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Abstract 

Journaling has been a popular reliability tool for file systems.  

However, journaling may involve writing updates twice, 

once to the journal, and once to potentially random update 

locations.  The journal granularity tends to be coarse, leading 

to more bytes written than necessary. 

We introduce Fine-grained Journal Store (FJS).  Fine-

grained Journal Store uses the journal as the final storage 

location for updates, thus eliminating double and random 

writes.  Fine-grained journaling units are utilized to reduce 

the number of bytes written compared to the number of bytes 

updated.  To limit the memory overhead of tracking small 

updatable units, FJS uses a range-based lookup table.  In 

addition, FJS reuses existing journaling constructs to avoid 

the need for additional byte-addressable NVM storage 

devices. 

We extended ext4 and jbd2 to prototype FJS.  Our results 

show that FJS can outperform ext4 by up to 15x and reduce 

the write amplification of common metadata types by up to 

5.8x. 
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1 Introduction 

Journaling is a common reliability technique used in modern 

file systems.  The basic approach is to append all relevant 

updates to a log stored on stable storage before the file 

system propagates these updates to their final storage 

locations.  While widely used, journaling interacts poorly 

with both hard disks and solid-state disks (SSD, e.g., 

commonly used NAND-based flash).   

 

First, each write is performed twice; the propagation phase 

may involve writes to random storage locations.  One extra 

round of writes can reduce file system performance for both 

disks and SSDs by 33% [Chen et al. 2016].  Second, only 

10% of bytes journaled are actually updated [Chen et al. 

2016].  Having many more bytes written than necessary has 

drastic negative reliability implications for SSDs, where 

each writable location can only tolerate a limited number of 

updates [Mellor 2016].  

 

This paper introduces Fine-grained Journal Store (FJS), 

which directly stores the final updates in fine-grained units 

in the journal.  Storing the final updates in the journal avoids 

double and random writes.  The FJS further reduces the 

number of unnecessary bytes written, thereby mitigating the 

adverse effects of writes on the reliability of SSDs.  The FJS 

is designed to be retrofit in an existing journaling 

framework; thus, it does not require special byte-addressable 

NVM storage devices (e.g., PCM). 

2 Background 

We will briefly review modern storage media characteristics 

and journaling mechanisms to better understand their 

interactions.  We will then discuss their implications and 

some current alternatives.   

 

Hard disks:  A hard disk is a mechanical storage device with 

one or more rotating platters.   Each platter is divided into 

concentric tracks, and each track is subdivided into storage 

sectors (e.g., 512B-4KB [Seagate 2017]).  A disk request 

requires positioning a disk arm to a track, and waiting for the 

target sectors to rotate under the disk head before reading or 

writing the data.  Due to the mechanical overhead, access to 

random disk locations can be two orders of magnitude 

slower than accessing adjacent disk locations (sequential 

access). 

 

In recent years, shingled magnetic recording (SMR) drives 

[Wood et al. 2009] have become commercially available.  

SMR drives exploit the fact that a disk write head is wider 

than a read head.  Therefore, a written track can overlap its 

previous track, similar to the way in which roof shingles 

overlap, as long as the non-overlapping region is wider than 

the read head for data retrieval (Figure 2.1).  This also means 

that if a write is targeted to a track that is overlapped by 

another track, the write needs to rewrite the overlapped track 

as well.  To limit the amount of rewriting, consecutive tracks 

are grouped and then separated by bands of non-overlapping 

regions.  The performance implication of SMR is that disk 

writes can be significantly slower than reads due to the need 

to rewrite overlapping content.   
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Figure 2.1. Overlapping tracks on a shingled magnetic 

disk. 

 

SSDs:  Unlike disks, SSDs are electronic storage devices.  

Since they typically take the form of NAND-based flash, we 

will use the terms interchangeably.  Flash is accessed in the 

unit of pages (e.g., 2KB).  Without mechanical overhead, 

both sequential and random flash accesses are orders of 

magnitude faster than disks.  However, for flash to overwrite 

the same page in place, a page needs to be cleared through 

an explicit erase operation before it can be written again, and 

an erase operation can be slower than a disk access.  To 

amortize the cost, erase operations are carried out in flash 

blocks (e.g., 256KB), which contain many contiguous flash 

pages.  To mask the latency of in-place writes and erase 

operations, a common practice is to remap the writes to pre-

erased blocks.     

 

While remapping writes works well, at some point an SSD 

needs to garbage collect pages with obsolete content.  

