadata will be written. In the case of a crash, it may be
possible for old metadata to point to newly updated data items; how-
ever, the consistency semantics are akin to those of the ordered mode for
ext4. Data nodes without edges can be detected and deleted via delayed
garbage collection.

Phase 2 (commit metadata): Commit metadata creations, updates, and
deletions from MM to MS’. If a failure occurs before Phase 2 is completed
(e.g., some pages are msynced while others are not), then MM and MS’
will be restored to the previously checkpointed metadata (MS).

Phase 3 (deletion and metadata checkpoint): Delete data items that are
marked to be deleted. Propagate metadata creations, updates, and de-
letions from MM to MS. If a failure occurs before this phase is complete,
then the transaction can be replayed (rolled forward) from the commit.

We recognize that the current implementation of transactions in-
volves writing metadata twice and can cause performance overhead
similar to that of the popular file system ext4 (our baseline comparison).
However, given that a small percentage of written blocks are metadata
blocks, updated in batches to aggregate updates, the journaling over-
head is approximately 6-13% (see Section 5.1).

Correctness: We applied the file system consistency properties
defined in [29] to reason the correctness of our transactions.

The reuse-ordering property ensures that once a file’s data block (an
ADAPT node) is freed, the block will not be reused by another file before
its free status becomes persistent. Otherwise, a crash may lead a file’s
metadata (an ADAPT edge) to point to the wrong file’s content. In
ADAPT, all edges are deleted and committed prior to deleting the con-
nected node, assuring that the node is no longer reachable from the
remaining graph before the node is deleted and reused.

The pointer-ordering property ensures that a reference data block (an
ADAPT node) in memory will become persistent before the metadata (an
ADAPT edge) in memory that references the data block. If this ordering
were reversed, a crash could cause the persistent metadata to point to a
persistent data block location that has not yet been written. In ADAPT,

Fig. 3.2.1. ADAPT’s error handling execution flow without transactions.

Fig. 3.2.2. Transactions for ADAPT.

Fig. 3.2.3. ADAPT’s error handling execution flow with the use of transactions.

W. Wang et al.

Journal of Systems Architecture xxx (xxxx) xxx

6

all nodes are flushed prior to the edges.
The non-rollback property ensures that older data or metadata ver-

sions will not persistently overwrite newer versions. ADAPT fulfills this
property because journaled entries are ordered and applied to the global
transactions chronologically.

3.4. Physical representation

In brief, ADAPT is a single-level store with operations revolving
around nodes and edges.

Nodes: One way to manage nodes is to create a node manager, which
is responsible for allocating storage, assigning unique IDs, and main-
taining ID-to-storage mappings. However, as we observed similarities
between node management and memory management, we overloaded
the memory management functionality for node management. ADAPT
nodes are variable-sized, memory-mapped storage chunks governed by a
memory allocator. A node’s memory address (offset by the starting
memory-mapped address) is used as a unique ID for that node, so we do
not need to worry about having two nodes mapped to the same ID.
Additionally, a node’s ID can give us direct access to the node’s storage
location. This approach implies that we must make the memory allo-
cator persistent across reboots, and the storage device must map to the
same memory address across reboots.

Edges: ADAPT edges are implicitly stored in an extensible hash table
[6] with collisions handled by double hashing. The key of the edge hash
table edge_table is generated from the source node ID, the edge type ID,
and edge info, which may contain a number for enumerated edge types
(see an example use in Section 3.1). edge_table[key] returns the desti-
nation node ID. The destination node can be tagged with a magic
number to perform a dynamic type check before accessing the node’s
content. For example, the magic number can confirm whether the node
content “123” will be accessed as a string type or an integer type. To
update an edge, we just update the edge_table[key] to a new destination
node ID. To delete an edge, the edge_table[key] entry is deleted.

Persistence: Since applications and various data path components
can use ADAPT to build data structures that will survive across reboots,
and we leverage memory-mapped addresses as unique IDs and persistent
pointers, the memory allocator’s states for ADAPT must be persistent.
(We implemented a separate memory allocator for ADAPT.) The gov-
erned memory is divided into regions for metadata, data, ephemeral
states (to optimize the ADAPT internal data structures), and storing
critical start-up information (e.g., offset of active persistent state stor-
age). The metadata region includes the states of the memory allocator
and the edge table. Metadata and data regions (except for the ephemeral
states) are flushed from memory and disk according to the snapshot
protocols in Section 3.3.

Data layout: Within the storage organization for ADAPT, data lay-
outs are largely governed by the memory allocator for nodes and the
representation of the hash table for edges. We first allocate a memory
pool and then perform customized allocation within it. To encourage
locality, we use a customized slab allocator [3] for sizes below one page:
this encourages objects of similar sizes to be collocated within a memory
page. For memory allocation requests greater than one page, we use a
buddy allocator [19]. Currently, we do not support resizing an existing
allocation if a node needs to grow in size. Instead, the user or developer
needs to reallocate a new larger node.

Since hashing has poor locality, we modified it to encourage desti-
nation node IDs from the same source node ID to be collocated. As a
simplified 32-bit example, suppose that a from_node_ID has a hash key of
0x0011011F. We use the upper 20 bits of the source node to determine
the storage of the key in a 4KB memory bucket 0x00110. If a to_node_ID
has a hash key of 0x00001100, then it will use the upper bits of its source
node 0x00110 to determine in which memory bucket to store the
to_node_ID, and it will use the lower 12-bits to locate the to_node_ID
within the bucket. As the hash table increases in size, fewer upper bits
will be used to locate bigger memory buckets.

