
O C T O B E R 1 9 8 9

WRL
Technical Note TN-11

Why Aren’t
Operating Systems
Getting Faster
As Fast As Hardware?

John Ousterhout

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a technical note. We use this form for
rapid distribution of technical material. Usually this represents research in progress.
Research reports are normally accounts of completed research and may include material
from earlier technical notes.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, UCO-4
100 Hamilton Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

DARPA Internet: WRL-Techreports@decwrl.dec.com

CSnet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

Why Aren’t Operating Systems Getting Faster
As Fast As Hardware?

John Ousterhout

October, 1989

Abstract

This note evaluates several hardware platforms and operating systems using a
set of benchmarks that test memory bandwidth and various operating system fea-
tures such as kernel entry/exit and file systems. The overall conclusion is that
operating system performance does not seem to be improving at the same rate as
the base speed of the underlying hardware.

Copyright 1989
Digital Equipment Corporation

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

1. Introduction

This technical note contains results from several benchmark programs that I ran recently on
machines at DEC’s Western Research Laboratory and at the University of California at
Berkeley. The benchmarks are mostly ‘‘micro-benchmarks’’, meaning that each one measures a
particular hardware or operating system feature (such as memory-to-memory copy speed or ker-
nel entry-exit). Micro-benchmarks like these can identify particular strengths and weaknesses of
systems, but they may not give a good indication of overall system performance. The
benchmarks also include one ‘‘macro-benchmark’’, which exercises a variety of file system fea-
tures and gives a better idea of overall operating system speed.

My goal in running the benchmarks was partly to compare different hardware platforms and
operating systems, but mostly to understand whether or not operating system performance will
scale with the base performance of hardware platforms. The answer for today’s RISC worksta-
tions and RISC mainframes (including machines from DEC, Sun, and MIPS Computer) seems to
be ‘‘no’’: when comparing slower older machines to newer RISC machines, the speedup in most
of the benchmarks is much less than the difference in raw hardware speed.

The benchmarks suggest at least two possible factors that contribute to non-scalability of
operating systems. The first is memory bandwidth, which has not scaled to match processor
speed in faster machines. The second factor is file systems, some of which require synchronous
disk I/Os in common situations. The synchronous I/O requirements limit the performance of
operating systems when processors get faster but disks don’t.

2. Hardware

I used five hardware platforms for the benchmarks, which are listed in Table 1. Table 1 also
includes an abbreviation for each platform, which is used in the rest of this note, an approximate
MIPS rating, and an indication of whether the machine is based on a RISC processor or a CISC
processor. The MIPS ratings are my own estimates, and are intended to give a rough idea of the
base integer performance provided by each platform. The main use of the MIPS ratings is to
establish an expectation level for benchmarks. For example, if operating system performance
scales with base system performance, then a DS3100 should run the various benchmarks about
1.5 times as fast as a Sun4 and about seven times as fast as a Sun3.

Hardware Abbreviation RISC/CISC MIPS

MIPS M2000 M2000 RISC 20

DECstation 3100 DS3100 RISC 13

Sun-4/280 Sun4 RISC 9

VAX 8800 8800 CISC 6

Sun-3/75 Sun3 CISC 1.8

Microvax II MVAX2 CISC 0.9

Table 1: Hardware Platforms

1

OPERATING SYSTEM BENCHMARKS

All of the machines were generously endowed with memory. As far as I know, no significant
paging occurred in any of the benchmarks. In the file-related benchmarks, the relevant files all
fit in the main-memory buffer caches maintained by the operating systems.

