UCLA CS111
Operating Systems (Spring 2003, Section 1)

Monitors, Condition Variables, and Readers-Writers
Instructor  


Andy Wang (awang@cs.ucla.edu)  


Office:  3732J Boelter Hall


Office Hours:  M1-3, W1-2, Th2-3, and by appointment

________________________________________________________________________

Monitors

Semaphores are a big step up from low-level loads and stores.  However, semaphores serve two different purposes—mutual exclusion and scheduling constraints.  This design makes code development difficult.

The idea of monitors is to separate these two concerns:  use locks for mutual exclusion and condition variables for scheduling constraints.  

A monitor is a lock with zero or more conditional variables for managing concurrent access to shared data.  The lock provides mutual exclusion to the shared data.  A conditional variable allows a queue of waiting threads while being inside a critical section.

Note:  A number of textbooks present monitors as a Java or C++ class, where the lock is automatically acquired on calling any procedure inside the monitor.  However, in many real-life operating systems, such as Windows NT, OS/2, or Solaris, monitors are used with explicit calls to locks and conditional variables.

Lock

A lock provides two operations:


Lock::Acquire()  

 
// wait until the lock is free, then grab it


Lock::Release()  

// unlock, wake up anyone waiting in Acquire
As a general rule of thumb, always acquire a lock before accessing a shared data structure; always release a lock after finishing with the shared data structure.  A lock is initially free.  The following is a simple example of using a lock on a synchronized list:


AddToQueue() {



Lock.Acquire();


// put 1 item to the queue


Lock.Release();

}


RemoveFromQueue() {



Lock.Acquire();



// if something on the queue


// 
remove 1 item from the queue



Lock.Release();



return item;


}

Condition Variables

Although the example queue is synchronized, if we want to perform waiting inside locked regions, we need additional mechanisms.  For example, a process may want to wait for something to be added to the queue before the removal operation.  

However, holding the lock while waiting prevents other processes from entering the locked regions.  Condition variables make it possible to go to sleep inside a critical section by atomically releasing the lock and going to sleep.

Associated with each condition variable is a waiting queue of threads inside a critical section, and condition variables provide the following operations:


Wait();  // atomically release the lock and go to 

sleep; re-acquire lock on return


Signal();  // wake up a waiter, if any


Broadcast();  // wake up all waiters

Note:  These operations should always occur inside locked regions.  The following is a synchronized queue with waiting inside the remove operation.


AddToQueue() {



lock.Acquire();


// put 1 item to the queue


condition.Signal(&lock);


lock.Release();

}


RemoveFromQueue() {



lock.Acquire();



while nothing on queue




condition.Wait(&lock);


// remove 1 item from the queue



lock.Release();



return item;


}

Mesa vs. Hoare Monitors

When using condition variables, you need to be careful about the precise definition of signal() and wait().  For the Hoare-style monitors (in most textbooks), the signaler thread directly transfers the CPU to a thread that is on the wait queue of the condition variable.  Once the waiting thread exits the critical section or waits, the CPU is transferred back to the signaler thread.

However, for the Mesa-style monitors (in most real operating systems), the waiting thread is simply put on the scheduler’s ready queue.  Therefore, once the waiting thread gets its turn for the CPU, the waiting condition may no longer be true and needs to be retested.  In general, Mesa-style monitors use a while instead of an if to retest the condition of a reawaken thread.

Readers-Writers Problem

The readers-writers problem is commonly seen in database applications, where users are separated into readers who never modify the database, and writers who read and modify the database.  Although we want only one writer at the same, using a single lock on the database would be overly restrictive, since many readers can read at the same time.

Constraints

1. A reader should wait when a writer is accessing or waiting for the database (Condition okToRead).  (The writer has a higher priority over reader, since it is more difficult for a writer to achieve exclusive access of the database.)  

2. A writer should wait when there is a reader or a writer accessing the database (Condition okToWrite).

3. A reader or a writer should wait when someone is modifying global states (Lock lock).

Basic Structure of the Solution

The following is the pseudocode for the readers-writers problem:


Reader



// wait until no writers



// access database



// wake up waiting writers


Writer



// wait until no readers or writers



// access database



// wake up waiting readers or writers

Code


// Global States


AR = 0; // number of active readers


AW = 0; // number of active writers


WR = 0; // number of waiting readers


WW = 0; // number of writing writers


Condition okToRead = NULL;


Condition okToWrite = NULL;


Lock lock = FREE;


Reader() {



lock.Acquire();  // manipulate global states



while ((AW + WW) > 0) {




WR++;




okToRead.Wait(&lock);




WR--;



}



AR++;



lock.Release();



// access database



lock.Acquire();  // manipulate global states



AR--;



if (AR == 0 && WW > 0) {




okToWrite.Signal(&lock);



}



lock.Release();


}


Writer() {



lock.Acquire(); // manipulate global states



while ((AW + AR) > 0) {




WW++;




okToWrite->Wait(&lock);




WW--;



}



AW++;



lock.Release();



// access database



lock.Acquire(); // manipulate global states



AW--;



if (WW > 0) {




okToWrite->Signal(&lock);



} else if (WR > 0) {




okToRead->Broadcast(&lock);



}



lock.Release();


}

Note that if writers keep on arriving, readers may starve.  Also, although all readers are awaken by the Broadcast(), an arriving writer may put some readers back to the wait queue in the while loop before these readers get a chance to access the database.

Comparison Between Semaphores and Monitors

Although both semaphores and monitors provide atomic operations and queueing, they have very different behaviors.  For example, the following implementation has a very different behavior.


Wait() { semaphore(P(); }


Signal() { semaphore(V(); }

First, condition variables only work inside a lock.  Using semaphores inside a lock may cause a deadlock.  Second, condition variables have no history, but semaphores have.  If a thread calls signal(), and the waiting queue is empty, the signal() call does nothing.  If a thread later arrives and calls wait(), the thread will wait.  However, if a thread calls V(), and no one is waiting, the semaphore increments.  If a thread later calls P(), the semaphore decrements, and the thread continues.

The next example takes the lock into account.  However, the behavior is still different.


Wait(Lock *lock) {



lock->Acquire();  // [1]



semaphore->P();   // [3]



lock->Release();  


}


Signal() {



if (semaphore queue is not empty) 
// [2]



semaphore(V();               
// [4]


}

Third, semaphores cannot look at the contents of semaphore queue.  Fourth, releasing the lock and going to sleep need to occur atomically.  Should the semaphore queue be checked [2] right after releasing the lock [1] and before calling P() [3],  the corresponding V() [4] will never be called, and the thread sleeping in P() will never wake up.  






































