Ideally, an erase operation is issued to flash blocks 

containing all pages with obsolete content.  However, the 

reality is that pages often hold up-to-date content that needs 

to be migrated to other pre-erased blocks.  Such data 

movements amplify the amount of the data originally 

written.  In addition, writes to random pages are more likely 

to trigger garbage collection events that involve flash blocks 

containing more in-use pages. 

 

Another reliability constraint of flash is that each page can 

be written and erased for only a limited number of times 

(e.g., 1,000 – 100,000 [Mellor 2016]).  Thus, writes, random 

writes, and amplified writes hurt the lifespan of flash.   

 

Journaling:  The idea of journaling can be traced back to the 

use of write-ahead logs in databases, where related updates 

are first grouped into transactions.  A transaction is 

considered as committed when all the related updates are 

appended and written to a log on the stable storage.  These 

updates are later written back to their final storage.  Once all 

the operations have been successfully applied, the 

transaction is checkpointed, and the journal area used for the 

transaction can be freed.  Recovery involves reapplying 

operations logged in the committed transactions since the 

last checkpoint. 

 

To map to the context of a file system, the journal is the 

write-ahead log, and the updates logged are block-based 

(e.g., 4KB) and involve both data (e.g., file content) and 

metadata (e.g., storage allocation bitmaps, per-file i-node 

structures) operands.  However, in practice, journaling file 

systems commonly omit data logging to trade consistency 

with performance since having consistent metadata provides 

sufficient file system integrity for most purposes [Sivathanu 

et al. 2005].   

 

Limitations of existing journaling:  As we juxtapose 

journaling and modern storage media, we identify the 

following three limitations: 

 

Double writes:  with journaling, each write is performed 

twice, once to the journal and once to the final destination.  

Double writing significantly increases the number of bytes 

written.  For disks, extra bandwidth is needed for extra 

writes.  For SSDs, which have a limited number of write-

erase cycles, extra writes can significantly reduce the 

lifespan of the SSDs. 

 

Random writes:  the file-system writeback phase may trigger 

random writes.  For disks, random writes involve slow seeks, 

and potential rewriting for SMR disks.  For SSDs, random 

writes reduce their lifespans even faster as more garbage 

collection events trigger more writes to migrating in-use 

pages.   

  

Amplified writes: the current block-based journaling 

granularity is too coarse-grained (4KB), as updates to file 

system metadata often involve changing a small fraction of 

bytes (e.g., updating the access timestamps for 256B i-

nodes).  The journaling of unchanged bytes leads to 

unnecessary writes, which can both slow down storage 

media and reduce the lifespan of SSDs. 

 

Some alternatives:  One alternative is to use variants of the 

log-structured file system (LFS) [Rosenblum and 

Ousterhout 1991; Lee et al. 2015], in which both data and 

metadata updates are represented and stored as log entries.  

LFS avoids double writes and associated random writes.  

However, LFS does not address the extra bytes written due 

to coarse-grained journaling.  There are also systems that 

focus on fine-grained journaling [Kim et al. 2014; Hwang et 

al. 2015; Chen et al. 2016] by maintaining a mapping layer 

between the original journal and condensed representations.   

However, they rely on the use of byte-addressable persistent 

storage NVM devices such as PCM to protect the 

consistency of their mapping from crashes.  Ideally, a 

framework can address double, random, and amplified 

writes, without resorting to the use of special hardware; this 

leads to our work. 

3 Fine-grained Journal Store 

We introduce Fine-grained Journal Store (FJS), which uses 

the file system journal to store the final metadata updates and 

avoid double and random writes.  To mitigate amplified 

writes, we divide metadata blocks into fixed-sized subblocks 

for journaling.  We also exploit the knowledge and format 

Track N 
Track N + 1 
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information of metadata to accelerate the lookups of the 

offsets within subblocks, without resorting to mechanisms to 

compute and track deltas between blocks.  To avoid the use 

of byte-addressable NVM persistent storage, we reuse the 

existing journaling mechanisms to store the mapping from 

journal entries to the original metadata block locations and 

modified offsets.  The reverse mapping takes the form of soft 

states and can be reconstructed from the mapping stored in 

the journal.  The following subsections detail the design of 

FJS.   