3. Operating Systems

I used four operating systems for the benchmarks: Ultrix, SunOS, RISC/os, and Sprite. Ultrix
and SunOS are the DEC and Sun derivatives of Berkeley’s 4.2 BSD UNIX, and are similar in
many respects. RISC/os is MIPS Computer Systems’ operating system for the M2000 machine.
It appears to be a derivative of System V with some BSD features added. Sprite is an ex-
perimental operating system developed by my research group at U.C. Berkeley [3]; although it
provides the same user interface as BSD UNIX, the kernel implementation is completely dif-
ferent. In particular, Sprite’s file system is radically different from that of Ultrix and SunOS,
both in the ways it handles the network and in the ways it handles disks. Some of the differences
will be seen in the benchmark results.

The version of SunOS used for Sun4 measurements was 4.0, whereas version 3.5 was used for
Sun3 measurements. SunOS 4.0 incorporates a major restructuring of the virtual memory system
and file system; for example, it maps files into the virtual address space rather than keeping them
in a separate buffer cache. This difference will also be reflected in some of the benchmark
results.

4. Kernel Entry-Exit

The first benchmark measures the cost of entering and leaving the operating system kernel. It
does this by repeatedly invoking the getpid kernel call. Getpid does nothing but return the
caller’s process identifier. Table 2 shows the average time for this call on different platforms
and operating systems.

Configuration Time MIPS-Relative
(microseconds) Speed

M2000 RISC/os 4.0 18 0.54

DS3100 Sprite 26 0.49

DS3100 Ultrix 3.1 25 0.60

8800 Ultrix 3.0 28 1.15

Sun4 SunOS 4.0 32 0.68

Sun4 Sprite 32 0.58

Sun3 Sprite 92 1.0

Sun3 SunOS 3.5 108 1.0

MVAX2 Ultrix 3.0 207 0.9

Table 2: Getpid kernel call time

2

OPERATING SYSTEM BENCHMARKS

The third column in the table is labeled ‘‘MIPS-Relative Speed’’. This column indicates how
well the machine performed on the benchmark, relative to its MIPS-rating in Table 1 and to the
Sun3 times in Table 2. Each entry in the third column was computed by taking the ratio of the
Sun3 time to the particular machine’s time, and dividing that by the ratio of the machine’s MIP
rating to the Sun3’s MIP rating. For the UNIX-derivative operating systems (Ultrix, SunOS, and
RISC/os) I used the Sun3 SunOS time; for Sprite I used the Sun3 Sprite time. For example, the
MIPS-relative speed for the M2000 is (108/18)/(20/1.8) = 0.54. A MIPS-relative speed of 1.0
means that the given machine ran the benchmark at just the speed that would be expected based
on the Sun3 times and the MIPS ratings from Table 1. A MIPS-relative speed less than one
means that the machine ran this benchmark more slowly than would be expected from its MIPS
rating, and a figure larger than 1 means the machine performed better than might be expected.

For the RISC machines, the MIPS-relative speeds in Table 2 are only about .5-.7. This in-
dicates that the cost for entering and exiting the kernel has not improved as much in the RISC
machines as their basic computation speed.

5. Context Switching

The second benchmark is called cswitch. It measures the cost of context switching, plus the
time for processing small pipe reads and writes. The benchmark operates by forking a child
process and then passing one byte back and forth between parent and child using pipes. Table 3
lists the time for each round-trip between the processes, which includes two context switches and
one read and one write kernel call in each process. As with the getpid benchmark, MIPS-
relative speeds were computed by scaling from the Sun3 times and the MIPS ratings in Table 1.
Once again, the RISC machines didn’t perform as well as might be expected, except for the
DS3100/Ultrix combination.

Configuration Time MIPS-Relative
(ms) Speed

M2000 RISC/os 4.0 0.30 0.71

DS3100 Ultrix 3.1 0.34 0.96

DS3100 Sprite 0.51 0.65

8800 Ultrix 3.0 0.70 1.0

Sun4 SunOS 4.0 1.02 0.47

Sun4 Sprite 1.17 0.41

Sun3 SunOS 3.5 2.36 1.0

Sun3 Sprite 2.41 1.0

MVAX2 Ultrix 3.0 3.66 1.3

Table 3: Cswitch: echo one byte between processes using pipes.

