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Abstract. File systems (FSes) store crucial data.  However, FS bugs can lead to 

data loss and security vulnerabilities.  FS fuzzing is an effective technique for 

identifying FS bugs that may be difficult to detect through traditional regression 

suites and human testing.  FS fuzzing involves two parts: (1) File image fuzzing 

often involves altering bits of an FS at random storage locations; (2) File opera-

tion fuzzing typically issues random sequences of file operations to an FS image.   

Since leading FS fuzzers tend to access a small set of files to encourage the 

exploration of deep code branches, the accessed FS image locations tend to be 

clustered and localized.  Thus, altering bits at random FS locations is ineffective 

in triggering bugs, as these locations are often not referenced by file operations.  

Furthermore, the minimum FS image is insufficiently small for frequent image 

saves and restores due to performance and storage overhead.  

In this paper, we introduce LFuzz, which exploits the locality shown in typical 

FS fuzzing workloads.  LFuzz tracks recently accessed image locations and 

nearby locations to predict which locations will soon be referenced.  The scheme 

is adaptive to migrating file access patterns.  Moreover, since modified image 

locations are localized, LFuzz can compactly and incrementally accumulate FS 

image changes so that FS states can be fuzzed from intermediary images instead 

of top-level seed images.  LFuzz further explores the use of partially updated 

images to simulate corrupted FSes with mixed versions of metadata.   

We applied LFuzz to ext4, BTRFS, and F2FS and found 21 new bugs.  Com-

pared to JANUS, LFuzz reduced the fuzzing area by up to 8x with unique edges 

deviated by up to 15%. 
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1 Introduction 

File systems (FSes) are important for holding consistent and persistent data and 

metadata, or FS states that survive reboots and crashes.  FS bugs can have negative 

consequences, ranging from deadlocking and crashing an operating system to losing 

data and exposing security vulnerabilities.  An adversary can lure a user to mount a 

crafted FS storage image via a swapped or misplaced USB device or a malware-infected 

USB charging port [Lan11; FCC23].  An adversary can also issue a sequence of file 

operations that lead to vulnerabilities or the escalation of privileges [MIT09].  
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Traditional FS bug identification methods rely on manual testing and regression test 

suites [Ato19; SGI23].  However, human enumerations of testing cases may miss bugs 

triggered by complex constraints.  One can also exhaustively test a small number of file 

operations (e.g., 3) [Moh19], but it can miss bugs that involve many file operations. 

An alternative is fuzzing, which uses random inputs and can identify bugs that evade 

regression test suites.  Syzkaller [Syz23b] is a popular kernel fuzzer.  Running contin-

uously, Syzkaller has identified 2,800+ bugs in 2.5 years to upstream Linux kernels.  

Other kernel fuzzers (e.g., kAFL [Sch17] and Syzkaller derivatives [Wan21]) can also 

detect >8 new bugs within days of fuzzing, indicating that fuzzing is promising for 

exploring difficult corner-case bugs. 

FS fuzzing has unique properties since an FS accepts two streams of inputs—file 

operations and the stored bits that hold the content and states of an FS or an FS image.  

FS image fuzzing often involves altering bits at random locations of an FS image.  FS 

operation fuzzing typically involves applying random sequences of file operations to 

an FS image.    There are two challenges.  First, even though the minimum sizes of 

FSes are small (8MB to 128MB) compared to modern storage, leading FS fuzzers tend 

to avoid saving and restoring FS images (states) across fuzzing iterations due to pro-

hibitive performance and storage overheads.  The avoidance methods generally involve 

regenerating FS images or reducing the reproducibility of bugs. 

Another challenge is assuring that file operations access the fuzzed FS image areas.  

For example, fuzzing file X’s metadata will not affect the FS code execution branch 

coverage if the file operations only reference file Y’s metadata.  One solution is to trace 

accessed FS image regions for a sequence of file operations, fuzz these regions, and 

replay the file operations.  However, accessing a fuzzed bit during one operation can 

alter the accessed FS stored regions for subsequent file operations.  For instance, if the 

allocation bit for the first metadata slot is fuzzed and marked as allocated, then the next 

file creation (e.g., file Z) will allocate the second slot.  Fuzzing the first slot based on 

the trace is not effective, as file Z’s operations will reference the second slot.  

We designed, implemented, and evaluated LFuzz, an FS fuzzing framework, to ad-

dress these challenges.  We observed that FS fuzzers typically access a small set of files 

(e.g., <100 within 240 CPU fuzzing hours) to encourage deeper state explorations, even 

for an FS with many files.  This means that the accessed FS image locations can be 

clustered and localized.  Thus, fuzzing recently accessed and neighboring image loca-

tions can increase the probability that the next file operations will access those loca-

tions.  The locality of the FS image updates also leads to smaller and clustered modified 

image ranges, reducing the overhead for saving and restoring FS images in incremental 

deltas.  Additionally, we discovered that incompletely restoring deltas emulates an FS 

with mixed metadata versions, which is another effective fuzzing method. 

We applied LFuzz to ext4 [Mat07], BTRFS [Rod13], and F2FS [Lee15] for 240 

CPU hours.  Compared to JANUS [Xu19], unique edges explored by LFuzz deviated 

from those of JANUS by up to 15%, and FS fuzzing area was reduced by up to 8x.  

Furthermore, LFuzz discovered 21 new bugs. 
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2 Background 

FS basics:  Each file is associated with an i-node, which is a per-file data structure.  

The allocation of i-nodes and data blocks (1KB-8KB) may involve allocation bitmaps, 

in which each bit indicates whether an i-node or a data block is allocated.  A directory 

maps file names to i-node numbers.  A single file operation can update multiple data 

structures.  For example, moving a file from one directory to another directory involves 

changes to both directories).  To make such operations appear indivisible, an FS may 

provide a journal to record multiple operations in a transaction.  Each FS also has a 

superblock; that provides global information about the FS type, the total number of free 

blocks, etc.  File content is referred to as data, while the remaining data structures (e.g., 

i-nodes) are referred to as metadata. 

