
FJS: Fine-grained Journal Store

 Shuanglong Zhang

Department of Computer Science

szhang@cs.fsu.edu

An-I Andy Wang

Department of Computer Science

awang@cs.fsu.edu

Abstract

Journaling has been a popular reliability tool for file systems.

However, journaling may involve writing updates twice,

once to the journal, and once to potentially random update

locations. The journal granularity tends to be coarse, leading

to more bytes written than necessary.

We introduce Fine-grained Journal Store (FJS). Fine-

grained Journal Store uses the journal as the final storage

location for updates, thus eliminating double and random

writes. Fine-grained journaling units are utilized to reduce

the number of bytes written compared to the number of bytes

updated. To limit the memory overhead of tracking small

updatable units, FJS uses a range-based lookup table. In

addition, FJS reuses existing journaling constructs to avoid

the need for additional byte-addressable NVM storage

devices.

We extended ext4 and jbd2 to prototype FJS. Our results

show that FJS can outperform ext4 by up to 15x and reduce

the write amplification of common metadata types by up to

5.8x.

CCS Concepts •Information systems~Record storage

systems

Keywords: journaling, file systems

ACM Reference format:

Anonymous Author(s). 2018. SIG Proceedings Paper in

word Format. In Proceedings of 13th ACM European

Conference on Computer Systems, Porto, Portugal, April

2018 (EuroSys’18), 11 pages.

DOI: 10.1145/123_4

1 Introduction

Journaling is a common reliability technique used in modern

file systems. The basic approach is to append all relevant

updates to a log stored on stable storage before the file

system propagates these updates to their final storage

locations. While widely used, journaling interacts poorly

with both hard disks and solid-state disks (SSD, e.g.,

commonly used NAND-based flash).

First, each write is performed twice; the propagation phase

may involve writes to random storage locations. One extra

round of writes can reduce file system performance for both

disks and SSDs by 33% [Chen et al. 2016]. Second, only

10% of bytes journaled are actually updated [Chen et al.

2016]. Having many more bytes written than necessary has

drastic negative reliability implications for SSDs, where

each writable location can only tolerate a limited number of

updates [Mellor 2016].

This paper introduces Fine-grained Journal Store (FJS),

which directly stores the final updates in fine-grained units

in the journal. Storing the final updates in the journal avoids

double and random writes. The FJS further reduces the

number of unnecessary bytes written, thereby mitigating the

adverse effects of writes on the reliability of SSDs. The FJS

is designed to be retrofit in an existing journaling

framework; thus, it does not require special byte-addressable

NVM storage devices (e.g., PCM).

2 Background

We will briefly review modern storage media characteristics

and journaling mechanisms to better understand their

interactions. We will then discuss their implications and

some current alternatives.

Hard disks: A hard disk is a mechanical storage device with

one or more rotating platters. Each platter is divided into

concentric tracks, and each track is subdivided into storage

sectors (e.g., 512B-4KB [Seagate 2017]). A disk request

requires positioning a disk arm to a track, and waiting for the

target sectors to rotate under the disk head before reading or

writing the data. Due to the mechanical overhead, access to

random disk locations can be two orders of magnitude

slower than accessing adjacent disk locations (sequential

access).

In recent years, shingled magnetic recording (SMR) drives

[Wood et al. 2009] have become commercially available.

SMR drives exploit the fact that a disk write head is wider

than a read head. Therefore, a written track can overlap its

previous track, similar to the way in which roof shingles

overlap, as long as the non-overlapping region is wider than

the read head for data retrieval (Figure 2.1). This also means

that if a write is targeted to a track that is overlapped by

another track, the write needs to rewrite the overlapped track

as well. To limit the amount of rewriting, consecutive tracks

are grouped and then separated by bands of non-overlapping

regions. The performance implication of SMR is that disk

writes can be significantly slower than reads due to the need

to rewrite overlapping content.

EuroSys, April 2018, Porto, Portugal Anonymous Author(s)

2

Figure 2.1. Overlapping tracks on a shingled magnetic

disk.

SSDs: Unlike disks, SSDs are electronic storage devices.

Since they typically take the form of NAND-based flash, we

will use the terms interchangeably. Flash is accessed in the

unit of pages (e.g., 2KB). Without mechanical overhead,

both sequential and random flash accesses are orders of

magnitude faster than disks. However, for flash to overwrite

the same page in place, a page needs to be cleared through

an explicit erase operation before it can be written again, and

an erase operation can be slower than a disk access. To

amortize the cost, erase operations are carried out in flash

blocks (e.g., 256KB), which contain many contiguous flash

pages. To mask the latency of in-place writes and erase

operations, a common practice is to remap the writes to pre-

erased blocks.

While remapping writes works well, at some point an SSD

needs to garbage collect pages with obsolete content.

Ideally, an erase operation is issued to flash blocks

containing all pages with obsolete content. However, the

reality is that pages often hold up-to-date content that needs

to be migrated to other pre-erased blocks. Such data

movements amplify the amount of the data originally

written. In addition, writes to random pages are more likely

to trigger garbage collection events that involve flash blocks

containing more in-use pages.