3

OPERATING SYSTEM BENCHMARKS

6. Select

The third benchmark exercises the select kernel call. It creates a number of pipes, places data
in some of those pipes, and then repeatedly calls select to determine how many of the pipes are
readable. A zero timeout is used in each select call so that the kernel call never waits. Table 4
shows how long each select call took, in microseconds, for three configurations. The first con-
figuration used a single pipe that contained no data. The second configuration used 10 pipes, all
empty, and the third configuration used 10 pipes all containing data. The last column is MIPS-
relative speed again, computed using the ‘‘10 full’’ data. The performance of this benchmark
was generally in line with the machines’ MIPS ratings.

The M2000 numbers in Table 4 were surprisingly high for pipes that were empty, but quite
low as long as at least one of the pipes contain data. I suspect that RISC/os’s emulation of the
select kernel call is faulty and is causing the process to wait for 10 ms even if the calling
program requested immediate timeout.

Configuration 1 pipe 10 empty 10 full MIPS-Relative
(microseconds) (microseconds) (microseconds) Speed

M2000 RISC/os 4.0 10000 10000 108 0.84

DS3100 Sprite 76 240 226 1.04

DS3100 Ultrix 3.1 81 153 151 0.93

Sun4 SunOS 4.0 104 240 216 0.93

8800 Ultrix 3.0 120 265 310 .98

Sun4 Sprite 126 396 356 0.96

Sun3 Sprite 413 1840 1700 1.00

Sun3 SunOS 3.5 448 1190 1012 1.00

MVAX2 Ultrix 3.0 740 1610 1820 1.11

Table 4: Time for select kernel call.

7. Block Copy

The fourth benchmark uses the bcopy procedure to transfer large blocks of data from one area
of memory to another. It doesn’t exercise the operating system at all, but different operating
systems differ for the same hardware because their libraries contain different bcopy procedures.
The main differences, however, are due to the cache organizations and memory bandwidths of
the different machines.

The results are given in Table 5. For each configuration I ran the benchmark with two dif-
ferent block sizes. In the first case, I used blocks large enough (and aligned properly) to use
bcopy in the most efficient way possible, but small enough so that both the source and destina-
tion block would fit in the cache (if any). In the second case I increased the transfer size to be
larger than the cache size, so that cache misses would occur continuously. In each case several
transfers were made between the same source and destination, and the average bandwidth of
copying is shown in Table 5.

4

OPERATING SYSTEM BENCHMARKS

Configuration Cached Uncached Bytes/instruction
(Mbytes/second) (Mbytes/second)

M2000 RISC/os 4.0 39 20 1.0

8800 Ultrix 3.0 22 16 2.7

Sun4 Sprite 11.1 5.0 0.55

DS3100 Sprite 10.2 5.4 0.43

DS3100 Ultrix 3.1 10.2 5.1 0.39

Sun4 SunOS 4.0 8.2 4.7 0.52

Sun3 Sprite 5.6 5.5 3.1

MVAX2 Ultrix 3.0 3.5 3.3 3.7

Table 5: Throughput of bcopy procedure for large blocks.

The last column in Table 5 is a relative figure showing how well each configuration can move
large uncached blocks of memory relative to how fast it executes normal instructions. I com-
puted this figure by taking the number from the second column (‘‘Uncached’’) and dividing it by
the MIPS rating from Table 1. Thus, for the 8800 the value is (16/6) = 2.7. The most interesting
thing to notice is that the CISC machines (8800, Sun3, and MVAX2) have normalized ratings of
2.5-4, whereas the RISC machines have ratings of 0.4-1.0. For the DEC and Sun RISC worksta-
tions, faster processors do not appear to have been accompanied by any increase in memory
bandwidth. Thus, memory-intensive applications are not likely to scale on these machines. In
fact, the relative performance of memory copying drops almost monotonically with faster
processors, both for RISC and CISC machines.