3.1 Metadata Updates 

FJS maintains an M2J lookup table in memory that maps 

<metadata block UID:modified subblock offset> to <journal 

block UID:journal subblock offset>.  Both the metadata and 

journal block UIDs share the same namespace and are 

unique based on their persistent locations (i.e., major device 

number, minor device number, and block number).  Thus, if 

a metadata block UID and subblock offset pair is mapped to 

itself (with the same UID and offset), the metadata subblock 

is not stored in the journal.  Smaller subblocks mean finer-

grained tracking of modified metadata regions; however, the 

tradeoff is having a larger M2J table.  We used the square 

root of the block size, rounded to the nearest power of two.  

In this case, it comes to sixty-four 64B subblocks for 4KB 

metadata blocks.   

 

When a metadata update arrives, FJS first checks to see 

whether the M2J table contains the metadata block entry.  If 

not, an M2J table entry is created containing the target 

metadata block UID.  Having the knowledge of metadata 

type, such as i-node, we can identify which four 64B 

subblocks within the metadata block contain the 256B i-

node.  Also, by wrapping all updates to attributes with inline 

macros, we can identify the 64B subblock within the i-node 

that is modified.  The persistent journaling location is yet to 

be determined (TBD) at the commit time.   

 

If an entry already exists when an update arrives, and if the 

update has not been committed, nothing needs to be done.  If 

the update has been committed, the existing journal-block 

UID and the subblock offset will be set to <TBD:TBD>, so 

that the next commit will only log subblocks updated since 

the last commit.   

 

In all cases, the update is still performed on the metadata 

cached in memory.  The in-memory journaling mechanisms 

still track modified metadata at the granularity of a block.  In 

addition, FJS assures that none of the modified 4KB 

metadata blocks cached will be flushed to the stable storage 

(see §3.3). 

3.2 Range-based Metadata to Journal Subblock Mapping  

Table 3.2.1 provides an example of the M2J table, sorted 

first by the metadata block UID, and then by its subblock 

offset.   The first row shows that the metadata block 1 and 

subblock 0 pair, denoted as <1:0>, is mapped to <1:0> or 

itself.  This means this subblock has not been updated, and 

is neither mapped nor stored in the journal.  The subblock 

<1:33> has been updated, and will be mapped when this 

block is committed.  The location of the journal block and 

its subblock are yet to be determined, denoted as 

<TBD:TBD>.   

 

One observation is that the mapping status of a subblock in 

a shaded row can be deduced by the previous row, until its 

mapping status changes.  In addition, the mapped subblock 

numbers are largely consecutive, unless otherwise specified.  

Thus, we can omit storing the shaded rows.  If subblocks 0-

3 of metadata block 3 are mapped to different journal blocks 

or nonconsecutive journal subblocks, new entries will be 

created to reflect these mappings.  Therefore, individual 

metadata blocks tend to have relatively few entries.  (We 

could further assume the common case that the first subblock 

is not modified to save one more row.) 

Table 3.2.1. M2J metadata block UID to journal block UID table.  

The content of a shaded subblock entry can be deduced from the 
previous entry and is not stored. 

Metadata 

block UID 

Metadata 

subblock 

offset 

Journal 

block UID 

Journal 

subblock  

offset 

1 0 1 0 

1 1 1 1 

1 2 1 2 

1 … 1 … 

1 32 1 32 

1 33 TBD TBD 

1 34 1 34 

1 35 1 35 

1 … 1 … 

1 62 1 62 

1 63 1 63 

3 0 TBD TBD 

3 1 TBD TBD 

3 2 TBD TBD 

3 3 TBD TBD 

3 4 3 4 

3 5 3 5 

3 … 3 … 

3 62 3 62 

3 63 3 63 

3.3 Journal Commit 

Continuing with the Table 3.2.1 example.  Let us now 

suppose metadata blocks 1 and 3 belong to the same 

transaction.  When the journal commits, instead of flushing 

modified 4KB metadata blocks 1 and 3, FJS packs only the 

modified 64B subblocks <1:33>, <3:0>, <3:1>, <3:2>, and 
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<3:3> (the ones mapped to <TBD:TBD> into a temporarily 

allocated 4KB memory block that is committed and flushed 

to the persistent journal (Figure 3.3.1).  Suppose the journal 

block UID is 11.  The in-memory M2J table will contain the 

states shown in Table 3.3.1. 

 

The journal also persistently stores a per-transaction J2M 

mapping from <journal block UID:subblock offset> to 

<metadata block UID:subblock offset>, as shown in Table 

3.3.2.  The table is written to the journal before writing the 

journal block(s) containing metadata subblocks. 

 

Figure 3.3.1. Modified metadata subblocks <1:33>, <3:0>, 

<3:1>, <3:2>, and <3:3> (shaded) are packed and written to 

journal block 11. 