Note that it is possible to reach the same to_node_ID from different
from_node_IDs, and each from_node_ID can have its own cluster of
to_node_IDs (which are persistent pointers to the destination node)

3.5. Access control

Since ADAPT aims to create primitives smaller than the granularity
of common data structures, we anticipate many small tags, rendering
high overhead for per-node permission checks. Allowing edges to be
created between any two nodes is an unwieldy way of enforcing
permission to access nodes in a general graph. However, since many tags
share the same permission, it is logical to check and enforce permissions
at fewer locations. Also, a certain degree of restrictions on how edges
can be formed can manage the access control properties of the resulting
graph topology.

Super nodes: The idea of super nodes (s-nodes) is to use fewer places
to check permissions. In other words, only s-nodes have edges to
permission nodes (e.g., ownership and permissions). All nodes
belonging to the same s-node share the same permissions. In terms of
restrictions, edges can be created from an s-node to its nodes
(Table 3.5.1). Edges can also be created from any node to an s-node,
since the destination s-node can enforce access permissions. However,
forming edges between nodes that are under different s-nodes is pro-
hibited, and a source s-node cannot create an out-bound edge to a node
under another s-node. For example, for a file system to support “.”, an
edge can be formed from a directory node N1 to itself with the same s-
node S1. For a file system to support “..”, an edge can be formed from N1
to its parent directory’s s-node S2. Then, N1 can follow the directory
edge from S2 to locate N2, which the parent directory node of is N1’.

One challenge of permission lookups is that of finding a node’s s-
node without additional edges or lookup tables. Since our unique node
IDs are based on 64-bit memory-mapped addresses, we borrowed un-
used S high-order bits. An s-node ID is a unique S-bit number, zero-
extended to form a 64-bit ID. To access its nodes, the s-node must be
connected to at least one of its nodes. To locate the permission from a
node under an s-node, we use hash(zero-extended upper S bit of the node
ID, permission edge-type ID).

In terms of the API, a programmer can use a special call to produce s-
node IDs and create node IDs alongside with them (Fig. 3.5.1). The s-
node tracks the number of nodes created beneath it. To delete an s-node,
all its nodes must first be deleted. Otherwise, the permission of the
undeleted node will be either undefined or defined by a newly allocated
s-node with a reused s-node ID.

In this model, the s-nodes can form loops themselves without a
conflict access rights problem. Developers can determine whether to use

Table 3.5.1
Rules for creating edges.

From \ to s-node
A

s-node
B

s-node A’s
nodes

s-node B’s
nodes

s-node A Yes Yes Yes No
s-node B Yes Yes No Yes
s-node A’s

nodes
Yes Yes Yes No

s-node B’s
nodes

Yes Yes No Yes

Fig. 3.5.1. Super-node operations.

W. Wang et al.

Journal of Systems Architecture xxx (xxxx) xxx

7

this feature, and they must consider the data model to divide normal
nodes into different access rights groups.

Suppose that a developer decides to change the design of the graph
and wants a node N1 under s-node S1 to have a different permission.
This change will involve creating a new s-node S2 so that the prefix of
the s-node ID can be used to create a new node N2, which is a copy of N1.
All existing relationships between N2 and nodes under S1 must be
created or reestablished through S2 as an intermediary node for
permission checks, and N1 can be removed from the graph. Given the
complexity and potential associated overhead of this operation, a user
should not change the access control points lightly.

4. Implementation

ADAPT is prototyped in C as a user-level library. ADAPT applications
link and load the library to use the API to perform storage tasks. Fig. 4.1
shows how an ADAPT-based key-value store uses the ADAPT library to
interact with the kernel and communicates with the kernel via memory
mapping and shared memory.

For the logical management of ADAPT (2,258 lines), we imple-
mented the graph API for data-tagging and data tracking, nodes and
edges, transactions, and access control. For the physical management
component of ADAPT (1,980 lines), we implemented the persistent
memory allocator, which also controls the layout of physical data. The
ADAPT library currently does not support multi-threaded and nested
transactions. Multi-threaded transactions could potentially speed up
ADAPT further. However, this speedup is not automatic because trans-
actions may have dependencies. For example, if we rename file A to file
B in transaction 1, and rename file B to file C in transaction 2, then
transaction 2 cannot proceed until transaction 1 is completed.

To demonstrate ADAPT, we implemented (1) an ADAPT-based key-
value store (493 lines) to show how ADAPT can natively support a
different access method, (2) a B+tree (581 lines) to show how ADAPT
can natively support a slightly more complicated data model, (3) a file
system (1,837 lines) to show how ADAPT API is rich enough to build a
complex application, (4) a prioritized caching scheme (464 lines) to
show how legacy storage components can benefit the enhancement of
ADAPT, and (5) secure deletion (380 lines) to show how ADAPT facili-
tates storage-data-path-wide data tracking.

5. Evaluation via case studies

While evaluating ADAPT, we aimed to demonstrate its ability to (1)
avoid redundant layered features, (2) achieve usability and robustness

when building complex software, (3) extend and support new data
models and features beyond those provided by the legacy data path, (4)
coordinate and track data across layers, and (5) perform well with both
HDD and SSD storage media.