Another reliability constraint of flash is that each page can

be written and erased for only a limited number of times

(e.g., 1,000 – 100,000 [Mellor 2016]). Thus, writes, random

writes, and amplified writes hurt the lifespan of flash.

Journaling: The idea of journaling can be traced back to the

use of write-ahead logs in databases, where related updates

are first grouped into transactions. A transaction is

considered as committed when all the related updates are

appended and written to a log on the stable storage. These

updates are later written back to their final storage. Once all

the operations have been successfully applied, the

transaction is checkpointed, and the journal area used for the

transaction can be freed. Recovery involves reapplying

operations logged in the committed transactions since the

last checkpoint.

To map to the context of a file system, the journal is the

write-ahead log, and the updates logged are block-based

(e.g., 4KB) and involve both data (e.g., file content) and

metadata (e.g., storage allocation bitmaps, per-file i-node

structures) operands. However, in practice, journaling file

systems commonly omit data logging to trade consistency

with performance since having consistent metadata provides

sufficient file system integrity for most purposes [Sivathanu

et al. 2005].

Limitations of existing journaling: As we juxtapose

journaling and modern storage media, we identify the

following three limitations:

Double writes: with journaling, each write is performed

twice, once to the journal and once to the final destination.

Double writing significantly increases the number of bytes

written. For disks, extra bandwidth is needed for extra

writes. For SSDs, which have a limited number of write-

erase cycles, extra writes can significantly reduce the

lifespan of the SSDs.

Random writes: the file-system writeback phase may trigger

random writes. For disks, random writes involve slow seeks,

and potential rewriting for SMR disks. For SSDs, random

writes reduce their lifespans even faster as more garbage

collection events trigger more writes to migrating in-use

pages.

Amplified writes: the current block-based journaling

granularity is too coarse-grained (4KB), as updates to file

system metadata often involve changing a small fraction of

bytes (e.g., updating the access timestamps for 256B i-

nodes). The journaling of unchanged bytes leads to

unnecessary writes, which can both slow down storage

media and reduce the lifespan of SSDs.

Some alternatives: One alternative is to use variants of the

log-structured file system (LFS) [Rosenblum and

Ousterhout 1991; Lee et al. 2015], in which both data and

metadata updates are represented and stored as log entries.

LFS avoids double writes and associated random writes.

However, LFS does not address the extra bytes written due

to coarse-grained journaling. There are also systems that

focus on fine-grained journaling [Kim et al. 2014; Hwang et

al. 2015; Chen et al. 2016] by maintaining a mapping layer

between the original journal and condensed representations.

However, they rely on the use of byte-addressable persistent

storage NVM devices such as PCM to protect the

consistency of their mapping from crashes. Ideally, a

framework can address double, random, and amplified

writes, without resorting to the use of special hardware; this

leads to our work.

3 Fine-grained Journal Store

We introduce Fine-grained Journal Store (FJS), which uses

the file system journal to store the final metadata updates and

avoid double and random writes. To mitigate amplified

writes, we divide metadata blocks into fixed-sized subblocks

for journaling. We also exploit the knowledge and format

Track N
Track N + 1

FJS: Fine-grained Journal Store EuroSys, April 2018, Porto, Portugal

 3

information of metadata to accelerate the lookups of the

offsets within subblocks, without resorting to mechanisms to

compute and track deltas between blocks. To avoid the use

of byte-addressable NVM persistent storage, we reuse the

existing journaling mechanisms to store the mapping from

journal entries to the original metadata block locations and

modified offsets. The reverse mapping takes the form of soft

states and can be reconstructed from the mapping stored in

the journal. The following subsections detail the design of

FJS.

3.1 Metadata Updates

FJS maintains an M2J lookup table in memory that maps

<metadata block UID:modified subblock offset> to <journal

block UID:journal subblock offset>. Both the metadata and

journal block UIDs share the same namespace and are

unique based on their persistent locations (i.e., major device

number, minor device number, and block number). Thus, if

a metadata block UID and subblock offset pair is mapped to

itself (with the same UID and offset), the metadata subblock

is not stored in the journal. Smaller subblocks mean finer-

grained tracking of modified metadata regions; however, the

tradeoff is having a larger M2J table. We used the square

root of the block size, rounded to the nearest power of two.

In this case, it comes to sixty-four 64B subblocks for 4KB

metadata blocks.

When a metadata update arrives, FJS first checks to see

whether the M2J table contains the metadata block entry. If

not, an M2J table entry is created containing the target

metadata block UID. Having the knowledge of metadata

type, such as i-node, we can identify which four 64B

subblocks within the metadata block contain the 256B i-

node. Also, by wrapping all updates to attributes with inline

macros, we can identify the 64B subblock within the i-node

that is modified. The persistent journaling location is yet to

be determined (TBD) at the commit time.