Table 3.3.1. The M2J table after committing <1:33>, <3:0>, <3:1>, 

<3:2>, and <3:3> subblocks to journal block 11.  The TBD entries 
are changed (highlighted in bold font). 

Metadata 

block UID 

Metadata 

subblock 

offset 

Journal 

block UID 

Journal 

subblock  

offset 

1 0 1 0 

1 33 11 0 

1 34 1 34 

3 0 11 1 

3 4 3 4 

Table 3.3.2. The J2M table after committing <1:33>, <3:0>, <3:1>, 
<3:2>, and <3:3> subblocks to journal block 11. 

Journal 

block UID 

Journal 

subblock 

offset 

Metadata 

block UID 

Metadata 

subblock 

offset 

11 0 1 33 

11 1 3 0 

11 4 11 4 

 

3.4 Bootstrapping and Metadata Lookups 

After a reboot, the in-memory M2J table is initially missing. 

This indicates that the journal needs to be replayed to 

reconstruct the M2J table content, based on the per-

transaction J2M tables persistently stored in the journal.  

Then, when a metadata request arrives, the target metadata 

block is initially not cached, and must be read from the 

original storage location (not from the journal).  The return 

path of the metadata block request is intercepted with checks 

against the M2J table to copy the committed up-to-date 

subblocks stored in the journal over the target metadata 

block.  Afterwards, the in-memory metadata block is up-to-

date and can serve metadata lookup and update requests.   

3.5 Crash Recovery 

If a crash occurs when no transactions are being committed, 

all metadata updates since the last commit are lost.  If a crash 

occurs while a transaction is being committed (before the 

commit marker becomes persistent), all metadata updates 

since the last commit will be discarded.  For both cases, upon 

reboot, the FJS can repeat the steps described in §3.4 to 

recover the in-memory M2J table and continue with the 

operations.   

3.6 Space Reclamation within the Journal 

A journal is typically represented as a circular log.  To enable 

efficient sequential logging, a journal needs to reclaim 

scattered, unused space and compact in-use space.   

However, since the journal block is the persistent storage 

location for metadata subblocks under FJS, a journal cannot 

reclaim journal blocks of a transaction until all involved 

metadata subblocks are obsolete.  That is, the most up-to-

date version of the metadata subblock must be stored in 

journal blocks of other transactions.   

 

The space-reclamation process involves traversing the 

journal log from the oldest transaction to the most recent, in 

batches.  Each per-transaction J2M table encountered is 

checked against the in-memory M2J table.  Suppose 

according to the J2M Table 3.3.2, journal subblock <11:0> 

is mapped to metadata subblock <1:33>.  However, if the in-

memory M2J table shows metadata subblocks are mapped 

elsewhere, say to journal subblock <12:0>, then journal 

subblock <11:0> is obsolete.  If all journal subblocks within 

a single transaction are obsolete, journal blocks belonging to 

this transaction can be garbage collected. 

 

On the other hand, since journal subblock <11:1> is mapped 

to metadata block <3:0> according to J2M Table 3.3.2, and 

M2J Table 3.3.1 confirms that the subblock mapping is 

current, this transaction holding journal block 11 cannot be 

garbage collected.  To enable garbage collection, we use a 

list to track all up-to-date journal subblocks in chronological 

order; this list is prepended to the list of the metadata 

Metadata blocks 

1 3 Memory 

Storage 
Journal blocks 

11 
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subblocks to be committed in the current transaction.  In 

other words, up-to-date metadata subblocks are migrated 

through recommitting themselves to other journal blocks in 

the current transaction.   

 

If this transaction fails, the up-to-date metadata subblocks 

are still in the original journal locations.  The in-memory 

M2J table needs to be reconstructed through replaying and 

retrieving the per-transaction J2M tables stored in the 

journal.  If this transaction succeeds, all blocks related to 

transactions prior to garbage collection can be reclaimed.  

The in-memory M2J table will be updated accordingly.   

 

The garbage collection and FJS commit are in the same 

thread, so there is no need to coordinate them.  In the event 

that the journal space is near exhaustion, FJS (as opposed to 

the file system above) needs to checkpoint the up-to-date 

modified metadata subblocks to their original metadata 

blocks.   