To show that ADAPT can perform well with HDDs and SSDs, we
conducted benchmarks on both media in each experimental setting.
Each experiment was repeated five times and is presented at the 95%
confidence interval. Table 5.1 shows the system configuration.

5.1. ADAPT-based key-value store

To show the benefit of direct support for new data models, we pro-
totyped a key-value store using the ADAPT library. The ADAPT data
path had no file system or associated redundant efforts to manage the
data layout (Fig. 4.1).

Given that ADAPT is built on a hash table that stores edges to nodes,
its operations can be directly mapped to support key-value store oper-
ations. We began by creating a root node. For the key-value Put(key,
data) operation, we created a node to store the data and used the key as
an edge-type ID. For Get(key), we called adapt_node_ID_to_data
(adapt_get_dest_node_ID(root node ID, key)) to retrieve the
data. For Delete(key), we called adapt_delete_edge(root node
ID, node ID), followed by adapt_delete_node(node ID).

We compared the ADAPT-based key-value store with LevelDB 1.20
[7]. We also measured LevelDB using the raw mode, which bypasses the
file system, to see the performance overhead imposed by the file system

Fig. 4.1. Storage data paths for an ADAPT-based key-value store (shaded
boxes) and LevelDB [7].

Table 5.1
System configuration.

CPU 2.2Ghz Intel® Xeon® E5-2430, 15MB cache

Memory 8 GB RDIMM 1333 MT/s
HDD Seagate® SAS 146GB 15K RPM
SSD Intel® S3500 200 GB SATA Value MLC
OS Linux Mint 4.4

Fig. 5.1.1. Key-value store performance for HDD.

Fig. 5.1.2. Key-value store performance for SSD.

W. Wang et al.

Journal of Systems Architecture xxx (xxxx) xxx

8

layer. We further measured ADAPT without journaling to see the over-
head of maintaining consistency.

Fig. 4.1 shows the differences between the two data paths. For the
workload, we inserted 10 million 100-byte key-value pairs, each with
16-byte keys. Figs. 5.1.1 and 5.1.2 show the results in kilo key-value
store operations per second.

For both storage media, ADAPT and LevelDB have similar read
performance because both systems use memory-mapped IOs to avoid
copying. Both systems also use bulk updates (transactions for ADAPT) to
speed up small updates. This also explains why the SSD performance
(bandwidth-bound) is only twice as fast as the HDD performance
numbers. For HDDs, ADAPT can outperform LevelDB by a factor of 1.3
for inserts and 1.7 for deletes. For SSDs, ADAPT can outperform LevelDB
by a factor of 1.2 for inserts and deletes.

In comparing the numbers between LevelDB and LevelDB running
with the raw mode, we can see that the file system layer imposes 12-26%
overhead for HDD and 3-12% overhead for SSD. In comparing LevelDB
running with the raw mode with ADAPT, we can see that the remaining
overhead can be attributed to serialization and deserialization. We
further compared ADAPT with and without the use of journaling to
ensure consistency, revealing 7-13% overhead for HDD and 6-9%
overhead for SSD.

5.2. Tags-based B+tree implementation

Another example of ADAPT’s capability to support new data models
is the implementation of B+tree using ADAPT. Similar to the key-value
store, the B+tree is built on the ADAPT library and involves no file
system.

The nodes in B+tree are represented by ADAPT nodes, and the
connections between the nodes are represented by ADAPT edges.

We compared ADAPT-based B+tree implementation with normal
B+tree implementation, which utilizes the serialization/deserialization
method to load from/save to files on storage media. The serialization/
deserialization method takes a breadth-first way to process the nodes in
a B+tree into data in a file.

The dataset for our experiment contains five B+trees, each having a

depth of 3 and a fan-out factor of 342. The key size is 4 bytes and the
pointer size is 8 bytes; therefore, each node occupies approximately 4KB.
The entire size of each tree is approximately 480 MB, and the total size of
all the trees is approximately 2.4 GB.

We assessed performance in terms of query, deletion, and insertion to
ADAPT-based and file-based implementation. For query, we performed
500K queries for random-key-mapped pointers to an 80% full B+tree.
For insertion, we performed 500K insertion operations to a 40% full
B+tree with random key-pointer pairs. For deletion, we performed 500K
deletion operations to an 80% full B+tree. Figs. 5.2.1 and 5.2.2 show the
results. For the B+tree insertions, we can see that the overhead of
ADAPT persistent pointer creation can offset the benefit of bypassing
serialization and deserialization. However, ADAPT still performs better
for queries and deletions.

5.3. ADAPT-based (POSIX-compliant) file system

To demonstrate usability, we prototyped an ADAPT-based file system
(ADAPT-FS) to show that the interface and primitives provided by
ADAPT are expressive enough to build meaningful complex applica-
tions. While users of ADAPT need to learn a new interface, ADAPT saves
them from writing serialization and deserialization code. ADAPT-FS also
functions as a POSIX-compatibility layer for legacy applications and
users; it is not necessary to rewrite these applications. The ADAPT-FS
was implemented at the user space via the FUSE framework [33].
Fig. 5.3.1 illustrates the flow of data requests.