8. Read from File Cache

This benchmark consists of a program that opens a large file and reads the file repeatedly in
16-kbyte blocks. For each configuration I chose a file size that would fit in the main-memory
file cache. Thus the benchmark measures the cost of entering the kernel and copying data from
the kernel’s file cache back to a buffer in the benchmark’s address space. The file was large
enough that the data to be copied in each kernel call was not resident in any hardware cache.
However, the same buffer was re-used to receive the data from each call; in machines with
caches, the receiving buffer was likely to stay in the cache. Table 6 lists the overall bandwidth
of data transfer, averaged across a large number of kernel calls.

The numbers in Table 6 reflect fairly closely the memory bandwidths from Table 5. The only
noticeable difference is that the Sun4 does relatively better in this benchmark due to its write-
back cache. Since the receiving buffer always stays in the cache, its contents get overwritten
without ever being flushed to memory. For the DS3100, in contrast, the write-through cache
causes information in the buffer to be flushed immediately to memory.

5

OPERATING SYSTEM BENCHMARKS

Configuration Mbytes/second MIPS-Relative
Speed

M2000 RISC/os 4.0 15.6 0.45

8800 Ultrix 3.0 10.5 1.02

Sun4 SunOS 4.0 7.5 0.48

Sun4 Sprite 6.8 0.37

DS3100 Ultrix 3.1 4.8 0.21

DS3100 Sprite 4.4 0.16

Sun3 Sprite 3.7 1.0

Sun3 SunOS 3.5 3.1 1.0

MVAX2 Ultrix 3.0 2.3 1.48

Table 6: Bandwidth of reading from the file cache

9. Modified Andrew Benchmark

This is the one large-scale benchmark that I ran. It is a modified version of the Andrew
benchmark developed by M. Satyanarayanan for measuring the performance of the Andrew file
system [1]. The benchmark operates by copying a directory hierarchy containing the source
code for a program, stat-ing every file in the new hierarchy, reading the contents of every copied
file, and finally compiling the code in the copied hierarchy. In order to make the results com-
parable between different machines, I modified the benchmark so that it always uses the same
compiler. In other words, regardless of which machine is executing the benchmark, the compiler
is always the GNU C compiler generating code for a machine called SPUR.

The raw Andrew results are shown in Table 7. The table lists separate times for two different
phases of the benchmark. The ‘‘copy’’ phase consists of everything except the compilation (all
of the file copying and scanning), and the ‘‘compile’’ phase consists of just the compilation.

I ran the benchmark in both local and remote configurations. ‘‘Local’’ means that all the files
accessed by the benchmark were stored on a disk attached to the machine running the
benchmark. ‘‘Remote’’ means that as many files as possible were stored on a server machine
and accessed over the network. In the Sprite and SunOS measurements, ‘‘remote’’ means that
the benchmark was run on a diskless workstation, so absolutely all file accesses were remote.
For the Ultrix measurements, temporary files used during compilation may have been stored lo-
cally even for the ‘‘remote’’ measurements. However, all of the files in the directory hierarchy
being copied, and almost all of the program binaries, were stored remotely. For Ultrix and
SunOS, NFS was used for remote accesses. For Sprite, Sprite’s caching network file system was
used (see [2] for details). In each of the remote cases, the server was the same kind of machine
as the client.

Table 8 gives additional ‘‘relative’’ numbers: the MIPS-relative speed for local operation, and
the percentage slow-down experienced when the benchmark ran with a remote disk instead of a
local one. No ‘‘Remote Penalty’’ figures are given for the M2000 and 8800 because I wasn’t
able to benchmark them in a remote configuration.