4 Implementation 

We have prototyped FJS under Linux by extending the jbd2 

journaling layer, to leverage its handling of tricky corner 

cases such as committing while receiving updates.  We also 

extended ext4, one of the most widely used file systems, to 

help FJS identify the metadata subblocks modified within 

metadata blocks.  We used the popular ordered mode for 

jbd2, where only metadata are journaled every 5 seconds 

(default), while the associated data are flushed prior to 

metadata journaling.  FJS was implemented with ~2,000 

lines of C code. 

 

Metadata updates:  Currently, we track and handle ext4 

metadata updates at the granularities of 64B for block group 

descriptors and bitmaps, 256B for i-nodes, and 1KB for 

superblocks.  Other forms of metadata (e.g., content of 

directories, extent-tracking blocks) are still journaled and 

written back periodically with the semantics of the ext4 

ordered mode.   

 

The M2J table is checked for creating and updating entries 

when ext4 invokes ext4_mark_inode_dirty() and 

various block allocation/deallocation functions.   In addition, 

the modified 4KB metadata blocks are marked as not dirty 

to prevent them from being written back to their original 

storage locations.  

 

M2J table:  We used a red-black tree to implement the M2J 

table, indexed by the metadata block UIDs, so that each node 

corresponds to a metadata block.  In addition, each node 

stores the M2J table entries related to the metadata block.   

 

Journal commit:  We have intercepted the kjournald commit 

thread, so that only temporary buffers packed by modified 

metadata subblocks are flushed to the journal, instead of the 

buffer_head structures mapped by the 

journal_head structures.  Also, the per-transaction 

journal descriptor block is modified to store the J2M 

mapping table.   

 

Bootstrapping and recovery:  We have modified the mount 

command to accept a –fjs flag to trigger journal replay and 

the reconstruction of the in-memory M2J table.  FJS will 

always perform recovery at mount time, even if the system 

is shut down normally.  For now, the FJS journal format is 

not backward compatible; once the journal is converted to 

the FJS format, all future mounts will require the –fjs 

option to be turned on.  Future work will enable the option 

to revert to the jbd2 journal format at mount time by writing 

the subblocks back to their original locations. 

 

Metadata read:  once the M2J table is reconstructed, the 

return paths of submit_bh(),bh_submit_read(), 

and ll_rw_block() are intercepted.  Sine a metadata 

block is read from the stable storage as a cache miss, FJS 

will consult with the M2J table to copy the corresponding 

modified subblocks (if any) from the persistent journal 

subblocks over the subblocks of the metadata block.  Thus, 

the in-memory metadata blocks will contain the up-to-date 

information for future reads and updates.   

 

Journal space reclamation:  The journal space reclamation 

process is modified according to §3.6.  The space 

reclamation process is triggered once the journal is 50% full.  

We have not encountered journal space exhaustion; thus, we 

have not implemented the handling of such cases. 

Table 5.1. System configurations. 

Processor 2.2GHz Intel® E5-2430, with 64KB L1 

cache, 256KB, and 15MB cache 

Memory 32 GB RDIMM 1,333 MT/s 

HDD Seagate® Savvio ST9146853SS, 15K RPM, 

146GB SAS HDD, with 64MB cache 

SMR 

HDD 

Seagate® Archive ST8000AS0002 8TB 

drive, with 128MB cache 

SSD Intel® DC S3700 SSDSC2BA200G3R 

200GB SATA SSD 

Operating 

System 

Linux 4.13 

5 Evaluation 

We used kernel compilations and Filebench 1.5-alpha3 

[Tarasov et al. 2016] to compare the performance of FJS 

with the baseline ext4 using the ordered mode.  We used two 

servers with identical configurations, except that one is 

hosting 6 HDDs and one is hosting 6 SSDs and 2 SMR 

HDDs (Table 5.1).  We conducted our experiments on only 

one storage device from each category.  Each experiment 
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setting was repeated five times.  The 90% confidence 

intervals tend to be narrow (< 5%) and are omitted for 

clarity. 

5.1 Kernel Compilations 

The purpose of the kernel compilation benchmark is to show 

the correctness of FJS implementation.  Also, the results can 

assess whether the use of the journal as the final storage 

destination will consume journal space rapidly and impose 

high memory consumptions for mapping subblocks.  Since 

compilations are CPU-bound, we anticipated no 

performance differences. 

 

We compiled Linux kernel 4.13 using make –j6 flag to 

allow multithreaded compilations on our multicore machine.  

Table 5.1.1 shows that compilation times for ext4 and FJS 

are the same as expected.  The server hosting SSDs and SMR 

HDDs took 4.8% longer, but within the variations across 

machines of the same configurations.  To confirm this 

hypothesis, we compiled the kernel on ramfs, which 

demonstrates similar performance discrepancies.   

