UCLA CS111
Operating Systems (Spring 2003, Section 1)

Protection and Security
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

This lecture shows why you should not trust a computer system.

Definitions

Security refers to the policy of authorizing accesses. Protection refers to the actual mechanisms implemented to enforce the specified policy. Security aims to prevent intentional misuses of a system, while protection aims to prevent either accidental or intentional misuses.

A secure system tries to accomplish three goals:

1. Data confidentiality: secret data remains secret.

2. Data integrity: unauthorized users should not be able to modify any data without the owner’s permission.

3. System availability: nobody can disturb the system to make it unusable.

There are three components of security:

1. Authentication determines who the user is.

2. Authorization determines who is allowed to do what.

3. Enforcement makes sure that people do only what they are supposed to do.

Authentication

Authentication involves sharing a secret between two parties. One common approach of authentication is the use of passwords. The rational goes: since only I know the password, the machine can assume that I am the user. However, there are some problems with the password approach:

First, the system must keep a copy of the secret (password). To prevent a malicious user from gaining the access to this list of passwords, a system needs to use encryption, that is, using a key to transform the data and make it difficult to reverse without the key. For example, the UNIX /etc/passwd file stores passwords that are encrypted using one-way transformations. Since the system only stores the encrypted version, a malicious user cannot read those passwords. When you type in the password, the system first encrypts your password and then compares it to the encrypted version.

The second problem with the password scheme is that it is difficult to come up with good passwords. Short passwords are easy to crack, but people tend to write down long passwords. UNIX initially required only lower-case, 5-letter passwords. Therefore, there were only 265 or 1 million combinations for exhaustive searches. In 1975, it took about 10 ms to check a password; therefore, 1 million combinations would take one day. Today, we can go through those combinations in 1 second. Many people choose very simple passwords, such as English words—it takes even less time to check all words in the dictionary.

Currently, there are some partial solutions:

· Extend everyone’s password with a unique number.

· Require more complex passwords. For example, with 6 letters of upper, lower cases, numbers, and special characters, we can have 706 or 100 billion combinations, and it would take about one day. Unfortunately, people still pick common patterns (i.e., 5 lower case letters, plus one number).

· Delay every remote login attempt by 1 second, so that it takes a long time to check each password.

· Assign very long passwords. Give everyone a calculator (or ATM card) to carry around to remember the password. It then requires a physical theft to steal the password.

The third problem concerns whether we can trust the encryption algorithm. If there is a backdoor, decryption may not require exhaustive search.

Authentication in Distributed Systems

In the distributed environment, encryption is needed for authentication and guarding the secrecy of data in transit.

Private Key Encryption

The idea of private key encryption is to use an encryption algorithm that can be easily reversed, given the correct key (and hard to reverse without the key).

Without the key, one cannot decode the cipher text without exhaustive searches. From the plaintext and the cipher text, one cannot derive the key. As long as the key stays secret, private key encryption provides both secrecy and authentication.

The tricky part of the private key approach is to distribute keys in the first place. It usually involves an authentication server, which keeps a list of keys and provides a way for two parties to talk to each other, as long as they trust the server.

Suppose Keyxy denotes the key for talking between x and y, and Keyxy[message] means to encrypt a message with Keyxy. Also, suppose we have clients A and B, and the server S. A and B already own KeyAS and KeyBS respectively, in order to talk to S. If A wants to talk to B, we go through the following steps under the Kerberos protocol.

Client A first asks S: “Yo, ring me B, and I want KeyAB”

A(S: KeyAS[give me KeyAB]

S gives back KeyAB to A, and a message for B signed by KeyBS, containing KeyAB.

S(A: KeyAS[here is KeyAB and a message to B]

A sends the message to B

A(B: KeyBS[use KeyAB to talk to A]

There are additional details:

1. The server adds timestamps to limit how long a key can be used; this will prevent a machine from replaying messages later (e.g., “deposit $100”).