Some FSes use copy-on-write (COW) mechanisms.  Instead of making updates in 

place, COW FSes write updates to unwritten locations with a version stamp.   An ap-

plication program issues file operations to an FS through system calls (or syscalls, for 

short).  A block-based FS typically accesses storage devices through a block layer, 

which translates file-level requests into block-level requests (e.g., block writes).  To 

optimize performance, a referenced FS block can be cached in a memory page (1KB-

8KB, typically the same as the block size) to accelerate future access to the same block. 

Leading FS fuzzers:  Syzkaller [Syz23b] creates an FS image by picking a parame-

ter set and prefilling the FS with files and directories.  For each fuzzing iteration, a 

random sequence of fuzzed file operations is applied.  The random file operations fol-

low FS semantics (e.g., a file write is issued only to an opened file [Syz22]).  The test 

directories are deleted after each iteration.  The number of files being fuzzed can be 

limited. Within 240 CPU fuzzing hours, Syzkaller references up to four files on average 

within each iteration, with up to 13 file operations in a sequence.  The average number 

of operations on the files is two. 

Syzkaller generally does not save FS images (except syz-mount-image fuzzing).  

File operation sequences are tested one after another without resetting the kernel until 

a time limit or until the container VM needs to reboot.  Therefore, when a bug is de-

tected (e.g., system crashes, kernel panics, BUG() and KASAN [Jeo20] error messages, 

time outs), it is difficult to discern whether the bug was caused by the last file operation 

sequence or the cumulative FS state changes up to that point.  From our experience, 

when the last file operation sequence is applied to the original image, only 50% of the 

bugs can be reproduced.  Xu et al. [Xu19] discovered that all crash-related bugs for 

Syzkaller are not reproducible.   

AFL [Zal18] has been used to fuzz FS images [Nos16], which can be used to run 

regression tests.  AFL fuzzes only nonzero metadata blocks because data blocks gener-

ally do not affect FS integrity.  Therefore, AFL may skip valid metadata blocks that are 

zero-initialized.  Moreover, for COW FSes, obsolete nonzero metadata blocks can di-

lute fuzzing targets because fuzzed obsolete blocks are unlikely to be referenced and 

contribute to identifying new execution branches. 

JANUS [Xu19], which is based on AFL, fuzzes file operations and FS images.  To 

reduce the FS image area to be fuzzed, JANUS extracts the image regions that are ini-

tially allocated for metadata with prepopulated files and fuzzes only that fixed region.  
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Whenever JANUS idenfities new code execution branch coverage after applying file 

operations, it saves a new seed image by recording the file operation sequence and the 

old seed image before the operations are applied.  The new seed image can be regener-

ated by applying the saved file operation sequence to the old image. 

JANUS also handles blocks with checksums, such as superblocks.  Fuzzing a su-

perblock likely leads to mount failures, precluding the exploration of deeper code 

branches beyond checksum verification.  Thus, JANUS makes checksums consistent 

with fuzzed content, simulating corruptions before the checksums are computed.   

3 Image Access Locality of FS Fuzzers  

Accessed FS image locations differ based on the seed image and migrate over time.  

The challenge in deciding which FS image locations to fuzz lies in predicting how ac-

cessing the fuzzed bits will alter subsequent access locations.  To address this issue, we 

examined the size of the accessed areas for a fuzzing iteration, their temporal relation-

ship across fuzzing iterations, and their interactions with structured FS layouts. 

Size of accessed FS image locations:  By intercepting bio_endio() at the block layer, 

we traced the FS locations (in 64B subblocks or buckets) accessed by 200 random file 

operations issued by JANUS and aggregated the accessed size.  The results for ext4, 

BTRFS, and F2FS are shown in Table 3.1.  The total accessed size by these operations 

was <0.02% of the smallest FS image.  Although JANUS narrowed the fuzzing to the 

initial metadata regions, the accessed image size was still <13% of the reduced region, 

indicating that the chance of random file operations accessing a randomly fuzzed re-

gion was small (<13% even when fuzzing is limited to the initial metadata).  This find-

ing also implies that the overhead of tracking, saving, and restoring just the accessed 

FS image locations might be affordable. 

 

Table 3.1.  Size of image locations accessed by 200 random file operations issued by JANUS. 

 ext4 BTRFS F2FS 

Smallest FS image 8MB 128MB 64MB 

Initial metadata size fuzzed under JANUS 111KB 41KB 90KB 

Accessed image size by 200 random file operations 1.3KB 3.3KB 12KB 

 

Temporal correlations of accessed image locations:  During the image fuzzing 

phase of JANUS, the same file-operation sequence was repeatedly applied in iterations 

to the same FS image fuzzed in different ways.  One hypothesis was that the image 

locations accessed in one fuzzing iteration would likely correlate with the next fuzzing 

iteration.   

To test this hypothesis, we modified JANUS to trace accessed image locations from 

one iteration to the next iteration during the image fuzzing phase.  After 6K iterations, 

we discovered that, for ext4, 78% of the accessed image locations for one iteration 

overlapped with the accessed image locations of the next iteration.  Similarly, the over-

lapping rates for BTRFS and F2FS were 75% and 80%, respectively.  Thus, fuzzing 

the current accessed image locations led to a high probability that they would be ac-

cessed by the next fuzzing iteration. 
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Spatial correlations of referenced image locations:  Since stored FS metadata 

blocks are not randomly allocated (e.g., sequentially and hierarchically), we examined 

whether there is a block distance relationship between the updated 4KB blocks from 

one iteration to the next iteration.  Assume that iteration one updated blocks 1 and 2 

and iteration two updated blocks 3 and 4.  We computed all pair-wise distances from 

the newly referenced blocks from the second iteration to the blocks from the first iter-

ation:  (3 - 1), (3 - 2), (4 - 1), and (4 - 2).  Thus, we had 2, 1, 3, and 2.  The newly 

accessed block had a 50% chance of being two blocks from any blocks in the first iter-

ation and a 25% chance of being one or three blocks away from any blocks in the first 

iteration.  We bound the distance to 50 blocks.  Since an update might involve different 

metadata structures located in different areas (e.g., journal and i-node blocks), the dis-

tance between these areas minimally reflects how metadata blocks of the same type are 

allocated.   