Table 5.1.1. Kernel compilation results. 

 Compilation 

time 

Journal 

writes 

Metadata 

writes 

FJS 

memory 

overhead 

ext4 

  HDD 1,547 secs 173MB 94MB 0.0MB 

  SSD 1,621 secs 173MB 94MB 0.0MB 

  SMR  

  HDD 
1,618 secs 173MB 94MB 0.0MB 

FJS 

  HDD 1,548 secs 60MB 0.0MB 8.9MB 

  SSD 1,621 secs 60MB 0.0MB 8.9MB 

  SMR      

  HDD 
1,615 secs 60MB 0.0MB 8.9MB 

ramfs 

  HDD    

  host 
1,552 secs n/a n/a 0.0MB 

  SSD    

  and    

  SMR   

  host 

1,625 secs n/a n/a 0.0MB 

 

For the types of metadata tracked by FJS, FJS retains all 

metadata and reduces the amount of ext4 journal writes by 

35% and eliminates their associated file-system metadata 

writebacks.  Thus, FJS reduces the write amplification of 

metadata by 4.5x (173MB + 94MB / 60MB), not counting 

the additional amplification by the garbage collection at the 

flash level.  The range-based M2J subblock mapping table 

incurred only 8.9MB.  These numbers show that the 

overhead of FJS is sufficiently low for real-world 

deployment.   

5.2 Microbenchmarks 

We configured Filebench to perform six microbenchmarks, 

with designs similar to the ones in [Aghayev et al. 2017].  

Table 5.2.1 describes each microbenchmark. 

  Table 5.2.1. Filebench microbenchmarks. 

make 

directories 

Create a directory tree with 500K 

directories, with each directory 

containing 5 subdirectories on average. 

list 

directories 
Run ls –lR on the directory tree. 

remove 

directories 

Remove the directory tree recursively. 

create files Create 500K 4KB files in a directory tree, 

with each directory containing 5 files on 

average. 

find files Run find on the directory tree. 

remove files Remove the files and directory tree 

recursively. 

 

 
Figure 5.2.1:  Comparison of HDD performance between 

FJS and ext4 running Filebench microbenchmarks. 

 

Figure 5.2.1 compares the HDD performance of FJS with 

that of ext4.  Creating directories involves allocating new 

blocks and updating metadata.  For ext4, a writeback thread 

periodically writes the updated metadata blocks to their 

original storage locations, while FJS eliminates many of 

these writes.  In addition, an ext4 directory creation involves 

a minimum of four 4KB journal writes to the superblock, the 

block group descriptor block, the i-node bitmap block, and 

the block containing the i-node.  FJS, on the other hand, can 

compact subblocks involved in the creation of multiple 

directories into a single journal block, resulting in a 2.2x 

speedup for directory creation.   

0 50 100 150 200 250

make dirs

list dirs

remove dirs

create files

find files

remove files

SECONDS

ext4 FJS
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Creating files involves additionally writing a 4KB data 

block, which is not optimized by FJS, resulting in a smaller 

1.6x improvement.  The performance of other operations 

reflects how well FJS captures the locality of metadata to be 

accessed.  The throughput improvement is as high as 3.7x 

for directory removals. 

 

From a different view, Figure 5.2.2 shows that the locations 

of ext4 metadata writes over the duration of the make 

directory microbenchmark for a single run.  Due to the high 

volume of data, for n events we only plotted every 

⌈𝑛/2000⌉th event.  The ‘-‘ markers show writes to the final 

storage locations of metadata, and ‘x’ markers show writes 

to the journal, which is located in the middle tracks of the 

disk platters, to reduce the frequency of seeks to access the 

journal.   

 
Figure 5.2.2:  ext4 metadata write locations over time for 

the make directory microbenchmark.   

 

 
Figure 5.2.3:  FJS metadata write locations over time for 

the make directory microbenchmark.  FJS journal 

persistently stores super blocks, block group descriptors, 

i-nodes, and bitmaps.  The remaining metadata blocks are 

written back according to the semantics of ext4 ordered 

mode. 

 

For FJS (Figure 5.2.3), since the journal persistently stores 

the superblock, block group descriptors, i-nodes, and 

bitmaps, the writeback requests to the remaining metadata 

types are 1.6x fewer (Figure 5.2.6) compared to the ext4 

case.  On the other hand, for this microbenchmark, the 

journal has wrapped around three times, or once every 20 

seconds, indicating that keeping the remaining metadata 

persistent would require a journal space much larger than the 

existing 1GB. 

