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Abstract
Network worms are a clear and growing threat to the se-
curity of today’s Internet-connected hosts and networks.
The combination of the Internet’s unrestricted connec-
tivity and widespread software homogeneity allows net-
work pathogens to exploit tremendous parallelism in
their propagation. In fact, modern worms can spread so
quickly, and so widely, that no human-mediated reaction
can hope to contain an outbreak.

In this paper, we propose an automated approach
for quickly detecting previously unknown worms and
viruses based on two key behavioral characteristics –
a common exploit sequence together with a range of
unique sources generating infections and destinations be-
ing targeted. More importantly, our approach – called
“content sifting” – automatically generates precise sig-
natures that can then be used to filter or moderate the
spread of the worm elsewhere in the network.

Using a combination of existing and novel algorithms
we have developed a scalable content sifting implemen-
tation with low memory and CPU requirements. Over
months of active use at UCSD, our Earlybird prototype
system has automatically detected and generated signa-
tures for all pathogens known to be active on our network
as well as for several new worms and viruses which were
unknown at the time our system identified them. Our
initial experience suggests that, for a wide range of net-
work pathogens, it may be practical to construct fully
automated defenses – even against so-called “zero-day”
epidemics.

1 Introduction
In the last three years, large-scale Internet worm out-
breaks have profoundly demonstrated the threat posed
by self-propagating programs. The combination of
widespread software homogeneity and the Internet’s un-
restricted communication model creates an ideal climate
for infectious pathogens. Worse, each new epidemic has
demonstrated increased speed, virulence or sophistica-
tion over its predecessors. While the Code Red worm
took over fourteen hours to infect its vulnerable pop-
ulation in 2001, the Slammer worm, released some 18
months later, did the same in under 10 minutes [22, 21].
The Code Red worm is thought to have infected roughly
360,000 hosts, while, by some estimates, the Nimda
worm compromised over two million [8]. While early
worms typically spread by a single mechanism and did
little else, modern variants such as SoBig.F and My-

Doom can spread through multiple vectors and have
added backdoors, mail-relays and denial-of-service at-
tacks to their payloads.

Unfortunately, our current ability to defend against
these outbreaks is extremely poor and has not advanced
significantly since the Code Red episode in mid-2001.
In fact, the basic approach of detection, characterization,
and containment has not changed significantly over the
last five years. Typically, new worms are detected in an
ad hoc fashion by a combination of intrusion detection
systems and administrator legwork. Then, after isolat-
ing an instance of the worm, skilled security profession-
als manually characterize a worm signature and finally,
this signature is used to contain subsequent infections
via updates to anti-virus software and network filtering
products. While this approach is qualitatively sound, it is
quantitatively insufficient. Manual signature extraction
is an expensive, slow, manual procedure that can take
hours or even days to complete. It requires isolating a
new worm, decompiling it, looking for invariant code se-
quences and testing the signature for uniqueness. How-
ever, recent simulations by Moore et al. suggest that an
effective worm containment can require a reaction time
of well under sixty seconds [23]. More concretely, con-
sider that in the time it took to read this section, the Slam-
mer worm had contacted well over a billion distinct In-
ternet hosts.

This paper investigates the challenges in addressing
this problem and describes a prototype system, called
Earlybird, that can automatically detect and contain new
worms on the network using precise signatures. Our ap-
proach, which we call content sifting, is based on two
observations: first, that some portion of the content in ex-
isting worms is invariant – typically the code exploiting a
latent host vulnerability – and second, that the spreading
dynamics of a worm is atypical of Internet applications.
Simply stated, it is rare to observe the same string re-
curring within packets sent from many sources to many
destinations. By sifting through network traffic for con-
tent strings that are both frequently repeated and widely
dispersed, we can automatically identify new worms and
their precise signatures.

In our prototype system, we have developed approxi-
mate versions of this algorithm that are amenable to high-
speed implementation. In live experiments on a portion
of the UCSD campus network, we have deployed Early-
bird and demonstrated that it can automatically extract
the signature for all known active worms (e.g. CodeRed,



Slammer). Moreover, during our experiments Earlybird
detected and extracted a signature for the Blaster, My-
Doom and Kibuv.B worms – significantly before they
had been publicly disclosed and hours or days before any
public detection signatures were distributed. Finally, in
our testing over a period of eight months, we have ex-
perienced relatively few false positives and exceptions
are typically due to structural properties of a few popu-
lar protocols (SPAM via SMTP and NetBIOS) that recur
consistently and can be procedurally “white-listed”.

The remainder of this paper is structured as follows.
In Section 2 we survey the field of worm research that
we have built upon and describe how it motivates our
work. Section 3 describes how we define worm behav-
ior. Section 4 outlines a naive approach to detecting such
behaviors, followed by a concrete description of practi-
cal content sifting algorithms in Section 5. Section 6
describes the implementation of the Earlybird prototype
and an analysis of our live experiments using it. We de-
scribe limitations and extensions in Section 7. Finally,
in Section 8 we summarize our findings and conclude.

2 Background and Related Work
Worms are simply small programs. They spread by ex-
ploiting a latent software vulnerability in some popular
network service – such as email, Web or terminal access
– seizing control of program execution and then sending
a copy of themselves to other susceptible hosts.

While the potential threat posed by network worms
has a long past – originating with fictional accounts
in Gerrold’s “When Harlie was One” and Brunner’s
“Shockwave Rider” – it is only recently that this threat
has enjoyed significant research attention. Fred Co-
hen first lay the theoretical foundations for understand-
ing computer viruses in 1984 [4, 5], and the Internet
worm of 1988 demonstrated that self-replication via a
network could dramatically amplify the virulence of such
pathogens [33, 39]. However, the analysis and under-
standing of network worms did not advance substantially
until the CodeRed outbreak of 2001. In this section, we
attempt to summarize the contemporary research litera-
ture – especially in its relation to our own work.