If an entry already exists when an update arrives, and if the

update has not been committed, nothing needs to be done. If

the update has been committed, the existing journal-block

UID and the subblock offset will be set to <TBD:TBD>, so

that the next commit will only log subblocks updated since

the last commit.

In all cases, the update is still performed on the metadata

cached in memory. The in-memory journaling mechanisms

still track modified metadata at the granularity of a block. In

addition, FJS assures that none of the modified 4KB

metadata blocks cached will be flushed to the stable storage

(see §3.3).

3.2 Range-based Metadata to Journal Subblock Mapping

Table 3.2.1 provides an example of the M2J table, sorted

first by the metadata block UID, and then by its subblock

offset. The first row shows that the metadata block 1 and

subblock 0 pair, denoted as <1:0>, is mapped to <1:0> or

itself. This means this subblock has not been updated, and

is neither mapped nor stored in the journal. The subblock

<1:33> has been updated, and will be mapped when this

block is committed. The location of the journal block and

its subblock are yet to be determined, denoted as

<TBD:TBD>.

One observation is that the mapping status of a subblock in

a shaded row can be deduced by the previous row, until its

mapping status changes. In addition, the mapped subblock

numbers are largely consecutive, unless otherwise specified.

Thus, we can omit storing the shaded rows. If subblocks 0-

3 of metadata block 3 are mapped to different journal blocks

or nonconsecutive journal subblocks, new entries will be

created to reflect these mappings. Therefore, individual

metadata blocks tend to have relatively few entries. (We

could further assume the common case that the first subblock

is not modified to save one more row.)

Table 3.2.1. M2J metadata block UID to journal block UID table.

The content of a shaded subblock entry can be deduced from the
previous entry and is not stored.

Metadata

block UID

Metadata

subblock

offset

Journal

block UID

Journal

subblock

offset

1 0 1 0

1 1 1 1

1 2 1 2

1 … 1 …

1 32 1 32

1 33 TBD TBD

1 34 1 34

1 35 1 35

1 … 1 …

1 62 1 62

1 63 1 63

3 0 TBD TBD

3 1 TBD TBD

3 2 TBD TBD

3 3 TBD TBD

3 4 3 4

3 5 3 5

3 … 3 …

3 62 3 62

3 63 3 63

3.3 Journal Commit

Continuing with the Table 3.2.1 example. Let us now

suppose metadata blocks 1 and 3 belong to the same

transaction. When the journal commits, instead of flushing

modified 4KB metadata blocks 1 and 3, FJS packs only the

modified 64B subblocks <1:33>, <3:0>, <3:1>, <3:2>, and

EuroSys, April 2018, Porto, Portugal Anonymous Author(s)

4

<3:3> (the ones mapped to <TBD:TBD> into a temporarily

allocated 4KB memory block that is committed and flushed

to the persistent journal (Figure 3.3.1). Suppose the journal

block UID is 11. The in-memory M2J table will contain the

states shown in Table 3.3.1.

The journal also persistently stores a per-transaction J2M

mapping from <journal block UID:subblock offset> to

<metadata block UID:subblock offset>, as shown in Table

3.3.2. The table is written to the journal before writing the

journal block(s) containing metadata subblocks.

Figure 3.3.1. Modified metadata subblocks <1:33>, <3:0>,

<3:1>, <3:2>, and <3:3> (shaded) are packed and written to

journal block 11.

Table 3.3.1. The M2J table after committing <1:33>, <3:0>, <3:1>,

<3:2>, and <3:3> subblocks to journal block 11. The TBD entries
are changed (highlighted in bold font).

Metadata

block UID

Metadata

subblock

offset

Journal

block UID

Journal

subblock

offset

1 0 1 0

1 33 11 0

1 34 1 34

3 0 11 1

3 4 3 4

Table 3.3.2. The J2M table after committing <1:33>, <3:0>, <3:1>,
<3:2>, and <3:3> subblocks to journal block 11.

Journal

block UID

Journal

subblock

offset

Metadata

block UID

Metadata

subblock

offset

11 0 1 33

11 1 3 0

11 4 11 4

3.4 Bootstrapping and Metadata Lookups

After a reboot, the in-memory M2J table is initially missing.

This indicates that the journal needs to be replayed to

reconstruct the M2J table content, based on the per-

transaction J2M tables persistently stored in the journal.

Then, when a metadata request arrives, the target metadata

block is initially not cached, and must be read from the

original storage location (not from the journal). The return

path of the metadata block request is intercepted with checks

against the M2J table to copy the committed up-to-date

subblocks stored in the journal over the target metadata

block. Afterwards, the in-memory metadata block is up-to-

date and can serve metadata lookup and update requests.

3.5 Crash Recovery

If a crash occurs when no transactions are being committed,

all metadata updates since the last commit are lost. If a crash

occurs while a transaction is being committed (before the

commit marker becomes persistent), all metadata updates

since the last commit will be discarded. For both cases, upon

reboot, the FJS can repeat the steps described in §3.4 to

recover the in-memory M2J table and continue with the

operations.