The ADAPT-FS translates POSIX file-system calls into ADAPT nodes
and edges; this task involves many node and edge operations that are
simplified by transactions. Basically, all i-nodes (permission-holding

Fig. 5.2.1. B+tree performance for HDD.

Fig. 5.2.2. B+tree performance for SSD.

Fig. 5.3.1. The ADAPT-FS and the ADAPT library (shaded).

Fig. 5.3.2. The ADAPT representation of a file system.

W. Wang et al.

Journal of Systems Architecture xxx (xxxx) xxx

9

nodes) are replaced with s-nodes, and all attributes are accessed through
edges (Fig. 5.3.2). Directory entries can be accessed via ID hashes. For
traversals, a directory entry can locate the next and previous entries
through hash(current ID, next-edge type) or hash(current ID, previous-
edge type). Data blocks are accessed through enumerated edges to
support indexing on top of the hashing data structure.

Although we could use a single node to contain all the attributes of an
i-node, we explored this scenario to show that, we can still configure the
system to achieve reasonable performance even if tags are naively
applied. We compared our ADAPT-FS stacked on FUSE with ext4 stacked
on FUSE. The elapsed times for ADAPT-FS and ext4 + FUSE to compile
the OpenSSL (v1.1.0f) [17] were statistically the same (87 ± 0.19 sec-
onds). We were concerned that hashing-based data structures may
perform poorly for directory traversals. Thus, we prepared a directory
containing Linux 4.1 (after a complete build) and examined the elapsed
time spent for recursively listing through the directory (Table 5.3.1).
The hash-based doubly linked list of directory entries in ADAPT is
marginally slower than ext4 + FUSE for both HDD and SSD.

For LFS large-file and small-file benchmarks [22], ADAPT-FS per-
formed reasonably well when its block size was configured to 32KB to
amortize the cost of fine-grained access to attribute nodes and dynamic
type checks (Tables 5.3.2-5.3.3). We admit that using a larger data block
is not a fair comparison (4KB for ext4 + FUSE); however, our objective
was to show that ADAPT’s API is sufficiently rich and that its imple-
mentation is robust enough to build software with comparable
complexity to a file system with reasonable performance. As a side effect
of the large block size of ADAPT-FS, it increases the performance of
random reads (due to unintended cache warmup per read access). The
random write bandwidth numbers for both ext4 + FUSE and ADAPT-FS
+ FUSE are higher than expected due to buffering. However, the over-
head of fine-grained per-file-attribute ADAPT appears on the creation
and deletion benchmarks, for which each operation involves creating
and deleting many tags.

5.4. Prioritized caching

The ability of ADAPT to provide data-path-wide annotation and
communication enables the addition of new features into file systems.
To demonstrate how ADAPT can be extended to support features beyond
the legacy data path, we implemented a prioritized caching similar to
[15], which allows different classes of data to be treated differently. In
our example, we defined large files, small files, and metadata as different
classes, and we modified the LRU cache to give preference to caching
small files and metadata to achieve performance gains.

In terms of ADAPT, we leveraged the per-file permission lookup
mechanism to directly access a file’s s-node and reach its subsidiary
node tagged with the data class. The caching mechanism can then pri-
oritize caching for blocks tagged as small files and metadata.We
compared the performance of ADAPT-FS with prioritized caching
enabled to its performance with prioritized caching disabled. The
workload involves a zero-think-time replay of a departmental web
server trace, which contains 8.6M file references to 1.0 TB of data,
among which 1.5M files are unique with 12 GB of unique data. We
classified files under 18 KB (75% of files) as small.

Fig. 5.4.1 shows that by the end of the trace replay, up to 95% of the
cache is populated with small files and metadata. Fig. 5.4.2 shows that

Table 5.3.1
Time to recursively list Linux 4.1 build.

HDD SSD

ext4 þ FUSE 2.8 (±0.018) secs 0.57 (±0.0050) secs
ADAPT-FS þ FUSE 3.0 (±0.029) secs 0.65 (±0.0080) secs

Table 5.3.2
LFS large-file benchmark numbers with one 4GB file for HDD and SSD.

HDD ext4 þ FUSE ADAPT-FS þ FUSE

sequential write 110 (± 1.3) MB/s 100 (±1.0) MB/s
random write 46 (±1.9) MB/s 12 (±0.73) MB/s
sequential read 190 (±2.1) MB/s 170 (±4.9) MB/s
random read 2.7 (±0.21) MB/s 13 (±0.65) MB/s
SSD
sequential write 160 (±2.8) MB/s 180 (±3.4) MB/s
random write 100 (±2.4) MB/s 100 (±1.5) MB/s
sequential read 350 (±4.9) MB/s 300 (±6.6) MB/s
random read 63 (±0.59) MB/s 94 (±1.2) MB/s

Table 5.3.3
LFS small-file benchmark numbers with 20K 16KB files for HDD and 100K 16KB
files for SSD.

operation ext4 þ FUSE (files/s) ADAPT-FS þ FUSE (files/s)

HDD create 1,700 (±66) 1,100 (±41)
read 2,700 (±100) 3,300 (±85)
delete 7,400 (±360) 4,000 (±120)

SSD create 3,900 (±79) 3,400 (±60)
read 5,300 (±80) 9,500 (±250)
delete 20,000 (±1,500) 17,000 (±500)

Fig. 5.4.1. Percentage of bytes cached for each IO class.