We ran modified JANUS to fuzz 64B buckets accessed from the previous iteration 

for two hours and measured the distance between updates in blocks (Figures 3.1-3.3).  

For ext4, the most popular update neighbor distance was 1, indicating that the blocks 

were sequentially allocated.  In addition, when fuzzing the next iteration, the next ref-

erenced blocks were likely to be within three blocks of a block referenced within the 

current iteration.  For BTRFS, the range was more scattered due to the use of b-trees.  

For F2FS, the most popular update neighbor distances are 1, -1, and 5.  These results 

indicate that fuzzing the neighbors of the accessed blocks for this fuzzing iteration 

can increase the chance that these blocks will be accessed in the next iteration. 

 

  
Fig. 3.1.  Frequency of distances between up-

dated blocks across iterations for ext4. 

 

Fig. 3.2.  Frequency of distances between up-

dated blocks across iterations for BTRFS. 

 

 

 

Fig. 3.3.  Frequency of distances between up-

dated blocks across iterations for F2FS. 
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4 LFuzz Design  

Although locality is used to optimize FSes, it is counterintuitive to apply locality to 

fuzzing because fuzzing thrives on the use of random inputs to increase code execution 

branch coverage.  Based on the findings in Section 3, we designed and implemented 

LFuzz, an FS fuzzing framework that exploits spatial and temporal localities.  Regard-

ing temporal locality, LFuzz fuzzes currently accessed image locations, since the next 

fuzzing iteration will likely have overlapping accessed locations.  Regarding spatial 

locality, LFuzz fuzzes neighboring blocks of currently accessed image locations, since 

the next fuzzing iteration will likely access surrounding locations. 

 LFuzz maps 4KB memory pages to FS storage blocks when they are cached in 

memory.  LFuzz also tracks 64B memory accesses to identify the corresponding ac-

cessed 64B FS subblock regions.  Accessed FS image locations are stored in a least-

recently-used (LRU) list with a bounded length to adapt to locality changes.  For each 

iteration, LFuzz fuzzes these accessed FS locations and some neighboring locations.  

Thus, when an FS image is saved and restored, so is the LRU list.  We utilized 64B list 

elements (< 4KB blocks) to reduce the storage and saving/restoration overhead. 

To reduce the cost of saving FS images, we also introduced the notion of deltas, 

which were obtained by subtracting modified image I’ from image I before applying 

fuzzed file operations.  The deltas are captured in 256B subblocks (< 4KB block) to 

reduce the storage and saving/restoration overhead.   

In addition, we found that partially restored deltas could lead to many FS bugs.  A 

partially restored delta creates two FS image areas, each of which is largely self-con-

sistent (e.g., each area has correct checksums for i-nodes); however, these areas are 

globally inconsistent.  Therefore, we incorporated this technique into our delta fuzzing.  

We adopted the framework from JANUS, which used the Linux Kernel Library 

(LKL) [Pur10] that enables the Linux kernel to be compiled as a user-level library. LKL 

can be used by fuzzers to fuzz kernel FS code in the user space.  JANUS stored FS 

images in memory as opposed to on disks and solid-state devices (SSDs), so we could 

replace slow system reboots with resets to the memory-resident FS image.  All fuzzing 

states were also memory-resident.   

4.1 Fine-Grained Tracking of Accessed FS Storage Image Locations  

To track fine-grained (64B) access of FS storage image locations, it is insufficient to 

intercept FS traffic to and from storage devices, where fined-grained accesses are ag-

gregated into 4KB block access units.  We also need to intercept fine-grained memory 

accesses to cached FS storage blocks to identify fine-grained storage accesses.  One 

implication is that we need to map accessed addresses of memory-cached FS blocks to 

64B FS storage locations via an M2F table (Table 4.1.1). 

LFuzz instruments the block layer.  As FS blocks are read into the memory, LFuzz 

creates the mapping of memory pages to FS storage blocks.  To create a fine-grained 

mapping, we also need to determine which 64B area of a 4KB memory page is accessed.  

We injected code during the compilation stage (details in Section 5), which reports ac-

cessed FS memory addresses to capture this fine-grained information.   
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For example, if the memory address 0x7FF0041a3088 was accessed, it would be 

within 0x7FF0041a3000 + memory page size (0x1000 bytes); thus, based on the M2F 

table, FS storage image block 9217 was accessed.  Since the accessed memory address 

belongs to the 2nd 64B area or bucket of a 4KB memory page, the 2nd bucket of the 

corresponding 4KB FS storage block is accessed.  Once the block number and bucket 

number are identified, it is stored in the LRU bucket list (Table 4.1.2). 

 

Table 4.1.1.  Memory Address to FS Storage Image Block (M2F) Mapping Table. 

Memory address  Image block number 

0x7FF004195000  5121 

0x7FF0041a3000  9217 

…  … 

Table 4.1.2.  LRU List. 

Image block number Bucket number Timestamp 

9221 17 1 

9217 0 16 

… … … 

4.2 Exploiting Locality for Fuzzing  

Temporal locality:  LFuzz exploits temporal locality by using an LRU list to track re-

cently accessed image locations as potential targets for fuzzing.  This is particularly 

helpful when the locality changes over time.  Metadata blocks may be dynamically 

allocated beyond the initial metadata regions, and the LRU list can adapt to the work-

load and include dynamically allocated blocks for fuzzing.   

In addition, the LRU list is bounded so that less frequently accessed locations will 

be dropped as potential fuzzing targets.  COW FSes may leave obsolete blocks behind 

and dilute the fuzzing targets.  Dropping obsolete blocks from the fuzzing targets in-

creases the probability that fuzzed locations will be referenced in the next iteration. 