3.6 Space Reclamation within the Journal

A journal is typically represented as a circular log. To enable

efficient sequential logging, a journal needs to reclaim

scattered, unused space and compact in-use space.

However, since the journal block is the persistent storage

location for metadata subblocks under FJS, a journal cannot

reclaim journal blocks of a transaction until all involved

metadata subblocks are obsolete. That is, the most up-to-

date version of the metadata subblock must be stored in

journal blocks of other transactions.

The space-reclamation process involves traversing the

journal log from the oldest transaction to the most recent, in

batches. Each per-transaction J2M table encountered is

checked against the in-memory M2J table. Suppose

according to the J2M Table 3.3.2, journal subblock <11:0>

is mapped to metadata subblock <1:33>. However, if the in-

memory M2J table shows metadata subblocks are mapped

elsewhere, say to journal subblock <12:0>, then journal

subblock <11:0> is obsolete. If all journal subblocks within

a single transaction are obsolete, journal blocks belonging to

this transaction can be garbage collected.

On the other hand, since journal subblock <11:1> is mapped

to metadata block <3:0> according to J2M Table 3.3.2, and

M2J Table 3.3.1 confirms that the subblock mapping is

current, this transaction holding journal block 11 cannot be

garbage collected. To enable garbage collection, we use a

list to track all up-to-date journal subblocks in chronological

order; this list is prepended to the list of the metadata

Metadata blocks

1 3 Memory

Storage
Journal blocks

11

FJS: Fine-grained Journal Store EuroSys, April 2018, Porto, Portugal

 5

subblocks to be committed in the current transaction. In

other words, up-to-date metadata subblocks are migrated

through recommitting themselves to other journal blocks in

the current transaction.

If this transaction fails, the up-to-date metadata subblocks

are still in the original journal locations. The in-memory

M2J table needs to be reconstructed through replaying and

retrieving the per-transaction J2M tables stored in the

journal. If this transaction succeeds, all blocks related to

transactions prior to garbage collection can be reclaimed.

The in-memory M2J table will be updated accordingly.

The garbage collection and FJS commit are in the same

thread, so there is no need to coordinate them. In the event

that the journal space is near exhaustion, FJS (as opposed to

the file system above) needs to checkpoint the up-to-date

modified metadata subblocks to their original metadata

blocks.

4 Implementation

We have prototyped FJS under Linux by extending the jbd2

journaling layer, to leverage its handling of tricky corner

cases such as committing while receiving updates. We also

extended ext4, one of the most widely used file systems, to

help FJS identify the metadata subblocks modified within

metadata blocks. We used the popular ordered mode for

jbd2, where only metadata are journaled every 5 seconds

(default), while the associated data are flushed prior to

metadata journaling. FJS was implemented with ~2,000

lines of C code.

Metadata updates: Currently, we track and handle ext4

metadata updates at the granularities of 64B for block group

descriptors and bitmaps, 256B for i-nodes, and 1KB for

superblocks. Other forms of metadata (e.g., content of

directories, extent-tracking blocks) are still journaled and

written back periodically with the semantics of the ext4

ordered mode.

The M2J table is checked for creating and updating entries

when ext4 invokes ext4_mark_inode_dirty() and

various block allocation/deallocation functions. In addition,

the modified 4KB metadata blocks are marked as not dirty

to prevent them from being written back to their original

storage locations.

M2J table: We used a red-black tree to implement the M2J

table, indexed by the metadata block UIDs, so that each node

corresponds to a metadata block. In addition, each node

stores the M2J table entries related to the metadata block.

Journal commit: We have intercepted the kjournald commit

thread, so that only temporary buffers packed by modified

metadata subblocks are flushed to the journal, instead of the

buffer_head structures mapped by the

journal_head structures. Also, the per-transaction

journal descriptor block is modified to store the J2M

mapping table.

Bootstrapping and recovery: We have modified the mount

command to accept a –fjs flag to trigger journal replay and

the reconstruction of the in-memory M2J table. FJS will

always perform recovery at mount time, even if the system

is shut down normally. For now, the FJS journal format is

not backward compatible; once the journal is converted to

the FJS format, all future mounts will require the –fjs

option to be turned on. Future work will enable the option

to revert to the jbd2 journal format at mount time by writing

the subblocks back to their original locations.

Metadata read: once the M2J table is reconstructed, the

return paths of submit_bh(),bh_submit_read(),

and ll_rw_block() are intercepted. Sine a metadata

block is read from the stable storage as a cache miss, FJS

will consult with the M2J table to copy the corresponding

modified subblocks (if any) from the persistent journal

subblocks over the subblocks of the metadata block. Thus,

the in-memory metadata blocks will contain the up-to-date

information for future reads and updates.

Journal space reclamation: The journal space reclamation

process is modified according to §3.6. The space

reclamation process is triggered once the journal is 50% full.

We have not encountered journal space exhaustion; thus, we

have not implemented the handling of such cases.

Table 5.1. System configurations.