Fig. 5.4.2. Elapsed times for web trace replay.

Fig. 5.4.3. Percentage of individual HDD requests completed within a given
time frame in seconds (log scale).

W. Wang et al.

Journal of Systems Architecture xxx (xxxx) xxx

10

the overall elapsed time for the trace replay is improved by 40% for both
HDD and SSD. Figs. 5.4.3 and 5.4.4 show the cumulative distribution
function (CDF) of request completion times. In Fig. 5.4.3, approximately
90% of prioritized HDD requests were completed within 0.0001 seconds,
while only 60% of requests for the baseline system were completed
within the same time frame. In Fig. 5.4.4, nearly, 90% of prioritized SSD
requests were completed within 0.0001 seconds, while only 70% of re-
quests for the baseline system were completed within the same time
frame.

5.5. Per-file secure deletion

To demonstrate cross-layer coordination and tracking, we
augmented the ADAPT-FS with a per-file secure-deletion feature akin to
that of [4]. First, a user can use chattr +s to set the secure-deletion bit
of a file at the file-system layer. However, by the time a storage request
arrives at the device-driver layer, the layer can no longer identify the file
membership of a block.

Since each group of nodes in the ADAPT-FS is governed by an s-node
to manage the permission, any node (e.g., a data block node) under an s-
node can reach the s-node (see Section 3.4). Consequently, the ADAPT-
FS can access the permission. The secure-deletion bit indicates that the
corresponding overwrite or truncate should be handled securely.

For disk, we borrowed the ioctl call mechanism from FUSE to
allow the block layer to issue calls from the kernel space to ADAPT to
query whether a block belongs to a file that has the secure-deletion bit
set. If so, the block layer would perform triple writes of random bits to
ensure secure deletion. Updates to blocks belonging to a file marked for
secure deletion are prepended with triple writes of random bits to
securely delete the previous content. We also modified the truncate
mechanism, so that it would issue calls to erase data blocks.

Without the open FTL and raw flash setup, we did not implement this
feature for SSD. Note that the TRIM command is insufficient; it only
specifies which pages are obsolete to prevent migrating these as live
pages during the garbage collection process [26].

To evaluate the performance overhead introduced by secure

deletion, we used the LFS small-file benchmark with the same setting as
that we used in Section 5.2, with the first 5% of files marked to be
securely deleted to reflect locality. Fig. 5.5.1 shows that secure deletion
does not slow down file creations and reads, but significantly degrades
the performance of deletions as expected.

6. Limitations

ADAPT provides a framework for different layers to coordinate
through a single unified interface, but this does not necessarily mean
that such coordination is possible. For example, consider two databases
that want to share the same dataset to optimize the data layout: one for
row access, and the other for column access. Efforts to reconcile con-
flicting goals across storage components that want to coordinate is
beyond the scope of this work.

The white-box approach will also interact with storage software
components developed by people who wish to keep their internal rep-
resentations proprietary. One possible solution is to have enriched
permission semantics, so that only a limited subset of translated edge
type IDs is made available for external use.

7. Related work

Since the advent of SSDs, research systems have attempted to address
the limitations posed by the legacy storage data path.

7.1. Cross-layer redundancy removal

JFFS [36] consolidates logging for the file-system and
flash-device-driver layers. ADAPT complements JFFS in terms of
extensibility to new features and data models.

DevFS [9] moves the file-system component into the storage device
so that applications can directly access a storage device without being
trapped into the OS for most operations while maintaining integrity,
consistency, and security guarantees. DevFS also leverages device-level
power-loss-protection capacitors to eliminate redundant writes caused
by logging and associated garbage collection mechanisms. ADAPT, on
the other hand, focuses on the legacy software storage stack rather than
altering the behavior of hardware storage devices.

7.2. Cross-layer coordination

Existing methods to coordinate across layers are mostly designed to
solve specific problems (e.g., secure deletion and performance), and are
not suitable for arbitrary extension of new functionalities.

Shen et al. [24] showed that different file-system journaling modes
can be changed dynamically for database files to achieve better per-
formance. ADAPT can be used to support this feature and propagate
per-file journaling status to the underlying file system.

The differentiated storage services [15] coordinate IO class infor-
mation by expanding the block IO data structure to propagate this in-
formation. ADAPT uses a data-path-wide repository to store the
additional coordination information, so that all storage components can
have direct access to their information.

The gray-box approach leverages inferred information across layers
for coordination [1]. Since inferences may occasionally be incorrect,
mechanisms based on these inferences must make conservative de-
cisions (e.g., when in doubt, delete a data block securely).

TrueErase [4] provides an auxiliary data path, so that a file system
can propagate information to the device layer to indicate whether a file
needs to be securely deleted or overwritten. The auxiliary data path is
tailored for secure deletion, so it may not be readily applicable to the
addition of new features such as prioritized caching.

Willow [23] expands the interface for SSDs to exploit built-in storage
processor units within SSDs to run tailored applications. Different stor-
age components can issue RPC calls to interact with SSDs. The

Fig. 5.4.4. Percentage of individual SSD requests completed within a given
time frame in seconds (log scale).

Fig. 5.5.1. LFS small-file benchmark numbers with 20K 16KB files for HDD.