6

OPERATING SYSTEM BENCHMARKS

Configuration Copy Compile Total
(seconds) (seconds) (seconds)

M2000 RISC/os 4.0 Local 13 59 72

DS3100 Sprite Local 22 98 120

DS3100 Sprite Remote 34 93 127

Sun4 Sprite Local 44 128 172

Sun4 SunOS 4.0 Local 46 130 176

Sun4 Sprite Remote 56 128 184

DS3100 Ultrix 3.1 Local 80 133 213

8800 Ultrix 3.0 Local 48 181 229

DS3100 Ultrix 3.1 Remote 115 154 269

Sun4 SunOS 4.0 Remote 108 162 270

Sun3 Sprite Local 52 375 427

Sun3 Sprite Remote 75 364 439

MVAX2 Ultrix 3.0 Local 214 1202 1416

MVAX2 Ultrix 3.0 Remote 298 1409 1707

Table 7: The modified Andrew benchmark

Configuration MIPS-Relative Remote Penalty
Speed (Local) (%)

M2000 RISC/os 4.O Local 0.53

8800 Ultrix 0.56

Sun3 Sprite 1.0 3

DS3100 Sprite 0.49 6

Sun4 Sprite 0.50 7

MVAX2 Ultrix 3.0 0.60 21

DS3100 Ultrix 3.1 0.28 26

Sun4 SunOS 4.0 0.49 53

Table 8: Modified Andrew benchmark, cont’d

There are several interesting results in Tables 7 and 8. First of all, no operating system scaled
to match hardware speedups. Second, Sprite comes out consistently faster than Ultrix or SunOS
for remote access. Sprite shows hardly any performance degradation for remote access, and for
the compilation phase Sprite was faster remote than local (I don’t have a good explanation for
why remote would be faster than local; at first I assumed that it was an experimental anomaly,
but I have seen the effect on several different occasions). In contrast, NFS-based RISC worksta-
tions slow down by about 50% relative to local access. It appears to me that the relative penalty

7

OPERATING SYSTEM BENCHMARKS

for using NFS is increasing as machine speeds increase (for example, the MVAX2 slowed down
by only 20% when using NFS instead of a local disk).

The third interesting result of this benchmark is that the DS3100-Ultrix combination is some-
what slower than would have been expected. For example, DS3100-Ultrix-Local is about 70%
slower than DS3100-Sprite-Remote, and DS3100-Ultrix-Remote is not much faster than Sun4-
SunOS-Remote.

10. Open-Close

I ran two other benchmarks in an attempt to explain the results in Table 7. The first of these is
open-close, a benchmark which repeatedly opens and closes a particular file. The results are
shown in Table 9 for two cases: a name with only a single element, and one with 4 elements. In
the local case, the UNIX derivatives are consistently faster than Sprite. In the remote case Sprite
is faster than SunOS, but slower than Ultrix. In any case, this benchmark cannot explain the
differences in Table 7.

Configuration ‘‘foo’’ ‘‘/a/b/c/foo’’
(ms) (ms)

DS3100 Ultrix 3.1 Local 0.27 0.41

M2000 RISC/os 4.0 Local 0.32 0.83

Sun4 SunOS 4.0 Local 0.34 0.43

8800 Ultrix 3.0 Local 0.45 0.68

DS3100 Sprite Local 0.82 0.97

Sun4 Sprite Local 1.2 1.4

MVAX2 Ultrix 3.0 Local 2.9 4.7

DS3100 Ultrix 3.1 Remote 3.8 3.9

DS3100 Sprite Remote 4.3 4.4

Sun3 Sprite Local 4.3 5.2

Sun4 Sprite Remote 6.1 6.4

Sun3 Sprite Remote 12.8 16.3

MVAX2 Ultrix 3.0 Remote 36.0 36.9

Table 9: Time to open and close a file

11. Create-Delete

The last benchmark was perhaps the most interesting in terms of identifying differences be-
tween operating systems. It also helps to explain the results in Table 7. This benchmark simu-
lates the creation, use, and deletion of a temporary file. It opens a file, writes some amount of
data to the file, closes the file, then opens the file for reading, reads the data, closes the file, and
finally deletes the file. I tried three different amounts of data: none, 10 kbytes, and 100 kbytes.