Spatial locality: Accessed image locations change when metadata areas are fuzzed.  

For instance, when a file creation request is issued, an FS needs to assign an unused i-

node to the created file.  If the i-node bitmap is fuzzed to mark some i-nodes as used, 

then the newly allocated i-node will skip those entries.  To increase the probability that 

fuzzed image locations will be referenced in the next fuzz iteration, LFuzz chooses 

neighboring and referenced locations as fuzzing targets. 

Intra-block locality:  Since the image fuzzing phase typically involves a few files 

with a limited number of operations in a testing sequence, i-nodes, directory entries, 

and other metadata tend to be allocated in succession.  Thus, an allocation is likely to 

be fulfilled with nearby free space.  With a 64B bucket size, we discovered that >75% 

of image bucket locations accessed in this fuzz iteration were accessed in the next fuzz 

iteration.  Thus, fuzzing the currently accessed image locations and the surrounding 

locations increases the probability that these locations will be referenced in the next 

fuzz iteration. 

Inter-block locality:  Since metadata blocks can be allocated in succession, neigh-

boring blocks will likely be accessed in the next fuzzing iteration.  For example, a COW 
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FS may write a metadata block to another (potentially neighboring) metadata block.  

Thus, if LFuzz accessed a bucket with a particular offset within the current block, we 

will add buckets with the same offset from neighboring blocks as potential targets for 

fuzzing.  For example, if in the current fuzzing iteration, ext4 accesses byte 8 of block 

51, in the next iteration, LFuzz will fuzz bucket 0 containing bytes 0-63 in block 51, 

and its neighboring block 51 + 1 = 52, where one is the most frequently occurred block 

neighboring distance. 

4.3 Image Deltas 

Given the locality in fuzzing workloads, LFuzz uses image deltas to reduce the FS im-

age storage and saving/restoration overhead.  Image delta D is defined as modified FS 

image I’ subtracted from original image I0 (before modifications).  This subtraction can 

be expensive if only a few places are modified due to locality.  Thus, LFuzz applies a 

COW mechanism to I0 so that only modified image regions are copied and tracked.   

Unlike leading FS fuzzers, which save images when new coverage or bugs are dis-

covered, LFuzz saves lightweight delta images whenever an FS image is modified.  

Therefore, instead of replaying file operations from the top-level image, a newly fuzzed 

file operation only needs to be applied to the saved delta image, which has accumulated 

the FS state changes for all proceeding file operations.    

Note that LFuzz only accumulates the differences in FS images; dynamic states, 

which track whether a file is open and the file pointer position, are excluded.  To illus-

trate this point, the behavior of opening a file and writing a block to that file is different 

from that of opening a file, saving and restoring a delta image, and writing a block to 

that file.  In the latter case, writing a block is expected to fail (not a bug) because the 

file has not been opened after an image restoration.  Thus, the behavior of the restored 

LFuzz image deviates from the behavior of restoring an image regenerated from the 

seed image by applying all operations in a sequence, which also restores dynamic states.   

While not saving and restoring dynamic states, deltas can accumulate modified states 

at a faster rate.  For example, if an FS image is repeatedly fuzzed and tested with the 

same file operation sequence that creates random files, created files and various updates 

accumulate and stay from one fuzzing iteration to the next instead of being reset via 

regeneration from the seed image.  Unlike Syzkaller, LFuzz reproduces bugs by apply-

ing the latest file operation sequence to the latest delta instead of the root image.  

LFuzz’s bug reproducibility rate is ~85%. 

4.4 Partially Updated Images 

While developing the image delta technique, we found that partially restored deltas led 

to FS bugs and crashes.  Further investigation revealed that partially restored deltas 

emulated the scenario in which two versions of FS states coexisted.  Thus, segments of 

the FS states were self-consistent, while, globally, the FS states were inconsistent.  

Since we identified quite a few bugs in this way, we incorporated this fuzzing technique 

into delta fuzzing.  Based on empirical experience, we set the probability of triggering 

a partial update as the current length of syscall sequence L divided by (L + 5).  Since 

the average syscall length is ~30-60, the probability of triggering a partial write is 

~90%.  Initially, with shorter syscall sequences, the fuzzing coverage can grow with 
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just delta fuzzing.  As the lengthening of syscall sequences with delta fuzzing finds 

fewer new execution branches, the partial-write technique is more frequently triggered.  

 

1   for corpus C = {image I, file ops F, LRU L from the first iteration}  

2     L’ = fuzzed L 

3     for (iteration j < bound B) { 
4       I’ = apply L’ to I 

5       Apply F to I’ 

6       if (new coverage found}{ 
7         save(I’, F, L’) 

8         if  (B < max_bound) { 

9           B *= 2; 
10       } 

11     } 

12     L’ = fuzzed L’ 
13   } 
14 } 

Fig. 4.5.1.  LFuzz LRU-based fuzzing phase. 

 

1   for corpus C = {image I, file ops F, image delta D} { 

2     F’ = F + file ops // append random new file ops 
3     D’ = applying D to I 

4     for (iteration j < bound B) { 

5        D’ = applying F’ to D’ 
6        if (no new coverage found) { 

7          move on to the next corpus (I, F’, D’) 

8        } else { 

9           save(I, F’, D’)  

10         if  (B < max_bound) { 

11             B *= 2; 
12         } 

13         F’ = F + fuzzed file ops // append random new file ops 

14      } 
15   } 

16 } 

Fig. 4.5.2.  LFuzz delta-image-based fuzzing phase. 

4.5 LFuzz Phases 

LFuzz’s fuzzing order has three phases:  LRU-based fuzzing, syscall fuzzing (JANUS-

based), and syscall fuzzing with delta.  We appied a similar fuzzing order to make 

LFuzz and JANUS comparable.  Syscall fuzzing was needed since an FS needs file 

operations to change FS image states.  Another similarity is that the next fuzzing phase 

is only triggered when the current phase cannot find any new coverage.   