W. Wang et al.

Journal of Systems Architecture xxx (xxxx) xxx

11

applications that can run under Willows are limited by the amount of
built-in memory and processing power on SSDs. ADAPT, on the other
hand, focuses on the software stack instead of altering the behavior
within storage devices.

Spiffy [30] allows file-system developers to annotate
file-system-specific data structures and then compiles and generates a
library so that application developers can write file-system-aware util-
ities using only generic library calls without knowing the specific file
system’s format. In a sense, Spiffy creates another abstraction layer that
integrates the knowledge of file systems, while ADAPT aims to pierce
through the abstraction of layers.

Strata [10] leverages the strengths of NVM, SSD, and HDD and
provides an integrated cross-layer design (NVM at the user level and SSD
and HDD at the kernel level) to achieve both high throughput and low
latency. Strata coordinates layers for performance. However, ADAPT
can be used to extend Strata for new system features.

7.3. Support for low-latency storage

DAX [35] uses direct IOs and bypasses memory caching designed for
high-latency storage. However, applications may need to duplicate the
functionalities (e.g., storage allocation, mapping, and serialization)
originally provided by the bypassed legacy storage components.

The Persistent Memory Development Kit (PMDK) [20] provides
user-space libraries and tools for allocating persistent memory objects,
performing transactions, object typing, and so on. The PMDK exposes
persistent pointers for developers to weave persistent data structures,
while ADAPT uses the abstraction of nodes and edges to weave data
structures. ADAPT also provides a POSIX-compliant deployment model.

PMFS [5] uses memory mapping and bypasses the block layer to
achieve substantial performance gains for byte-addressable persistent
memory. Although ADAPT can bypass the legacy VFS caching layer, the
internal representation of ADAPT does not contain tailored optimiza-
tions for byte-addressable persistent memory. Data structures such as
[16] will be incorporated in future work.

Arrakis [18] removes the kernel from the data IO path. Both network
and storage IO requests are routed to and from the applications’ address
spaces. To perform IOs, applications rely on a user-level IO stack that is
provided as a library. Unlike ADAPT, Arrakis does not provide a
backward-compatible, POSIX-compliant interface for storage, and leg-
acy applications must be modified to interact with the internal repre-
sentation of Arrakis.

File systems as processes (FSP) [13] move the entire legacy
kernel-level storage stack into userspace. Combined with lightweight
IPC, FSP can provide sub-microsecond latency while accessing NVM.
Similar to FSP, the ADAPT-FS is implemented as a user-level library.
Unlike DashFS, a prototype using the concept of FSP, ADAPT supports
crash consistency. With the use of a byte-addressable data structure [16]
and direct communication with a user-level NVMe device driver [37],
the performance of the ADAPT-FS can improve significantly.

In the high-performance computing domain, Distributed Asynchro-
nous Object Storage (DAOS) [8] shares a similar architecture with
ADAPT. DAOS operates in the user space and provides a layer of libraries
to handle legacy semantics (e.g., POSIX). DAOS also uses the Apache
Arrow format to avoid serialization and deserialization for
data-analytics applications. Unlike DAOS, ADAPT supports communi-
cation and coordination across layers.

7.4. Support for new storage data models

Shetty et al. [25] showed that mixed workloads from file systems and
databases can be efficiently handled using separate KVFS and KVDB
layers. Similarly, ADAPT can attach different data models (e.g., B-tree
and key-value store) into the same namespace and provide direct access
to different data structures without translating them into the internal
representation of the file system.

Cassandra [12] uses a customized table API to store and retrieve data
objects. ADAPT uses the general notion of nodes and edges.

Aerie [34] provides a user-level library to give applications direct
access to storage-class memory. Each application can define its own
storage access interface built on a primitive called a memory file. Since
Aerie user-level processes can directly access storage hardware, a rogue
process can issue stylized write patterns to significantly shorten the
lifespan of storage-class memory.

In the context of high-performance computing, JULEA [11] is a
user-space layer that provides different interfaces (e.g., key-value store
and file system) to different applications. On the other hand, ADAPT also
provides an additional communication channel and coordination across
the entire storage data path.

7.5. Overall

Various solutions have been devised to mitigate a subset of con-
straints in the legacy storage data path. Table 7.1 summarizes the
comparisons between ADAPT and existing solutions.

8. Conclusions

We have presented ADAPT, a storage-data-path toolkit to address the
constraints of the legacy storage data path. Using a shared primitive and
an API of nodes and edges, we have shown how ADAPT can be used to
build applications as complex as a file system and robust enough to
compile the Linux kernel. The ADAPT-based key-value store shows how
direct system support and bypassing redundant services can signifi-
cantly improve performance for both disks and SSDs. ADAPT also eases
data-path-wide tracking and coordination to support features such as
prioritized caching and per-file secure deletion.

Declaration of Competing Interest

None.

Acknowledgment

We would like to thank anonymous reviewers for providing us with
invaluable feedback. We would also like to thank Geoff Kuenning and
Leah Rumancik for reviewing early drafts of this paper. This work is
sponsored by FSU and the NSF CNS-1125275. The opinions, findings,
conclusions, and recommendations expressed in this document do not
necessarily reflect the views of FSU, the NSF, or the U.S. Government.

Table 7.1
Related work comparison.