Processor 2.2GHz Intel® E5-2430, with 64KB L1

cache, 256KB, and 15MB cache

Memory 32 GB RDIMM 1,333 MT/s

HDD Seagate® Savvio ST9146853SS, 15K RPM,

146GB SAS HDD, with 64MB cache

SMR

HDD

Seagate® Archive ST8000AS0002 8TB

drive, with 128MB cache

SSD Intel® DC S3700 SSDSC2BA200G3R

200GB SATA SSD

Operating

System

Linux 4.13

5 Evaluation

We used kernel compilations and Filebench 1.5-alpha3

[Tarasov et al. 2016] to compare the performance of FJS

with the baseline ext4 using the ordered mode. We used two

servers with identical configurations, except that one is

hosting 6 HDDs and one is hosting 6 SSDs and 2 SMR

HDDs (Table 5.1). We conducted our experiments on only

one storage device from each category. Each experiment

EuroSys, April 2018, Porto, Portugal Anonymous Author(s)

6

setting was repeated five times. The 90% confidence

intervals tend to be narrow (< 5%) and are omitted for

clarity.

5.1 Kernel Compilations

The purpose of the kernel compilation benchmark is to show

the correctness of FJS implementation. Also, the results can

assess whether the use of the journal as the final storage

destination will consume journal space rapidly and impose

high memory consumptions for mapping subblocks. Since

compilations are CPU-bound, we anticipated no

performance differences.

We compiled Linux kernel 4.13 using make –j6 flag to

allow multithreaded compilations on our multicore machine.

Table 5.1.1 shows that compilation times for ext4 and FJS

are the same as expected. The server hosting SSDs and SMR

HDDs took 4.8% longer, but within the variations across

machines of the same configurations. To confirm this

hypothesis, we compiled the kernel on ramfs, which

demonstrates similar performance discrepancies.

Table 5.1.1. Kernel compilation results.

 Compilation

time

Journal

writes

Metadata

writes

FJS

memory

overhead

ext4

 HDD 1,547 secs 173MB 94MB 0.0MB

 SSD 1,621 secs 173MB 94MB 0.0MB

 SMR

 HDD
1,618 secs 173MB 94MB 0.0MB

FJS

 HDD 1,548 secs 60MB 0.0MB 8.9MB

 SSD 1,621 secs 60MB 0.0MB 8.9MB

 SMR

 HDD
1,615 secs 60MB 0.0MB 8.9MB

ramfs

 HDD

 host
1,552 secs n/a n/a 0.0MB

 SSD

 and

 SMR

 host

1,625 secs n/a n/a 0.0MB

For the types of metadata tracked by FJS, FJS retains all

metadata and reduces the amount of ext4 journal writes by

35% and eliminates their associated file-system metadata

writebacks. Thus, FJS reduces the write amplification of

metadata by 4.5x (173MB + 94MB / 60MB), not counting

the additional amplification by the garbage collection at the

flash level. The range-based M2J subblock mapping table

incurred only 8.9MB. These numbers show that the

overhead of FJS is sufficiently low for real-world

deployment.

5.2 Microbenchmarks

We configured Filebench to perform six microbenchmarks,

with designs similar to the ones in [Aghayev et al. 2017].

Table 5.2.1 describes each microbenchmark.

 Table 5.2.1. Filebench microbenchmarks.

make

directories

Create a directory tree with 500K

directories, with each directory

containing 5 subdirectories on average.

list

directories
Run ls –lR on the directory tree.

remove

directories

Remove the directory tree recursively.

create files Create 500K 4KB files in a directory tree,

with each directory containing 5 files on

average.

find files Run find on the directory tree.

remove files Remove the files and directory tree

recursively.

Figure 5.2.1: Comparison of HDD performance between

FJS and ext4 running Filebench microbenchmarks.

Figure 5.2.1 compares the HDD performance of FJS with

that of ext4. Creating directories involves allocating new

blocks and updating metadata. For ext4, a writeback thread

periodically writes the updated metadata blocks to their

original storage locations, while FJS eliminates many of

these writes. In addition, an ext4 directory creation involves

a minimum of four 4KB journal writes to the superblock, the

block group descriptor block, the i-node bitmap block, and

the block containing the i-node. FJS, on the other hand, can

compact subblocks involved in the creation of multiple

directories into a single journal block, resulting in a 2.2x

speedup for directory creation.

0 50 100 150 200 250

make dirs

list dirs

remove dirs

create files

find files

remove files

SECONDS

ext4 FJS

FJS: Fine-grained Journal Store EuroSys, April 2018, Porto, Portugal

 7

Creating files involves additionally writing a 4KB data

block, which is not optimized by FJS, resulting in a smaller

1.6x improvement. The performance of other operations

reflects how well FJS captures the locality of metadata to be

accessed. The throughput improvement is as high as 3.7x

for directory removals.

From a different view, Figure 5.2.2 shows that the locations

of ext4 metadata writes over the duration of the make

directory microbenchmark for a single run. Due to the high

volume of data, for n events we only plotted every

⌈𝑛/2000⌉th event. The ‘-‘ markers show writes to the final

storage locations of metadata, and ‘x’ markers show writes

to the journal, which is located in the middle tracks of the

disk platters, to reduce the frequency of seeks to access the

journal.