Fig. 4.5.1 presents the LRU-based fuzzing phase, in which the same syscall sequence 

is applied to the same image fuzzed differently.  At line 1, a new corpus is loaded with 

initial image I, sequence of file operations F, and LRU regions L from the first fuzzing 

iteration.  A subset of buckets L’ in LRU L are fuzzed (line 2), and L’ is applied to the 
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original image I (line 4) to form fuzzed image I’.  The sequence of file operations F is 

applied to fuzzed image I’ (line 5).  If new coverage is found, modified image I’, se-

quence of file operations F, and modified LRU regions L’ are saved (line 7).  The num-

ber of fuzzing iterations (bound B) is decided by AFL’s initial execution speed, which 

is the fuzzing framework JANUS is based on. In our experiment, B is initialized to 128.  

B can be increased is based on when new coverage is found (lines 8-9).  At the end of 

the iteration, LRU regions L’ are fuzzed for the next iteration (line 12). 

Fig. 4.5.2 presents the delta-based syscall fuzzing phase, in which an incrementally 

increased file operation sequence is applied to delta images updated after each iteration.  

At line 1, a new corpus is loaded with initial image I, sequence of file operations F, and 

saved delta image D.  Sequence of file operations F is appended with randomly selected 

file operations to form F’ (line 2).  Fuzzed delta image D’ is formed by applying delta 

region D to initial image I (line 3).  The newly formed delta image D’ is updated by 

applying the new sequence of file operations F’ to itself to accumulate states for each 

iteration (line 5).  If new coverage is not found, LFuzz moves on to the next temporary 

corpus (with image updated to the I + D’) (line 7).  If new coverage is found, initial 

image I, updated sequence of file operations F’, and updated delta image D’ (line 9) are 

saved, and the number of iterations is increased (lines 10-11).  Finally, randomly se-

lected file operations are appended to F’ for the next iteration (line 13). 

5 Implementation 

We chose to build LFuzz on top of JANUS instead of Syzkaller because of the repro-

ducibility of crash-based bugs and because JANUS’ syscall generation follows FS se-

mantics.  Since JANUS is based on the LKL, which is infrequently updated, we had to 

port the Linux kernel from Linux 5.3 to 5.15.  Furthermore, we based our tests on lkl-

5.15 (LKL with Linux 5.15).   

Predicting accessed locations for fuzzing:  We added a stub to the bio_endio() 

function in block/bio.c, which was called after the bio request was finished, and 

the memory addresses were assigned to the bio structure.  Then, we used LLVM to 

instrument the stub function to obtain the storage block information that had been 

loaded to the memory, including the storage offset, total loaded size, and memory ad-

dresses of cached FS content.  In addition, load and memcpy LLVM intermediary 

representations were instrumented to obtain the fine-grained storage accessed locations 

by comparing the loaded or memcpyed source memory addresses with the memory 

addresses of cached FS content.  Knowing the memory address of cached FS content, 

the instrumentation can also filter out memory accesses that do not affect the FS image.  

With the fine-grained accessed locations, LFuzz maintains an LRU bucket list to exploit 

localities and generate candidate FS bucket locations for fuzzing.  After fuzzing the FS 

image, LFuzz also fixed various checksums as JANUS. 

Capturing deltas: To incrementally track FS image updates, instead of instrument-

ing the bio_endio() function, LFuzz leveraged JANUS’ page-fault handler in 

userfaultfd to capture accesses to FS images that triggered page faults. The reason 
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is that we only need to compare the final state of an image after delta stage file opera-

tions are applied to the image, while bio_endio() captures the intermediate state of the 

image during the execution of the file operations.  JANUS allocated a temporary empty 

buffer I’ with the size of an FS image.  When executing a file request sequence, JANUS 

(LKL) triggered a page fault whenever a memory page in I’ did not hold the content of 

the original FS image (I0) and copied the FS image page content to the temporary buffer 

page.  To enhance performance, I0 was stored in memory pages instead of storage de-

vices. 

LFuzz leveraged this mechanism to track all FS image page offsets that triggered 

page faults.  When the execution ended, LFuzz compared the modified pages in I’ with 

the corresponding pages in I0 and stored the differences at 256B granularity (based on 

our preliminary empirical results to balance storage and comparison overhead).  There-

fore, if only 256B of a 4KB block was modified, we only stored 256B.  For fuzzing, 

deltas restored to various locations of an FS image. 

To perform partial updates for a file request sequence R1…Rn, we gathered page 

fault information from R1 to a random file request Ri<n in the sequence.  Furthermore, 

for page faults F1 to Fm triggered by Rj<m, we captured page fault information from F1 

to a random page fault Fj in the page fault sequence.  To perform partial updates, we 

replayed the file request sequence up to Rj and restored storage blocks accessed with 

page faults up to Fm.   

 Line count:  We added 1,193 lines to the LLVM runtime for locality fuzzing, 239 

lines to the LLVM pass, 864 lines to wrap different FSes, 264 lines to AFL, 64 lines to 

intercept the block layer, and 72 lines to implement delta and missing write fuzzing. 

6 Evaluation 

Since JANUS has demonstrated more effective coverage than Syzkaller [Xu et al. 

2019], we only compared LFuzz with JANUS.  We fuzzed ext4 (the default FS for 

Linux), BTRFS (a COW FS), and F2FS (an FS for SSDs).  These are the three FSes 

supported by JANUS’ Github, in terms of providing the code to extract the fixed initial 

metadata regions for JANUS fuzzing.  We used two Dell Precision 7820 workstations 

with Intel® Xeon® Gold 5218R 40 cores with 128GB of memory.  The LFuzz and 

JANUS tests each comprised 10 processes.  LFuzz used the default test seed from 

JANUS.  LFuzz and JANUS tested the following syscalls:  read(), write(), open(), 

seek(), getdents64(), pread64(), pwrite64(), stat(), lstat(), rename(), fsync(), fdata-

sync(), access(), ftruncate(), truncate(), utimes(), mkdir(), rmdir(), link(), unlink(), sym-

link(), readlink(), chmod(),  setxattr(), fallocate(), listxattr(), and removexattr().  The 

figures were presented with a 90% confidence interval. 