Support for
low latency
storage

Support for
new data
model

Avoid redundant
functions across
layers

Support for
coordination
across layers

[36] √ √ √
[24] √
[9] √ √ √
[15,23] √ √
[1,4,

30]
√

[10] √ √
[5,13,

35]
√

[18] √ √
[25] √ √ √
[12] √
[34] √ √ √
[8] √ √ √
[20] √ √ √
[11] √ √
ADAPT √ √ √ √

W. Wang et al.

Journal of Systems Architecture xxx (xxxx) xxx

12

References

[1] AC Arpaci-Dusseau, RH. Arpaci-Dusseau, Information and control in gray-box
systems, in: Proceedings of the 18th Symposium on Operating Systems Principles
(SOSP), 2001.

[2] M Bjorling, J Gonzalez, P Bonnet, LightNVM: the linux open-channel ssd
subsystem, in: Proceedings of the 15th USENIX Conference on File and Storage
Technologies (FAST), 2017.

[3] J. Bonwick, The Slab Allocator: an object-caching kernel memory allocator, in:
Proceedings of the USENIX Summer 1994 Technical Conference (ATC), 1994.

[4] S Diesburg, C Meyers, M Stanovich, M Mitchell, J Marshall, J Gould, AIA Wang,
G Kuenning, TrueErase: per-file secure deletion for the storage data path, in:
Proceedings of the 2012 ACM Annual Computer Security Applications Conference
(ACSAC), 2012.

[5] SR Dulloor, S Kumar, A Keshavamurthy, P Lantz, D Reddy, R Sankaran, J Jackson,
System software for persistent memory, in: Proceedings of 2014 European
Conference on Computer Systems (EuroSys), 2014.

[6] R Fagin, J Nievergelt, N Pippenger, HR Strong, Extensible hashing—a fast access
method for dynamic files, in: ACM Transactions on Database Systems 4, 1979,
pp. 315–344.

[7] Ghemawat S, Dean J, LevelDB, https://github.com/google/leveldb, 2018.
[8] Intel®. DAOS: revolutionizing high-performance storage with intel optane™

technology. https://www.intel.com/content/www/us/en/high-performance-comp
uting/daos-high-performance-storage-brief.html, 2019.

[9] S Kannan, AC Arpaci-Dusseau, RH Arpaci-Dusseau, Y Wang, J Xu, G Palani,
Designing a true direct-access file system with DevFS, in: Proceedings of the 16th
USENIX Conference on File and Storage Technologies (FAST), 2018.

[10] Y Kwon, H Fingler, T Hunt, S Peter, E Witchel, T Anderson, Strata: a cross media
file system, in: Proceedings of the 26th ACM Symposium on Operating Systems
Principles, 2017.

[11] M. Kuhn, JULEA: A flexible storage framework for HPC, in: Proceedings of the
2017 International Conference for High Performance Computing, Networking,
Storage and Analysis, 2017.

[12] A Lakshman, P Malik, Cassandra: a decentralized structured storage system, in:
ACM SIGOPS Operating Systems Review 44, 2010, pp. 35–40, 2010.

[13] J Liu, AC Arpaci-Dusseau, RH Arpaci-Dusseau, S Kannan, File systems as processes,
in: Proceedings of the 11th USNEIX Workshop on Hot Topics in Storage and File
Systems, 2019.

[14] L Lu, TS Pillai, AC Arpaci-Dusseau, RH Arpaci-Dusseau, WiscKey: separating keys
from values in SSD-conscious storage, in: Proceedings of the 14th USENIX
Conference on File and Storage Technologies (FAST), 2016.

[15] M Mesnier, F Chen, T Luo, JB Akers, Differentiated storage services, in:
Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP),
2011.

[16] M Nam, H Cha, YR Choi, SH Noh, Write-optimized dynamic hashing for persistent
memory, in: Proceedings of the 17th USENIX Conference on File and Storage
Technologies (FAST), 2019.

[17] OpenSSL Cryptography and SSL/TLS Toolkit. https://www.openssl.org/news/op
enssl-1.1.0-notes.html, 2019.

[18] S Peter, J Li, I Zhang, DRK Ports, D Woos, A Krishnamurthy, T Anderson, T Roscoe,
Arrakis: The operating system is the control plane, in: Proceedings of the 11th

USENIX Symposium on Operating Systems Design and Implementation (OSDI),
2014.

[19] JL Peterson, TA. Norman, Buddy systems, in: Communications of the ACM 20,
1997, pp. 421–431.

[20] pmem.io PMDK Introduction, https://docs.pmem.io/persistent-memory/getti
ng-started-guide/what-is-pmdk, 2020.

[21] O Rodeh, J Bacik, C Mason, BTRFS: the linux b-tree filesystem, in: ACM
Transactions on Storage (TOS) 9, 2013. Article No. 9.

[22] M Rosenblum, JK. Ousterhout, The design and implementation of a log-structured
file system, in: ACM Transactions on Computer Systems (TOCS) 10, 1992,
pp. 26–52.

[23] S Seshadri, M Gahagan, S Bhaskaran, T Bunker, A De, Y Jin, Y Liu, S Swanson,
2014. Willow: a user-programmable SSD, in: Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2014.

[24] K Shen, S Park, M Zhu, Journaling of journal is (almost) free, in: Proceedings of the
12th USENIX Conference on File and Storage Technologies (FAST), 2014.