2. The encrypted message also includes checksums to prevent a malicious user from inserting things into the message (e.g., “deposit $1,000”).

3. To reduce the exposure of KeyAS (or KeyBS), A can periodically ask the server to give a temporary key KeyA’S that is different each time to serve the function of KeyAS.

Public Key Encryption

Public key encryption is an alternative to the private key encryption, which separates authentication from secrecy. Encryption and decryption involves a pair of public keys and private keys. With private key systems, a key is used for both encryption and decryption:

Encryption(Key, plaintext) = cipher text

Decryption(Key, cipher text) = plaintext

With the public key scheme, if the public key is used for encryption, the private key is used for decryption; if the private key is used for encryption, the public key is used for decryption:

Encryption(Keypublic, text) = cipher text

Decryption(Keyprivate, cipher text) = plaintext

Encryption(Keyprivate, text) = cipher text

Decryption(Keypublic, cipher text) = plaintext

The idea is that the private key is kept secret, while the public key is listed in the directory. So, we can have the following variations of encrypted transmissions:

· Keymy_public[Hi, Andy]: anyone can create it, but only I can read it (secrecy).

· Keymy_private[I’m Andy]: everyone can read it, but only I can send it (authentication).

· Keyyour_public[Keymy_private[I know your secret]]: only I can send it, and only you can read it.

However, how can you trust public keys?

Authorization

The Access matrix is a formalization of all the permissions in the system, describing who can do what. For example, in the following matrix, it says that Bart can read Lisa’s diary.

	
	File1
	Lisa’s diary
	File3
	…

	Bart
	read, write
	read
	
	

	Lisa
	
	read, write
	
	

	Maggie
	
	
	read
	

	…
	
	
	
	

However, due to the size and the sparse use of the matrix, almost all systems implement two alternatives: the access control list and the capability list.

The Access control list stores all permissions for all users with each object. An analogy is a guard standing in front of a door with a list of people who are allowed to enter. However, as the number of users increases, this list may become very long. Under UNIX, the permission of each file is specified according to its owner, user group, and the world (everyone). Therefore, a file may be specified as world readable, group readable and writeable, and owner executable.

The Capability list stores all objects the process has permission to touch for each process. An analogy is that each person owns a set of keys. Whoever has the key has the right to enter the door. Page tables are an example. Each process has a list of pages it has access to, not each page has a list of processes that have access permission.

Access control list allows an object to easily know who is allowed to access the object. However, it is difficult to know which objects a user can access. Therefore, it is more difficult to revoke a user’s access rights to a set of objects. The capability list allows a user to easily know the list of objects to access. However, it is difficult to discover the list of people who can access an object. Therefore, it is more difficult to revoke capabilities of an object from a set of users. Most of the operating systems today use an access control list for most resources.

Enforcement

The enforcer checks passwords, access control lists, and so on. Any bug in enforcer means that a malicious user can gain the ability to do almost anything. In UNIX, the superuser has all the powers of the UNIX kernel. Because of the coarse-grained access control, lots of things have to run as superuser in order to work. If there is a bug is in any one of these programs, you are hosed!

To reduce the number of bugs, the enforcer should be as small as possible, which often leads to a simple protection model. Minimal-privilege-based enforcers tend to be complex and more prone to bugs.

State of the World in Security

Authentication in the single-machine environment is mostly password-based, and people still use poor passwords. Authentication in distributed systems mostly depends on encryption, but almost nobody encrypts (e.g., emails).

Authorization is largely based on the access control list. However, many systems provide only very coarse-grained access control (e.g., UNIX). Therefore, often protection mechanisms are turned off to enable sharing.

Enforcement is mostly achieved through the kernel model. It is hard to write a million lines of code without bugs, and any bug is a potential security loophole.

Classes of Security Problems

Eavesdropping

Eavesdropping is the listener approach. One can tap into the serial line on the Ethernet, and see everything typed in; almost everything goes over network unencrypted. For example, your password goes over the network unencrypted when you rlogin to a remote machine.