Figure 5.2.2: ext4 metadata write locations over time for

the make directory microbenchmark.

Figure 5.2.3: FJS metadata write locations over time for

the make directory microbenchmark. FJS journal

persistently stores super blocks, block group descriptors,

i-nodes, and bitmaps. The remaining metadata blocks are

written back according to the semantics of ext4 ordered

mode.

For FJS (Figure 5.2.3), since the journal persistently stores

the superblock, block group descriptors, i-nodes, and

bitmaps, the writeback requests to the remaining metadata

types are 1.6x fewer (Figure 5.2.6) compared to the ext4

case. On the other hand, for this microbenchmark, the

journal has wrapped around three times, or once every 20

seconds, indicating that keeping the remaining metadata

persistent would require a journal space much larger than the

existing 1GB.

Figure 5.2.4 compares the SSD performance of FJS with that

of ext4. Given that SSD has no mechanical seeks, the

expected FJS performance improvement is less than that of

disks. The speedup for directory creation is reduced to 41%,

and the performance for file creation is almost negligible

(4.1%). However, the speedup for operations such as

directory removals is still improved by 1.6x.

Figure 5.2.4: Comparison of SSD performance between

FJS and ext4 running Filebench microbenchmarks.

Figure 5.2.5 compares the SMR HDD performance of FJS

with that of ext4. The performance of SMR HDDs are

significantly slower than conventional HDDs due to the need

to rewrite overlapped track regions if updated. The FJS’s

approach to avoid double, random, and amplified writes can

speed up directory creation by 2.9x and file creation by 1.5x.

For other operations, FJS can speed up directory removals

by 15x, file finds by 12x, listing directories by 9.6x, and file

removals by 6.2x.

Figure 5.2.6 shows that FJS reduces the amount of metadata

written over ext4 by up to 3.1x.

0

50

100

150

200

250

300

0 50 100

block #
(millions)

time (seconds)

metadata writebacks journal writes

0

50

100

150

200

250

300

0 20 40 60

block #
(millions)

time (seconds)

metadata writebacks journal writes

0 50 100 150

make dirs

list dirs

remove dirs

create files

find files

remove files

SECONDS

ext4 FJS

EuroSys, April 2018, Porto, Portugal Anonymous Author(s)

8

Figure 5.2.5: Comparison of SMR HDD performance

between FJS and ext4 running Filebench

microbenchmarks.

Figure 5.2.6: Write reduction factor of FJS over ext4 for

the Filebench microbenchmarks.

5.3 Macrobenchmarks

We configured Filebench to emulate five workloads, each

with a working set size of ~50GB.

The fileserver benchmark involves create-write-close

operations, open-append-close operations, open-read-close

operations, deletes, and stats. The total number of files is set

to 800K, accessed by 50 threads. The mean append size is

16KB.

The varmail benchmark exercises deletions, create-append-

fsync-close operations, open-read-append-fsync-close

operations, and open-read-close operations. The total

number of files is set to 1M accessed by 16 threads. The

mean append size is 4KB.

The OLTP benchmark emulates asynchronized writes with

many semaphore locks. The total number of files is 500,

with an average append size of 2KB.

The webserver benchmark involves open-read-close

operations and append operations. The total number of files

is set to 800,000, accessed by 100 threads. The mean append

size is 16KB.

The webproxy benchmark involves deletes, create-append-

close operations, and open-read-close operations. The total

number of files is set to 1M, accessed by 100 threads. The

mean append size is 16KB.

Figures 5.3.1 and 5.3.2 show the results for traditional HDDs

and SSDs. We have omitted the experiments for SMR

HDDs, since they took one to two orders of magnitude

longer to run, indicating that SMR HDDs are unsuitable for

these workloads. In both cases, the FJS improvements are

modest across the board. Even the read-mostly webserver

workload gained 7.7% in throughput, and HDDs benefit

more from the locality then SSDs, due to the reduction of

mechanical seeks. Since FJS excels in compact logging of

allocation and deallocation related updates, FJS improves

web proxy throughput by up to 21%, followed by varmail

improvement of up to 14%.

Figure 5.3.1: Comparison of HDD performance

between FJS and ext4 running Filebench

macrobenchmarks.

0 500 1000 1500 2000 2500

make dirs

list dirs

remove dirs

create files

find files

remove files

SECONDS

ext4 FJS

0 1 2 3 4

make dirs

remove dirs

create files

remove files

amount of ext4 metadata written / amount of
FJS metadata written
amount of ext4 data + metadata written /
amount of FJS data + metadata written

0 2000 4000 6000

fileserver

varmail

OLTP

webserver

webproxy

OPS/SEC

ext4 FJS

FJS: Fine-grained Journal Store EuroSys, April 2018, Porto, Portugal

 9

Figure 5.3.2: Comparison of SSD performance between

FJS and ext4 running Filebench macrobenchmarks.