[25] PJ Shetty, RP Spillane, RR Malpani, B Andrews, J Seyster, E Zadok, Building
workload-independent storage with VT-trees, in: Proceedings of the 11th USENIX
Conference on File and Storage Technologies (FAST), 2013.

[26] Shu F, Obr N. Data set management commands proposal for ATA8-ACS2. http
://www.t13.org/documents/UploadedDocuments/docs2007/e07154r2-Data_S
et_Management_Proposal_for_ATA-ACS2.pdf, 2007.

[27] M Sivathanu, V Prabhakaran, FI Popovici, TE Denehy, AC Arpaci-Dusseau,
RH Arpaci-Dusseau, Semantically-smart disk systems, in: Proceedings of the
Second USENIX Symposium on File and Storage Technologies (FAST), March 2003.

[28] M Sivathanu, LN Bairavasundaram, AC Arpaci-Dusseau, RH Arpaci-Dusseau, Life or
death at block level, in: Proceedings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI), December 2004.

[29] M Sivathanu, AC Arpaci-Dusseau, RH Arpaci-Dusseau, S Jha, A logic of file
systems, in: Proceedings of the 4th USENIX Conference on File and Storage
Technologies (FAST), 2005.

[30] K Sun, D Fryer, J Chu, M Lakier, AD Brown, A Goel, in: Proceedings of the 16th
USENIX Conference on File and Storage Technologies (FAST), 2016.

[31] Sun Microsystems. In a class by itself—the solaris 10 operating system, A Tech.
White Paper, November 2004.

[32] S Swanson, A. Caulfield, Refactor, reduce, recycle: restructuring the I/O stack for
the future of storage, in: Computer 46, August 2013, pp. 52–59.

[33] Szeredi M. Filesystem in Userspace. http://fuse.sourceforge.net, 2005.
[34] H Volos, S Nalli, S Panneerselvam, V Varadarajan, P Saxena, MM Swift, Aerie:

flexible file-system interfaces to storage-class memory, in: Proceedings of the 2014
European Conference on Computer Systems (EuroSys), 2014.

[35] Wilcox M. DAX: page cache bypass for filesystems on memory storage. https://lwn.
net/Articles/618064, 2014.

[36] D. Woodhouse, JFFS: the journaling flash file system, in: Proceedings of the Ottawa
Linux Symposium, 2001.

[37] Z Yang, JR Harris, B Walker, D Verkamp, C Liu, C Chang, G Cao, J Stern, V Verma,
LE Paul, SPDK: a development kit to build high performance storage applications,
in: Proceedings of the 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), 2017.

W. Wang et al.

http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0002
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0002
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0002
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0004
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0004
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0004
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0005
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0005
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0007
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0007
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0007
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0008
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0008
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0008
https://github.com/google/leveldb
https://www.intel.com/content/www/us/en/high-performance-computing/daos-high-performance-storage-brief.html
https://www.intel.com/content/www/us/en/high-performance-computing/daos-high-performance-storage-brief.html
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0014
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0014
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0015
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0016
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0016
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0016
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0017
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0017
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0017
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0018
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0018
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0018
https://www.openssl.org/news/openssl-1.1.0-notes.html
https://www.openssl.org/news/openssl-1.1.0-notes.html
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0021
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0021
https://docs.pmem.io/persistent-memory/getting-started-guide/what-is-pmdk
https://docs.pmem.io/persistent-memory/getting-started-guide/what-is-pmdk
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0024
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0024
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0025
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0025
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0025
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0027
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0027
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0027
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0028
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0028
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0029
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0029
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0029
http://www.t13.org/documents/UploadedDocuments/docs2007/e07154r2-Data_Set_Management_Proposal_for_ATA-ACS2.pdf
http://www.t13.org/documents/UploadedDocuments/docs2007/e07154r2-Data_Set_Management_Proposal_for_ATA-ACS2.pdf
http://www.t13.org/documents/UploadedDocuments/docs2007/e07154r2-Data_Set_Management_Proposal_for_ATA-ACS2.pdf
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0031
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0031
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0031
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0032
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0032
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0032
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0033
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0033
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0033
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0034
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0034
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0036
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0036
http://fuse.sourceforge.net
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0038
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0038
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0038
https://lwn.net/Articles/618064
https://lwn.net/Articles/618064
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0041
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0041
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0042
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0042
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0042
http://refhub.elsevier.com/S1383-7621(20)30172-7/sbref0042

	ADAPT: An auxiliary storage data path toolkit
	1 Introduction
	1.1 Legacy storage data path
	1.2 Alternatives
	1.3 In search of a remedy

	2 ADAPT conceptual overview
	3 ADAPT design
	3.1 Graph-based API
	3.2 Transactions
	3.3 Consistency and correctness properties
	3.4 Physical representation
	3.5 Access control

	4 Implementation
	5 Evaluation via case studies
	5.1 ADAPT-based key-value store
	5.2 Tags-based B+tree implementation
	5.3 ADAPT-based (POSIX-compliant) file system
	5.4 Prioritized caching
	5.5 Per-file secure deletion

	6 Limitations
	7 Related work
	7.1 Cross-layer redundancy removal
	7.2 Cross-layer coordination
	7.3 Support for low-latency storage
	7.4 Support for new storage data models
	7.5 Overall

	8 Conclusions
	Declaration of Competing Interest
	Acknowledgment
	References

