UCLA CS111
Operating Systems (Spring 2003, Section 1)

Deadlock
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

Background

Roughly speaking, a deadlock occurs when threads are waiting for resources (e.g., devices and files) with circular dependencies. Deadlocks generally involve nonpreemptable resources (e.g., storage allocated to a file, a lock for mutual exclusion), which cannot be taken away from its current thread without causing the computation to fail. Deadlocks that involve preemptable resources (e.g., CPU) can usually be resolved by reallocating resources from one thread to another. Recall that starvation is a condition where a thread waits indefinitely. A deadlock implies starvation.

Thread A

Thread B

P(x);

P(y);

P(y);

P(x);

A deadlock won’t always happen with this code, but it might.

Deadlocks, Deadlocks Everywhere…

A deadlock can happen with any kind of resource. Deadlocks can also occur with multiple resources, and you cannot solve the deadlock for each resource independently. For example, one thread can grab all the memory; another grabs all the disk space, and yet another grabs all the tape storage. Each thread may need to wait for other to release. Round-robin CPU scheduling cannot prevent deadlocks (or starvation) from happening.

Deadlock can occur whenever there is waiting. For example, there are five dining lawyers. Each needs two chopsticks to eat. If each grabs the chopstick on the right first, and all grab at the same time, we have a deadlock. (although personally I prefer to starve than sharing chopsticks…)

semaphore chopstick[5] = {1, 1, 1, 1, 1};

lawyer(int j) {

while (TRUE) {

P(chopstick[j]);

P(chopstick[(j + 1) mod 5);

// Eat

V(chopstick[(j + 1) mod 5]);

V(chopstick[j]);

}

}

Conditions for Deadlocks

Fortunately, someone has identified four necessary (but not sufficient) conditions for a deadlock to occur. Without all of these four conditions, a deadlock cannot occur:

1. Limited access (lock-protected resources)

2. No preemption (if someone has the resource, it can’t be taken away)

3. Wait while holding (holding a resource while requesting and waiting for the next resource).

4. Circular chain of requests

Deadlock Prevention

Preventing deadlocks involves removing one of the four conditions.

(a) Infinite resources (buy a very large disk)

(b) No sharing (totally independent threads)

(c) No waiting (phone company)

(d) Preempt resources (copying memory content to disk)

(e) Allocate all resources at the beginning (if you need 2 chopsticks, grab both at the same time)

(f) Make everyone use the same ordering in accessing resources. (all threads must grab semaphores in the order of P(x) and P(y)).

(g) A combination of techniques

Banker’s Algorithm

One example of prevention algorithm (e) is the Banker’s algorithm, allows the sum of maximum resource needs of all threads to be greater than the total resources, as long as there is some way for all threads to finish without getting into deadlock.

1. A thread states its maximum resource needs in advance.

2. The OS allocates resources dynamically when resource is needed. A thread waits if its granting request would leads to deadlock (a request can be granted if some sequential ordering of threads is deadlock free.)

For example, you can allow a thread to proceed if the total available resources are greater than or equal to the maximum remaining resources that might be needed by this thread. To be specific, suppose two single-threaded processes are running on a machine with 256 Mbytes of physical RAM, and each process requires a maximum of 150 Mbytes of memory. Also, suppose each process has already allocated 100 Mbytes (200 out of 256 Mbytes of physical memory are allocated by both processes). Although the combined maximum (300 Mbytes) exceeds the physical memory limit (256 Mbytes), 56 Mbytes of available memory can actually carry any one of the two processes to completion, without the risk of exhausting the memory resource. Therefore, the current state of allocation for memory is considered safe.

Physical memory:
256 Mbytes

Allocated:

200 Mbytes

	
	Maximum allocation

	P1
	150 Mbytes

	P2
	150 Mbytes

	
	Current allocation

	P1
	100 Mbytes

	P2
	100 Mbytes

On the other hand, if each process has already allocated 110 Mbytes, the system has reached an unsafe allocation state—the remaining 36 Mbytes is not enough for either process to complete.

Physical memory:
256 Mbytes

Allocated:

220 Mbytes

	
	Maximum allocation

	P1
	150 Mbytes

	P2
	150 Mbytes

	
	Current allocation

	P1
	110 Mbytes

	P2
	110 Mbytes

Since we cannot predict future, processes under the deadlock prevention approaches often overestimate resources and lead to inefficient use of resources.

Deadlock Detection and Recovery

The deadlock detection-and-recovery strategy is the most commonly used approach. The basic algorithm involves three steps:

1. Scan the resource allocation graph

2. Detect circular chains of requests

3. Recover from the deadlock

The idea is to remove the fourth deadlock condition of circular chain of requests.

Once the circular chain of requests are identified, there are some possible actions:

(a) Kill a thread and force it to give up resources.

(b) Rollback actions of a deadlocked thread.

Removing a deadlocked thread is not always possible, since a thread may own locks and resources. Removing a thread may leave the remaining system in an inconsistency state. Rolling back a thread requires checkpointing, or taking snapshots of system states from time to time. So, a deadlocked thread can be rolled back (destroyed and restored) to a recent consistent state.

owned by

waiting for

owned by

waiting for

Resource Y

Resource X

Thread B

Thread A