Overall overhead:  Although the overhead of instrumenting all loads was high to 

predict locality, the overhead was incurred when a new seed image was loaded or new 

coverage was found.  The delta state overhead mainly stemmed from comparing the 

deltas with the seed image, which happened during every delta fuzzing iteration.  The 

overhead depended on the number of unique pages triggering page faults.  We ran each 

configuration for three hours and repeated the experiments three times.  The average 
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overhead for ext4 was <5%; for BTRFS, <1%; and for F2FS, <15%. F2FS has a higher 

overhead because F2FS has referenced more bytes (~10 times) than the other two FSes. 

This outcome led to a higher overhead to copy the fuzzed content to the target image. 

6.1 New Bugs 

We ran LFuzz and JANUS for one week and identified 35 bugs (Appendix I), 21 of 

which were only identified by LFuzz. JANUS reported some crashes that LFuzz did 

not report, but those crashes were not reproducible.  We believe the main reason that 

JANUS did not detect bugs that LFuzz could not find was that JANUS has been used 

by people to fuzz the target Fses.  Therefore, we assume that most of the bugs that 

JANUS could identify were already fixed, and LFuzz may not be able to detect all of 

them.  LFuzz found 13 memory bugs with security implications.  The bugs were re-

ported to Red Hat and upstream maintainers.  Ten of these bugs have been patched by 

the maintainers, and we have requested three CVEs with assigned numbers. We will 

request CVEs for the other bugs in the future. Note that we are not claiming that LFuzz 

is better than JANUS.  LFuzz and JANUS are different fuzzing strategies and explore 

different execution branches. 

To assess the effectiveness of LFuzz’s locality and delta (with built-in partial up-

dates) fuzzing methods, we tested one method at a time.  When conducting LRU local-

ity fuzzing without deltas, we found 16 bugs (3, 7, 14-20, 23, and 28-33), including two 

new bugs (3 and 29).  When fuzzing with deltas without locality, we found only one 

new bug (9).  At first glance, these numbers suggested that our fuzzing methods were 

not effective.  However, with the combined use of locality and delta fuzzing, LFuzz 

identified 35 bugs, including 21 new bugs (1-6, 8-13, 21-22, 24-27, 29, and 34-35).   

To assess the effect of partial updates, we used locality and delta fuzzing with partial 

updates disabled.  Eight (bugs 12-13, 21-22, 24-27, 34-35) of 21 new bugs were at-

tributed to the presence of partial updates.  Partial updates were more effective for 

BTRFS, a COW FS, which may have strong assumptions about FS consistency and 

does not interact well with partially consistent FS images.  

Case study:  CVE-2022-1184 (bug 4):  When ext4 added a directory entry, it used 

inode->i_size to locate or allocate the next logical directory block.  The i_size 

field was affected by a corrupted FS image, and ext4 did not check whether the field 

was in the correct range.  When inode->i_size was corrupted, the computed block 

index could point to a block in use.  Thus, the in-use block could be corrupted by this 

error index.  In addition, if the other index pointing to the block freed the block, this 

index pointer would have led to a use-after-free bug.  KASAN identified this problem 

in do_split()[LOR22]. 

Since JANUS did not accumulate files during the image fuzzing phase, we also cre-

ated an almost full image for JANUS to test.  However, the metadata region was too 

large for the AFL component to fuzz.  LFuzz used locality fuzzing to reduce the fuzzing 

area and track the reference migration patterns, and delta fuzzing accumulated files to 

fill the directory block to trigger this bug.  

Case study:  CVE-2021-44879 (bug 29):  This bug occurred because the fuzzed 

image marked a data block as a special file (e.g., character, block, FIFO, and socket 
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file).  Right before the block was migrated due to the F2FS garbage collection, it in-

voked a_ops->set_dirty_page().  However, the operation pointer was NULL 

for the special files, triggering a NULL pointer dereference [MIT21]. 

To trigger this bug, the fuzzer needed to either modify the segment summary area 

(SSA) entry, pointing the migrated block’s parent to a special file i-node, or fuzz the 

corresponding parent i-node’s imode field as a special file.  If the fuzzed i-node 

imode or SSA entries were in a state to trigger the bug, the block had to be migrated 

to make it happen. 

JANUS fuzzed the initial metadata block regions, consuming 90KB for F2FS.  Dur-

ing the first iteration of fuzzing, LFuzz tracked 12KB as potential fuzzing locations, 

which was approximately one-seventh of the size fuzzed by JANUS.  Focused image 

fuzzing helped LFuzz detect this bug.   

6.2 LFuzz Coverage 

We fuzzed JANUS and LFuzz under each configuration for 240 CPU hours and com-

pared their edge coverage, which was defined as unique edge transitions between com-

piled basic blocks. Specifically, we assigned each basic block a unique ID and used 

each unique ID pair to denote a unique edge.  We defined the unique edge deviation 

rate as the total number of unique edges that were only covered by LFuzz divided by 

the total unique edges covered by JANUS.  We ran LFuzz with and without delta (and 

its integrated missing write fuzzing).  Based on preliminary tests, we chose the config-

urations that generated the best results.  For the LRU fuzzing option, we tested list 

lengths of 512 buckets and 2K buckets, which could hold 32KB and 128KB, respec-

tively.  Each test was repeated five times and the overall edges covered by each config-

uration were collected.  Figures 6.2.1-6.2.3 present the edge deviation rate results for 

ext4, BTRFS, and F2FS.  Overall, the edge coverages under various LFuzz configura-

tions were comparable to those of JANUS.  In the best cases, LFuzz explored unique 

edges that deviated from those of JANUS’ by up to 15% for ext4, 7% for F2FS, and 

3% for BTRFS with statistical significance. 