Figure 5.3.3: Write reduction factor of FJS over ext4 for

the Filebench macrobenchmarks.

Figure 5.3.3 shows that FJS reduces the amount of metadata

written over ext4 by up to 5.8x. However, when both

metadata and data are considered, this write reduction factor

can only be as high as 1.5x. The overall write reduction

factor correlates well with the performance benefits of FJS.

6 Related Work

Over the years, many researchers have sought to reduce the

double, random, and amplified writes associated with the

journaling and file system writeback mechanisms.

However, few of them address all three forms of journal

writes.

Avoiding journal double writes: One approach to avoid

journaling is to have copy-on-write semantics on file system

tree nodes. Thus, whenever a leaf tree node is modified, all

the updated nodes from the leaf node to the root are cloned

and updated, leaving behind a consistent snapshot of the old

tree. Some example file systems include ZFS [Bonwick and

Moore 2009] and BTRFS [Rodeh et al. 2013].

Another approach to avoid journal writes involves the use of

byte-addressable NVM. Lee et al. [2013] proposed to

combine the roles of buffer cache and journal so that journal

commit can be performed in place, by changing the state of

a cached block instead of copying the updates to the journal.

Avoiding double journal writes and random file-system

writebacks: The log-structured file system (LFS)

[Rosenblum and Ousterhout 1991] is also a copy-on-write

file system designed to optimize writes. By structuring both

data and metadata as log entries and by having the log as the

final storage destination for data and metadata, each update

only needs to be written once. The LFS approach has been

applied to many systems to optimize writes. Notably,

DualFS [Piernas et al. 2002] used separate storage devices

for metadata and data. The metadata storage device used an

LFS layout to avoid double and random writes. hFS [Zhang

and Ghose 2007] uses an LFS partition in the middle tracks

of disks to store small files and metadata. F2FS [Lee et al.

2015] used a modified version of LFS to optimize random

writes.

Aghayev et al. [2017] modified ext4 for SMR HDDs.

Specifically, their approach allows frequently accessed

metadata to be stored in the journal, while infrequently

accessed metadata are written back to their original

locations.

Reducing amplified writes caused by journaling: Many

approaches to compact journals have been proposed, mostly

in the context of byte-addressable NVM such as PCM. Kim

et al. [2014] propose to compare the original and modified

block via XOR. If the differences are small, the updates are

journaled using the NVM device. Otherwise, updates are

journaled using the NAND-flash device. Hwang et al.

[2015] proposed the use of a two-level tracking scheme for

128B updates to memory blocks, with the tracking table

stored in NVM. Chen et al. [2016] proposed a more compact

journal format for byte-addressable NVM. The transaction

representation removes the journal descriptor and commit

block and logs only modified i-node.

Avoiding double, random, and amplified journal writes:

Lu et al. [2013] propose an object-based flash translation

layer (OFTL) object store approach to manage NAND flash.

0 20000 40000 60000 80000

fileserver

varmail

OLTP

webserver

webproxy

OPS/SEC

ext4 FJS

0 1 2 3 4 5 6

fileserver

varmail

OLTP

webserver

webproxy

FJS write reduction factor

amount of ext4 metadata written / amount of
FJS metadata written
amount of ext4 data + metadata written /
amount of FJS data + metadata written

EuroSys, April 2018, Porto, Portugal Anonymous Author(s)

10

The interface exposes the byte range so that OFTL can

compact the partially updated flash pages. OFTL uses

backpointers to metadata to avoid journaling. The

implementation is based on log-structured merge trees, so

OFTL also largely eliminates the random writes. To run

legacy workloads, the authors built an object file system to

interface with OFTL. Block-level traces from legacy file

systems are fed into a flash translation layer simulation to

generate flash read/write/erase operations comparable to

those of OFTL. The write amplification is reduced by up to

89%.

Overall, the FJS framework combines and extends the

techniques used in LFS, in-place commit, and journal

compaction, and retrofits these mechanisms with existing

journaling and storage devices.

7 Discussions and Future Work

The original FJS design aimed to store individual i-node

attributes in separate persistent journals for improved

compression. While the approach reduced double, random,

and amplified writes well, different journal attributes’ update

frequencies introduced complications. In addition, separate

journal logs did not exploit the internal parallelism of SSDs

as well as anticipated, for reasons explained in [He et al.

2017].

We then decided to use fixed-size subblocks and extended

the types of metadata being handled to the current

incarnation of FJS, which still exploits some level of

metadata knowledge to locate subblocks within a block, and

reuses the journal to avoid the use of the byte-addressable

NVM. FJS’s benefits can be realized in various leading

storage media as well.

However, FJS can be enhanced in a number of ways. For

example, we can wrap all file system calls to update the i-

node attributes to indicate which 64B subblock has been

updated, as opposed to marking four 64KB subblocks as

updated. We can also extend our tracking to handle

metadata types beyond super blocks, block group

descriptors, i-nodes, and bitmaps.