 

Figure 5.2.4 compares the SSD performance of FJS with that 

of ext4.  Given that SSD has no mechanical seeks, the 

expected FJS performance improvement is less than that of 

disks.  The speedup for directory creation is reduced to 41%, 

and the performance for file creation is almost negligible 

(4.1%).  However, the speedup for operations such as 

directory removals is still improved by 1.6x. 

 
Figure 5.2.4:  Comparison of SSD performance between 

FJS and ext4 running Filebench microbenchmarks. 

 

Figure 5.2.5 compares the SMR HDD performance of FJS 

with that of ext4.  The performance of SMR HDDs are 

significantly slower than conventional HDDs due to the need 

to rewrite overlapped track regions if updated.  The FJS’s 

approach to avoid double, random, and amplified writes can 

speed up directory creation by 2.9x and file creation by 1.5x.  

For other operations, FJS can speed up directory removals 

by 15x, file finds by 12x, listing directories by 9.6x, and file 

removals by 6.2x. 

 

Figure 5.2.6 shows that FJS reduces the amount of metadata 

written over ext4 by up to 3.1x.   
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Figure 5.2.5:  Comparison of SMR HDD performance 

between FJS and ext4 running Filebench 

microbenchmarks.  

 

  

 
Figure 5.2.6:  Write reduction factor of FJS over ext4 for 

the Filebench microbenchmarks. 

 

5.3 Macrobenchmarks 

We configured Filebench to emulate five workloads, each 

with a working set size of ~50GB.   

 

The fileserver benchmark involves create-write-close 

operations, open-append-close operations, open-read-close 

operations, deletes, and stats.  The total number of files is set 

to 800K, accessed by 50 threads.  The mean append size is 

16KB.   

 

The varmail benchmark exercises deletions, create-append-

fsync-close operations, open-read-append-fsync-close 

operations, and open-read-close operations.  The total 

number of files is set to 1M accessed by 16 threads.  The 

mean append size is 4KB.   

 

The OLTP benchmark emulates asynchronized writes with 

many semaphore locks.  The total number of files is 500, 

with an average append size of 2KB. 

 

The webserver benchmark involves open-read-close 

operations and append operations.  The total number of files 

is set to 800,000, accessed by 100 threads.  The mean append 

size is 16KB.   

 

The webproxy benchmark involves deletes, create-append-

close operations, and open-read-close operations.  The total 

number of files is set to 1M, accessed by 100 threads.  The 

mean append size is 16KB.   

 

Figures 5.3.1 and 5.3.2 show the results for traditional HDDs 

and SSDs. We have omitted the experiments for SMR 

HDDs, since they took one to two orders of magnitude 

longer to run, indicating that SMR HDDs are unsuitable for 

these workloads.  In both cases, the FJS improvements are 

modest across the board.  Even the read-mostly webserver 

workload gained 7.7% in throughput, and HDDs benefit 

more from the locality then SSDs, due to the reduction of 

mechanical seeks.  Since FJS excels in compact logging of 

allocation and deallocation related updates, FJS improves 

web proxy throughput by up to 21%, followed by varmail 

improvement of up to 14%.  

 
Figure 5.3.1:  Comparison of HDD performance 

between FJS and ext4 running Filebench 

macrobenchmarks. 
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Figure 5.3.2:  Comparison of SSD performance between 

FJS and ext4 running Filebench macrobenchmarks. 

 

 
 

Figure 5.3.3:  Write reduction factor of FJS over ext4 for 

the Filebench macrobenchmarks. 

 

Figure 5.3.3 shows that FJS reduces the amount of metadata 

written over ext4 by up to 5.8x.  However, when both 

metadata and data are considered, this write reduction factor 

can only be as high as 1.5x.  The overall write reduction 

factor correlates well with the performance benefits of FJS. 

6 Related Work 

Over the years, many researchers have sought to reduce the 

double, random, and amplified writes associated with the 

journaling and file system writeback mechanisms.  

However, few of them address all three forms of journal 

writes. 

 

Avoiding journal double writes:  One approach to avoid 

journaling is to have copy-on-write semantics on file system 

tree nodes.  Thus, whenever a leaf tree node is modified, all 

the updated nodes from the leaf node to the root are cloned 

and updated, leaving behind a consistent snapshot of the old 

tree.  Some example file systems include ZFS [Bonwick and 

Moore 2009] and BTRFS [Rodeh et al. 2013]. 