8

OPERATING SYSTEM BENCHMARKS

Table 10 gives the total time to create, use, and delete the file in each of several
hardware/operating system configurations.

Configuration No data 10 kbytes 100 kbytes
(ms) (ms) (ms)

DS3100 Sprite Local 17 34 69

Sun4 Sprite Local 18 33 67

DS3100 Sprite Remote 33 34 68

Sun3 Sprite Local 33 47 130

M2000 RISC/os 4.0 Local 33 51 116

Sun4 Sprite Remote 34 50 71

8800 Ultrix 3.0 Local 49 100 294

Sun3 Sprite Remote 61 73 129

Sun4 SunOS 4.0 Local 66 830 940

DS3100 Ultrix 3.1 Local 80 146 548

MVAX2 Ultrix 3.0 Local 100 197 841

DS3100 Ultrix 3.1 Remote 116 370 3028

MVAX2 Ultrix 3.0 Remote 295 634 2500

Table 10: Time to create, use, and delete a file

This benchmark highlights a basic difference between Sprite and UNIX derivatives. In Sprite,
short-lived files can be created, used, and deleted without any data ever being written to disk.
Information only goes to disk after it has lived at least 30 seconds. In UNIX and its derivatives,
the file system appears to be much more closely tied to the disk. Even with no data written in the
file, the UNIX derivatives all required 35-100 ms to create and delete the file, regardless of the
performance of the machine. This suggests that the creation and deletion operations are forcing
data to disk and waiting for the disk operations to complete.

The create-delete benchmark also helps to explain the poor performance of DS3100 Ultrix on
the Andrew benchmark. The basic time for creating an empty file is 60% greater in DS3100-
Ultrix-Local than in 8800-Ultrix-Local, and the time for a 100-kbyte file in DS3100-Ultrix-
Remote is 45 times as long as for DS3100-Sprite-Remote! The poor performance relative to the
8800 may perhaps be due to slower disks (RZ55’s on the DS3100’s); the poor remote perfor-
mance is probably due to NFS’s writing policy, which requires new data to be written through to
disk when the file is closed. Note that DS3100-Ultrix-Remote achieves a write bandwidth of
only about 30 kbytes/sec. This is almost twice as slow as I measured on the same hardware
running an earlier version of Ultrix (3.0), and also about twice as slow as I have measured
previously on Sun machines running SunOS and NFS.

Lastly, Table 10 exposes some suprising behavior in SunOS 4.0. Note that the time for a file
with no data is 66 ms, but the time for 10 kbytes is 830 ms! This surpised me, so I also tried data
sizes of 2-9 kbytes at 1-kbyte intervals. The SunOS time stayed in the 60-80ms range until the
file size increased from 8 kbytes to 9 kbytes; at this point it jumped up to the 800-ms range.

9

OPERATING SYSTEM BENCHMARKS

12. Conclusions

In almost every benchmark the faster machines ran more slowly than I would have guessed
from raw processor speed. In some cases, like getpid and cswitch, I don’t have a good explana-
tion for the discrepancy (the additional registers in the RISC machines cannot account for the
difference all by themselves, for example). However, some of the benchmarks highlight issues
for both hardware designers and operating systems people to think about.

On the hardware side, memory bandwidth has been allowed to slip relative to processor speed.
If this trend continues, future machines (particularly workstations where cost considerations may
tempt designers to skimp on memory system performance) are likely to be limited in perfor-
mance by overall memory bandwidth. A fast cache may reduce the need for low-latency main
memory, but it doesn’t eliminate the need for high bandwidth in the main memory.