8 Conclusions

We have presented the design, implementation, and

evaluation of FJS, which permanently stores updated

metadata subblocks in a file system journal to avoid double,

random, and amplified writes as well as the need for byte-

addressable persistent storage. The resulting performance

improvements span across conventional HDDs, SMR

HDDs, and SSDs under a variety of workloads. The FJS

research shows that it is possible to integrate the techniques

used in LFS, in-place journal commit, and journal

compaction to meet diverse system constraints, leading to a

practical, deployable system.

Acknowledgments

We would like to thank Brandon Stephens and Erika Dennis

for reviewing an early draft of this paper. This work was

sponsored by FSU. The opinions, findings, conclusions, or

recommendations expressed in this document do not

necessarily reflect the views of FSU or the U.S. Government.

References

[Aghayev et

al. 2017]

Aghayev A, Ts’o T, Gibson G, Desnoyers

P. Evolving Ext4 for Shingled Disks.

Proceeding of the 15th USENIX Conference

on File and Storage Technologies (FAST),

2017.

[Bonwick

and Moore

2009]

Bonwick J, Moore B. ZFS: The Last Word

in File Systems.

https://www.snia.org/sites/default/orig/sdc

_archives/2009_presentations/monday/Jeff

Bonwickzfs-Basic_and_Advanced.pdf,

2009.

[Chen et al.

2016]

Chen C, Yang J, Wei Q, Wang C, Xue M.

Fine-grained Metadata Journaling on NVM.

Proceedings of the 32nd IEEE Symposium

on Mass Storage and Technologies (MSST),

2016.

[Hwang et

al. 2015]

Hwang Y, Gwak H, Shin D. Two-level

Logging with Non-volatile Byte-

addressable Memory in Log-structure File

Systems. Proceedings of the 12th ACM

International Conference on Computing

Frontiers, 2015.

[He et al.

2017]

He J, Kannan S, Arpaci-Dusseau AC,

Arpaci-Dusseau RH. The Unwritten

Contract of Solid State Drives.

Proceedings of the 12th ACM European

Conference on Computer Systems

(Eurosys), 2017.

[Kim et al.

2014]

Kim J, Min C. Eom YI. Reducing

Excessive Journaling Overhead with Small-

Sized NVRAM for Mobile Devices. IEEE

Transactions on Consumer Electronics.

60(2):217-224, July 2014.

[Lee et al.

2013]

Lee E, Bahn H, Noh SH. Unioning of the

Buffer Cache and Journaling Layers with

Non-volatile Memory. Proceedings of the

11th USENIX Conference on File and

Storage Technologies (FAST), 2013.

[Lee et al.

2015]

Lee C, Sim D, Hwang JY, Cho S. F2FS: A

New File System for Flash Storage.

Proceedings of the 13th USENIX

Conference on File and Storage

Technologies (FAST), 2015.

[Lu et al.

2013]

Lu Y, Shu J, Zheng W. Extending the

Lifetime of Flash-based Storage through

Reducing Write Amplification from File

Systems. Proceedings of the 11th USENIX

FJS: Fine-grained Journal Store EuroSys, April 2018, Porto, Portugal

 11

Conference on File and Storage

Technologies (FAST), 2013.

[Mellor

2016]

Mellor C. QLC Flash is Tricky Stuff to

Make and Use, So Here’s a Primer.

https://www.theregister.co.uk/2016/07/28/

qlc_flash_primer/, July 2016.

[Piernas et

al. 2002]

Piernas J, Cortes T, Garcia JM. DualFS: A

New Journaling File System without

Metadata Duplication. Proceedings of the

2002 International Conference on

Supercomputing (ICS), 2002.

[Rodeh et

al. 2013]

Rodeh O, Bacik J, Mason C. BTRFS: The

Linux-B-Tree Filesystem. ACM

Transactions on Storage (TOS), 9(3),

Article No. 9, 2013.

[Rosenblum

and

Ousterhout

1991]

Rosenblum M, Ousterhout JK. The Design

and Implementation of a Log-structured

File System. Proceedings of the 13th ACM

Symposium on Operating Systems

Principles (SOSP), 1991.

[Seagate

2017]

Seagate. Transition to Advanced Format

4K Sector Hard Drives.

https://www.seagate.com/tech-

insights/advanced-format-4k-sector-hard-

drives-master-ti/, 2017.

[Sivathanu

et al. 2005]

Sivathanu M, Arpaci-Dusseau AC, Arpaci-

Dusseau RH, Jha S. A Logic of File

Systems. Proceedings of the 4th USENIX

Conference on File and Storage

Technologies (FAST), 2005.

[Tarasov et

al. 2016]

Tarasov V, Zadok E, Shepler S. Filebench:

A Flexible Framework for File System

Benchmarking, ;login, 40(1):6-12, 2016.

[Wood et al.

2009]

Wood R, Williams M, Kavcic A, Miles J.

The Feasibility of Magnetic Recording at 10

Terabits Per Square Inch on Conventional

Media. IEEE Transactions on Magnetics.

45(2):917-923, February 2009.