The military approach to defeat wired eavesdropping is to use pressurized cables. If the air pressure drops, someone may be trying to tap into the cable.

Abuse of Privilege

If the superuser is evil, there is nothing you can do.

Imposter

An imposter breaks into the system by pretending to be someone else. For example, if a system authenticates by a person’s voice or facial image, the system can be fooled. A countermeasure against the imposter attack is to use behavioral monitoring to look for suspicious activates (e.g., overwriting the boot block).

Trojan Horse

A Trojan horse is a seemingly innocent program that contains code that will perform an unexpected and undesirable function. A countermeasure against the Trojan horse is integrity checking. Periodically, the system should check the content of the disk against the original checksums for various files.

Salami Attack

The idea is to build up a chunk one-bit at a time. A programmer at a bank can reprogram the accounting program, so that the partial pennies go into his account. A countermeasure is for companies to have code reviews as a standard practice.

Logic Bombs

A programmer may secretly insert a piece of code into the production system. As long as the programmer feeds the system password periodically, it does nothing. However, if the programmer is suddenly fired, the logic bomb does not receive its password, so it goes off. Logic bombs can be also prevented by code reviews.

Denial-of-Service Attack

Denial-of-service attacks refer to attacks on system availability. A handful of compromised machines can flood a victim machine with network packets to disrupt its normal use. Currently, researchers are still looking for effective countermeasures.

Concrete Examples

Pentagon Traffic Analysis (eavesdropping)

Before the 1991 Persian Gulf War, foreign intelligence tried to predict the start of the war by monitoring the pizza delivery orders near Pentagon. Historically, the pizza orders increased significantly 72 hours prior to a major event….so much for the element of surprise…Now, the Pentagon has its own internal pizza huts.

Tenex

Tenex used to be the most popular system at universities before UNIX. The system was thought to be very secure. To demonstrate it, a team was hired to find loopholes. They were given all the source code and documentation, and a normal account. In 48 hours, they had every password in the system.

Here is the code for the password check:

for (j = 0; j < 8; j++) {

if (userPasswd[j] != realPasswd[j]) {

go to error;

}

}

From the code, if you want to try all combinations, you need to go through 2568 combinations. However, Tenex also used virtual memory, and it interacts badly with the above code.

Therefore, by forcing page faults at inopportune times, one can break passwords quickly. For example, the array can be allocated in a way that the first character is in one page, while the remaining characters are on the next page. The first page is currently in memory, and the second page is on disk.

By timing how long the password check takes, one can figure out whether the first character is correct. A fast password check means that the first character is wrong. A slow password check means that the first character is right and causes a page fault. Therefore, by shifting the array across the page boundary, it takes only 256 * 8 checks to crack one password.

The fix is easy, the loop should not return until all characters are checked.

The Internet Worm

In 1988, a Cornell graduate student, RTM, released a worm program into the Internet. The worm used three attacks:

1. rsh

2. fingerd

3. sendmail

Some machines trust other machines, and the use of rsh was sufficient to get into a remote machine without further authentication. If this worked, the remote shell just uploaded the worm program.

The second attack involved the use of finger command, which allows a user to lookup another person by typing:

finger name@location

It turned out the finger daemon process did not check the parameter size, and the worm used finger with a handcrafted 536-byte string as parameter. This long stream overflowed the daemon’s buffer and overwrote its stack. When the daemon returned from the procedure, it returned to the 536-byte string, which tried to execute the shell program. By gaining the access of the shell, the worm can move to the machine.

The third method depended on the bug in the mail system, sendmail, which allowed the worm to mail a copy of the bootstrap and get it executed.

The worm was caught because multiple worms broke into the same machine multiple times, and dragged the CPU down so much that people noticed.

Secure environment

Secure environment

Key

Decrypt

Plaintext

Cipher text

Insecure transmission

Key

Encrypt

Cipher text

Plaintext