 We discovered that a single LFuzz configuration was unable to achieve the best cov-

erage for all three FSes.  For ext4 (Fig. 6.2.1), since the working set was smaller than 

512 buckets, the edge coverage was approximately the same with a longer LRU length 

bound.  The combination of LRU fuzzing and delta fuzzing achieved the highest cov-

erage.  For F2FS (Fig. 6.2.2), LRU fuzzing with a shorter LRU length degraded the 

edge coverage because the working set for F2F2 exceeded 512 buckets.  Therefore, 

useful buckets could have been removed before the next reference.  When combined 

with LRU, delta fuzzing increased the edge coverage.  For BTRFS (Fig. 6.2.3), the 

variations across the configurations were within 1%.  Out of curiosity, we tested 

delta/missing write fuzzing alone without locality fuzzing (not shown); the discovered 

edges were less than half of the configurations with the locality. 

In general, it was difficult to attribute the cause of the coverage increase to a partic-

ular fuzz method since new coverage could be built on previously discovered and saved 

coverage via different fuzzing methods. 
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Fig. 6.2.1. Unique edges visited by LFuzz 

that deviated from those of JANUS’ for ext4. 

Fig. 6.2.2. Unique edges visited by LFuzz 

that deviated from those of JANUS’ for 

F2FS. 

 

 

Fig. 6.2.3. Unique edges visited by LFuzz 

that deviated from those of JANUS’ for 

BTRFS. 

 

6.3 LFuzz Fuzzed Regions 

Fig. 6.3.1 compares the JANUS and LFuzz fuzzed region sizes during the 24th hour of 

the experiments, with error bars indicating the variation within one standard deviation.  

For ext4, LFuzz’s fuzzed area was approximately one-eighth of JANUS’ fuzzed area 

while achieving a 6% increase in the unique edge deviation rate.  For BTRFS, LFuzz’s 

fuzzed area could have been 30% smaller while achieving a 2% increase in the unique 

edge deviation rate.  For F2FS with 2K LRU buckets, LFuzz’s fuzzed area could be as 

large as that of JANUS, reflecting F2FS’ wear leveling for its designed use on SSDs.  

However, with 512 buckets, LFuzz achieved a 5% increase in the unique edge deviation 

rate with a fuzzed area that is 34% as large as that of JANUS. 

 We also found that the bound on the LRU length interacted with the fuzzing results.  

If the bound was too large, the content held by the LRU list approached the entire work-

ing set, which contained frequently and infrequently accessed areas for fuzzing.  If the 

bound was too small, useful content was removed before it could be soon accessed 

again.  Based on the preliminary test results, we only systematically tested the lengths 

of 512 and 2K buckets to avoid the exponential explosion of the test space.   

We also tried some extreme LRU length values.  For example, for ext4, we tested an 

LRU length of 36 buckets, which could hold approximately 2KB of content.  Since, for 

each update operation, ext4 accessed the journal last, the LRU list mostly held journal 

content for fuzzing, with prior content removed due to the LRU length limit.  We were 

able to detect a journal bug at   ext4_jbd2.h: ext4_inode_journal_mode() 
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after 12 hours.  This bug did not appear in the first 12 hours when the LRU list length 

was longer than 64 buckets.  Our future work will examine the effects of LRU list 

length. 

Fig. 6.3.1:  Comparison of JANUS and LFuzz fuzzed region sizes 

under different configurations.   

6.4 Fuzzing an FS without Preknowledge of Layout 

To test how easy it is to apply LFuzz to an FS without the preknowledge of the FS 

metadata layout (no fixing for checksums), we tested LFuzz on ntfs3.  We tested LFuzz 

with 30 cores for three days in Linux 5.15; it found six bugs (two new) that are not 

fixed in the latest Linux long term (6.1.29).  The first bug is kernel NULL pointer deref-

erence in hdr_find_e, and the second bug is use-after-free in ntfs_read_hdr.  We have 

reported these two bugs to the ntfs3 maintainer.  

7 Related Work 

FS fuzzers and exercisers:  In addition to Syzkaller [Syz23b], AFL [Nos16, Zal18], 

and JANUS [Xu19] mentioned in Section 2, CrashMonkey [Moh19] exhaustively tests 

FSes with bounded, short file operation sequences.  CrashMonkey constructs FS crash 

states and runs FS recovery operations.  It then compares the FS states to detect bugs 

such as incorrect file sizes and files not removed during renaming.  CrashMonkey can 

miss bugs caused by longer file operation sequences, and LFuzz can detect memory 

bugs (e.g., out-of-bounds, use-after-free, protection faults, and NULL-pointer derefer-

encing). 

Kernel fuzzers:  KAFL [Sch17] uses the Intel® processor-tracer result to guide the 

fuzzing to reduce overhead.  HFL [Kim20] utilizes symbolic execution to solve hard 

branches with complex logic.  USBFuzz [Pen20] and Periscope [Son19] fuzz the driv-

ers by modifying the MMIO and DMA interfaces. 

Some kernel fuzzers focus on improving the quality of syscall sequences for fuzzing.  

When new coverage is detected, Moonshine [Pai18] exploits syscall read/write depend-

encies to filter out calls that do not contribute to the state changes of the new coverage, 
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thereby minimizing the length of the syscall sequence for further fuzzing.  DIFUZE 

[Cor17] analyzes ioctl-related code to generate valid structured input for fuzz drivers. 

Instead of code coverage, some fuzzers improved the feedback strategy.  SyzVegas 

[Wan21] changes the seed image scheduling using multi-armed-bandit algorithms.  

StateFuzz [Zha22] tracks variables that lead to state changes to prioritize test cases. 

Razzer [Jeo19] uses point-to information from static analysis to generate test cases 

that are likely to cause race conditions.  Krace [Xu et al. 2020] uses potential interleav-

ing memory access instructions as coverage to guide the fuzzing to identify race condi-

tions. 