On the software side, operating system designers need to decouple file system performance
from disk performance. Operating systems derived from UNIX use caches to speed up reads, but
they require synchronous disk I/O for operations that modify files. If this coupling isn’t
eliminated, a large class of file-intensive programs will receive little or no benefit from faster
hardware. Of course, delaying disk writes may result in information loss during crashes; the
challenge for operating system designers is to maintain reliability while decoupling performance.

A final consideration is in the area of network protocols. In my (biased) opinion, the assump-
tions inherent in NFS (statelessness and write-through-on-close, in particular) represent a fun-
damental performance limitation. If users are to benefit from faster machines, either NFS must
be scrapped (my first choice), or NFS must be changed to be less synchronous.

13. References

[1] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols,
M. Satyanarayanan, Robert N. Sidebotham, and Michael J. West. Scale and Performance

in a Distributed File System. ACM Transactions on Computer Systems 6(1):51-81, February,
1988.

[2] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching in the Sprite Net-
work File System. ACM Transactions on Computer Systems 6(1):134-154, February, 1988.

[3] John K. Ousterhout, Andrew R. Cherenson, Fred Douglis, Michael N. Nelson, and Brent
B. Welch. The Sprite Network Operating System. IEEE Computer 21(2):23-36, February, 1988.

10

OPERATING SYSTEM BENCHMARKS

WRL Research Reports

‘‘Titan System Manual.’’ ‘‘MultiTitan: Four Architecture Papers.’’

Michael J. K. Nielsen. Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

WRL Research Report 86/1, September 1986. ael J. K. Nielsen.

WRL Research Report 87/8, April 1988.
‘‘Global Register Allocation at Link Time.’’

David W. Wall. ‘‘Fast Printed Circuit Board Routing.’’

WRL Research Report 86/3, October 1986. Jeremy Dion.

WRL Research Report 88/1, March 1988.
‘‘Optimal Finned Heat Sinks.’’

William R. Hamburgen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/4, October 1986. Roots.’’

Joel F. Bartlett.
‘‘The Mahler Experience: Using an Intermediate WRL Research Report 88/2, February 1988.

Language as the Machine Description.’’

David W. Wall and Michael L. Powell. ‘‘The Experimental Literature of The Internet: An

WRL Research Report 87/1, August 1987. Annotated Bibliography.’’

Jeffrey C. Mogul.
‘‘The Packet Filter: An Efficient Mechanism for WRL Research Report 88/3, August 1988.

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael ‘‘Measured Capacity of an Ethernet: Myths and

J. Accetta. Reality.’’

WRL Research Report 87/2, November 1987. David R. Boggs, Jeffrey C. Mogul, Christopher

A. Kent.
‘‘Fragmentation Considered Harmful.’’ WRL Research Report 88/4, September 1988.
Christopher A. Kent, Jeffrey C. Mogul.

WRL Research Report 87/3, December 1987. ‘‘Visa Protocols for Controlling Inter-Organizational

Datagram Flow: Extended Description.’’
‘‘Cache Coherence in Distributed Systems.’’ Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,
Christopher A. Kent. Kamaljit Anand.
WRL Research Report 87/4, December 1987. WRL Research Report 88/5, December 1988.

‘‘Register Windows vs. Register Allocation.’’ ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’
David W. Wall. Joel F. Bartlett.
WRL Research Report 87/5, December 1987. WRL Research Report 89/1, January 1989.

‘‘Editing Graphical Objects Using Procedural ‘‘Optimal Group Distribution in Carry-Skip
Representations.’’ Adders.’’

Paul J. Asente. Silvio Turrini.
WRL Research Report 87/6, November 1987. WRL Research Report 89/2, February 1989.

‘‘The USENET Cookbook: an Experiment in ‘‘Precise Robotic Paste Dot Dispensing.’’
Electronic Publication.’’ William R. Hamburgen.

Brian K. Reid. WRL Research Report 89/3, February 1989.
WRL Research Report 87/7, December 1987.