 

Another approach to avoid journal writes involves the use of 

byte-addressable NVM.  Lee et al. [2013] proposed to 

combine the roles of buffer cache and journal so that journal 

commit can be performed in place, by changing the state of 

a cached block instead of copying the updates to the journal.   

 

Avoiding double journal writes and random file-system 

writebacks:  The log-structured file system (LFS) 

[Rosenblum and Ousterhout 1991] is also a copy-on-write 

file system designed to optimize writes.  By structuring both 

data and metadata as log entries and by having the log as the 

final storage destination for data and metadata, each update 

only needs to be written once.  The LFS approach has been 

applied to many systems to optimize writes.  Notably, 

DualFS [Piernas et al. 2002] used separate storage devices 

for metadata and data.  The metadata storage device used an 

LFS layout to avoid double and random writes.  hFS [Zhang 

and Ghose 2007] uses an LFS partition in the middle tracks 

of disks to store small files and metadata.  F2FS [Lee et al. 

2015] used a modified version of LFS to optimize random 

writes.   

 

Aghayev et al. [2017] modified ext4 for SMR HDDs.  

Specifically, their approach allows frequently accessed 

metadata to be stored in the journal, while infrequently 

accessed metadata are written back to their original 

locations.  

 

Reducing amplified writes caused by journaling:  Many 

approaches to compact journals have been proposed, mostly 

in the context of byte-addressable NVM such as PCM.  Kim 

et al. [2014] propose to compare the original and modified 

block via XOR.  If the differences are small, the updates are 

journaled using the NVM device.  Otherwise, updates are 

journaled using the NAND-flash device.  Hwang et al. 

[2015] proposed the use of a two-level tracking scheme for 

128B updates to memory blocks, with the tracking table 

stored in NVM.  Chen et al. [2016] proposed a more compact 

journal format for byte-addressable NVM.  The transaction 

representation removes the journal descriptor and commit 

block and logs only modified i-node. 

 

Avoiding double, random, and amplified journal writes:   

Lu et al. [2013] propose an object-based flash translation 

layer (OFTL) object store approach to manage NAND flash.  
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The interface exposes the byte range so that OFTL can 

compact the partially updated flash pages.  OFTL uses 

backpointers to metadata to avoid journaling.  The 

implementation is based on log-structured merge trees, so 

OFTL also largely eliminates the random writes.   To run 

legacy workloads, the authors built an object file system to 

interface with OFTL.  Block-level traces from legacy file 

systems are fed into a flash translation layer simulation to 

generate flash read/write/erase operations comparable to 

those of OFTL.  The write amplification is reduced by up to 

89%. 

 

Overall, the FJS framework combines and extends the 

techniques used in LFS, in-place commit, and journal 

compaction, and retrofits these mechanisms with existing 

journaling and storage devices. 

7 Discussions and Future Work 

The original FJS design aimed to store individual i-node 

attributes in separate persistent journals for improved 

compression.  While the approach reduced double, random, 

and amplified writes well, different journal attributes’ update 

frequencies introduced complications.  In addition, separate 

journal logs did not exploit the internal parallelism of SSDs 

as well as anticipated, for reasons explained in [He et al. 

2017]. 

 

We then decided to use fixed-size subblocks and extended 

the types of metadata being handled to the current 

incarnation of FJS, which still exploits some level of 

metadata knowledge to locate subblocks within a block, and 

reuses the journal to avoid the use of the byte-addressable 

NVM.  FJS’s benefits can be realized in various leading 

storage media as well.   

 

However, FJS can be enhanced in a number of ways.  For 

example, we can wrap all file system calls to update the i-

node attributes to indicate which 64B subblock has been 

updated, as opposed to marking four 64KB subblocks as 

updated.  We can also extend our tracking to handle 

metadata types beyond super blocks, block group 

descriptors, i-nodes, and bitmaps.   

8 Conclusions 

We have presented the design, implementation, and 

evaluation of FJS, which permanently stores updated 

metadata subblocks in a file system journal to avoid double, 

random, and amplified writes as well as the need for byte-

addressable persistent storage.  The resulting performance 

improvements span across conventional HDDs, SMR 

HDDs, and SSDs under a variety of workloads.  The FJS 

research shows that it is possible to integrate the techniques 

used in LFS, in-place journal commit, and journal 

compaction to meet diverse system constraints, leading to a 

practical, deployable system.  
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