8 Limitations and Future Work 

Since LFuzz has a large configuration space, an exhaustive exploration would involve 

an exponentially large number of experiments.  Although we conducted many prelimi-

nary tests, we did not conduct a repeated, fine-grained exploration of different LRU 

lengths and their effects on various FSes.  We also did not explore the effects of bucket 

size, delta storage granularity, the probability of triggering missing writes, or the order-

ing of fuzzing phases.  We plan to conduct such studies in the future.  Since each FS 

interacts with LFuzz differently, we will also explore FS-specific fuzzing. 

Some code execution branches are controlled by compile time configuration, which 

means that fuzzing itself can never reach some code regions.  We plan to explore a 

different fuzzing framework for fuzz compiler-enabled code branches. 

Furthermore, since we fuzzed small FSes, we were unable to fuzz code branches 

triggered by large file sizes (e.g., 500MB).  In the future, we will try to solve the hard 

branches with the exact referenced locations. 

9 Conclusion 

We have designed, implemented, and evaluated LFuzz, an FS fuzzer that exploits lo-

cality-enabled fuzzing techniques.  We determined that random FS image fuzzing is 

insufficient because many fuzzed locations are not referenced by file operations.  We 

analyzed the locality feature of fuzzing FS workloads on FS image modifications and 

proposed a locality-aware fuzzing approach for kernel FSes.  Locality fuzzing is adap-

tive to changing reference patterns, so we do not need preknowledge of FS layouts.  

Our locality fuzzing scheme allowed us to perform incremental accumulation of delta 

states and perform partial updates.  When all these methods were applied, LFuzz found 

21 new bugs.  In addition, we discovered that LFuzz can reduce the target fuzzing re-

gion by up to 8x compared to JANUS and visit unique edges that deviate from JANUS’ 

edges by up to 15%. 
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Appendix I:  Bugs Detected by LFuzz and JANUS 
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ext4 

1 stack-out-of-bounds 5.18 __blk_flush_plug Ack’d X O X O X 

2 page fault 5.18 fs/ext4/namei.c: do_split() Ack’d X O X O X 

3 out-of-bounds read 4.19 ext4_search_dir() patched X O X O O 

4 use after free 5.18 CVE-2022-1184 patched X O X O X 

5 slab-out-of-bounds 5.18 fs/ext4/xattr.c: ext4_xattr_set_entry() reported X O X O X 

6 use after free 5.18 fs/ext4/namei.c:ext4_insert_dentry() reported X O X O X 

7 BUG() 5.18 fs/ext4/extents_status.c:202 reported O O X O O 

8 BUG() 5.18 fs/ext4/ext4_jbd2.h: ext4_inode_journal_mode() reported X O X O X 

9 BUG() 5.18 fs/ext4/extent.c: ext4_ext_determine_hole() patched X O O O X 

10 BUG() 6.0-rc7 fs/ext4/ext4.h: ext4_rec_len_to_disk() reported X O X O X 

11 BUG() 5.19 fs/ext4/extents.c: ext4_ext_insert_extent() confirmed X O X O X 

12 NULL pointer deref. 6.0-rc7 fs/ext4/ialloc.c: ext4_read_inode_bitmap() reported X O X X X 

13 NULL pointer deref. 6.0-rc7 ext4_free_blocks() reported X O X X X 

BTRFS 

14 array out of bound access 5.16 fs/btrfs/struct-funcs.c:btrfs_get_16() reported O O X O O 

15 NULL pointer deref. 5.17 fs/btrfs/ctree.c:btrfs_search_slot() reported O O X O O 

16 gen. protection fault 5.16 fs/btrfs/struct-funcs.c:btrfs_get_32() patched O O X O O 

17 gen. protection fault 5.17 fault at fs/btrfs/tree-checker.c: check_dir_item() reported O O X O O 

18 gen. protection fault 5.17 fs/btrfs/print-tree.c: btrfs_print_leaf() reported O O X O O 

19 gen. protection fault 5.17 fs/btrfs/treelog.c: btrfs_check_ref_name_override() reported O O X O O 

20 gen. protection fault 5.18 fs/btrfs/file-item.c: btrfs_csum_file_blocks() reported O O X O O 

21 gen. protection fault 5.15.57 fs/btrfs/volumes.c: btrfs_get_io_geometry() reported X O X X X 

22 gen. protection fault 5.15.57 fs/btrfs/lzo.c: lzo_decompress_bio() reported X O X X X 

23 BUG() 5.19 fs/btrfs/inode.c: btrfs_finish_ordered_io() reported O O X O O 

24 BUG() 5.18 fs/btrfs/extent_io.c: extent_io_tree_panic() reported X O X X X 

25 BUG() 5.15.57 
fs/btrfs/extent-tree.c: 

update_inline_extent_backref() 
reported X O X X X 

26 BUG() 5.15.57 fs/btrfs/root-tree.c: btrfs_del_root() reported X O X X X 

27 BUG() 5.18 fs/btrfs/delayed-ref.c: update_existing_head_ref() reported X O X X X 

fs 28 BUG()  fs/inode.c:611 reported O O X O O 

F2FS 

29 NULL pointer deref. 5.15 CVE-2021-44879 patched X O X O O 

30 use after free 5.15 CVE-2021-45469 patched O O X O O 

31 array-index-out-of-bounds 5.17-rc6 fs/f2fs/segment.c:3460 patched O O X O O 

32 NULL pointer deref. 5.17 f2fs/dir.c:f2fs_add_regular_entry() patched O O X O O 

33 use after free 5.19 fs/f2fs/segment.c: f2fs_update_meta_page() patched O O X O O 

34 use-after-free 5.19 fs/f2fs/recovery.c:check_index_in_prev_nodes() patched X O X X X 

35 slab-out-of-bounds 5.15-6.0 fs/f2fs/segment.c:reset_curseg reported X O X X X 
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