11

OPERATING SYSTEM BENCHMARKS

‘‘Simple and Flexible Datagram Access Controls for ‘‘Long Address Traces from RISC Machines:

Unix-based Gateways.’’ Generation and Analysis.’’

Jeffrey C. Mogul. Anita Borg, R.E.Kessler, Georgia Lazana, and David

WRL Research Report 89/4, March 1989. W. Wall.

WRL Research Report 89/14, September 1989.
‘‘Spritely NFS: Implementation and Performance of

Cache-Consistency Protocols.’’ ‘‘Link-Time Code Modification.’’

V. Srinivasan and Jeffrey C. Mogul. David W. Wall.

WRL Research Report 89/5, May 1989. WRL Research Report 89/17, September 1989.

‘‘Available Instruction-Level Parallelism for Super-

scalar and Superpipelined Machines.’’

Norman P. Jouppi and David W. Wall.

WRL Research Report 89/7, July 1989.

‘‘A Unified Vector/Scalar Floating-Point

Architecture.’’

Norman P. Jouppi, Jonathan Bertoni, and David

W. Wall.

WRL Research Report 89/8, July 1989.

‘‘Architectural and Organizational Tradeoffs in the

Design of the MultiTitan CPU.’’

Norman P. Jouppi.

WRL Research Report 89/9, July 1989.

‘‘Integration and Packaging Plateaus of Processor

Performance.’’

Norman P. Jouppi.

WRL Research Report 89/10, July 1989.

‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-

sor with High Ratio of Sustained to Peak

Performance.’’

Norman P. Jouppi and Jeffrey Y. F. Tang.

WRL Research Report 89/11, July 1989.

‘‘Leaf: A Netlist to Layout Converter for ECL

Gates.’’

Robert L. Alverson and Norman P. Jouppi.
WRL Research Report 89/12, July 1989.

‘‘The Distribution of Instruction-Level and Machine

Parallelism and Its Effect on Performance.’’
Norman P. Jouppi.

WRL Research Report 89/13, July 1989.

12

OPERATING SYSTEM BENCHMARKS

WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’

Brian K. Reid and Christopher A. Kent.

WRL Technical Note TN-4, September 1988.

‘‘TCP/IP PrintServer: Server Architecture and

Implementation.’’

Christopher A. Kent.

WRL Technical Note TN-7, November 1988.

‘‘Smart Code, Stupid Memory: A Fast X Server for a

Dumb Color Frame Buffer.’’

Joel McCormack.

WRL Technical Note TN-9, September 1989.

‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?’’

John Ousterhout.

WRL Technical Note TN-11, October 1989.

‘‘Mostly-Copying Garbage Collection Picks Up

Generations and C++.’’

Joel Bartlett.

WRL Technical Note TN-12, October 1989.

13

OPERATING SYSTEM BENCHMARKS

ii

OPERATING SYSTEM BENCHMARKS

Table of Contents
1. Introduction 1
2. Hardware 1
3. Operating Systems 2
4. Kernel Entry-Exit 2
5. Context Switching 3
6. Select 4
7. Block Copy 4
8. Read from File Cache 5
9. Modified Andrew Benchmark 6
10. Open-Close 8
11. Create-Delete 8
12. Conclusions 10
13. References 10

iii

OPERATING SYSTEM BENCHMARKS

iv

OPERATING SYSTEM BENCHMARKS

List of Tables
Table 1: Hardware Platforms 1
Table 2: Getpid kernel call time 2
Table 3: Cswitch: echo one byte between processes using pipes. 3
Table 4: Time for select kernel call. 4
Table 5: Throughput of bcopy procedure for large blocks. 5
Table 6: Bandwidth of reading from the file cache 6
Table 7: The modified Andrew benchmark 7
Table 8: Modified Andrew benchmark, cont’d 7
Table 9: Time to open and close a file 8
Table 10: Time to create, use, and delete a file 9

v