The first research papers in the “modern worm era”
focused on characterizations and analyses of particu-
lar worm outbreaks. For example, Moore et al. pub-
lished one of the first empirical analyses of the CodeRed
worm’s growth, based on unsolicited scans passively ob-
served on an unused network [22]. Further, the authors
estimated the operational “repair” rate by actively prob-
ing a subsample of the 360,000 infected sites over time.
They found that, despite unprecedented media coverage,
the repair rate during the initial outbreak averaged under
2 percent per day. This reinforces our belief that fully
automated intervention is necessary to effectively man-

age worm outbreaks. Staniford et al.’s landmark paper
anticipated the development of far faster worms and ex-
trapolated their growth analytically [42] – foreshadow-
ing the release of the Slammer worm in 2002. Moore
et al. subsequently analyzed the Slammer outbreak and
estimated that almost all of the Internet address space
was scanned by the worm in under 10 minutes – limited
only by bandwidth constraints at the infected sites [21].
This experience also motivates the need for fast and au-
tomated reaction times. Finally, based on these results,
Moore et al. analyzed the engineering requirements for
reactive defenses – exploring the tradeoffs between reac-
tion time, deployment and the granularity of containment
mechanisms (signature based vs. IP address based) [23].
Two of their key findings motivate our work.

First, they demonstrated that signature-based methods
can be an order of magnitude more effective than simply
quarantining infected hosts piecemeal. The rough intu-
ition for this is simple: if a worm can compromise a new
host with an average latency of x seconds, then an ad-
dress based quarantine can must react more quickly than
x seconds to prevent the worm from spreading. By con-
trast, a signature based system can, in principle, halt all
subsequent spreading once a signature is identified. The
second important result was their derivation, via simula-
tion, of “benchmarks” for how quickly such signatures
must be generated to offer effective containment. Slow-
spreading worms, such as CodeRed can be effectively
contained if signatures are generated within 60 minutes,
while containing high-speed worms, such as Slammer,
may require signature generation in well under 5 minutes
– perhaps as little as 60 seconds. Our principal contribu-
tion is demonstrating practical mechanisms for achieving
this requirement.

In the remainder of this section we examine existing
techniques for detecting worm outbreaks, characteriz-
ing worms and proposed countermeasures for mitigating
worm spread.

2.1 Worm Detection
Three current classes of methods are used for detecting
new worms: scan detection, honeypots, and behavioral
techniques at end hosts. We consider each of these in
turn.

Worms spread by selecting susceptible target hosts, in-
fecting them over the network, and then repeating this
process in a distributed recursive fashion. Many existing
worms, excepting email viruses, will select targets using
a random process. For instance, CodeRed selected target
IP addresses uniformly from the entire address space. As
a result, a worm may will be highly unusual in the num-
ber, frequency and distribution of addresses that it scans.
This can be leveraged to detect worms in several ways.

To monitor random scanning worms from a global per-



spective, one approach is to use network telescopes –
passive network monitors that observe large ranges of
unused, yet routable, address space [25, 22, 26]. Under
the assumption that worms will select target victims at
random, a new worm will scan a given network telescope
with a probability directly proportional to the worm’s
scan rate and the network telescope’s “size”; that is, the
number of IP addresses monitored. Consequently, large
network telescopes will be able to detect fast spreading
worms of this type fairly quickly. At the enterprise level,
Staniford provides a comprehensive analysis of the fac-
tors impacting the ability of a network monitor to suc-
cessfully detect and quarantine infected hosts in an on-
line fashion [41].

However, there are two key limitations to the scan de-
tection approach. First, it is not well suited to worms
which spread in a non-random fashion, such as e-mail
viruses or worms spread via instant messenger or peer-
to-peer applications. Such worms generate a target list
from address books or buddy lists at the victim and there-
fore spread topologically – according to the implicit rela-
tionship graph between individuals. Consequently, they
do not exhibit anomalous scanning patterns and will not
be detected as a consequence. The second drawback is
that scan detection can only provide the IP address of
infected sites, not a signature identifying their behavior.
Consequently, defenses based on scan detection must be
an order of magnitude faster than those based on signa-
ture extraction [23].

A different approach to worm detection is demon-
strated by Honeypots. First introduced to the commu-
nity via Cliff Stoll’s book, “The Cuckoo’s Egg”, and Bill
Cheswick’s paper “An Evening with Berferd”, honeypots
are simply monitored idle hosts with untreated vulner-
abilities. Any outside interaction with the host is, by
definition, unsolicited and any malicious actions can be
observed directly. Consequently, any unsolicited out-
bound traffic generated by a honeypot represents unde-
niable evidence of an intrusion and possibly a worm in-
fection. Moreover, since the honeypot host is directly
controlled, malicious code can be differentiated from the
default configuration. In this manner, the “body” of a
worm can be isolated and then analyzed to extract a sig-
nature. This approach is commonly used for acquiring
worm instances for manual analysis [18]. There are two
principal drawbacks to honeypots: they require a signifi-
cant amount of slow manual analysis and they depend on
the honeypot being quickly infected by a new worm.

Finally, a technique that has found increasing traction
in the commercial world (e.g. via recently acquired star-
tups, Okena and Entracept) is host-based behavioral de-
tection. Such systems dynamically analyze the patterns
of system calls for anomalous activity [31, 28, 3] indicat-
ing code injection or propagation. For example, attempts

to send a packet from the same buffer containing a re-
ceived packet is often indicative of suspicious activity.
While behavioral techniques are able to leverage large
amounts of detailed context about application and sys-
tem behavior, they can be expensive to manage and de-
ploy ubiquitously. Moreover, end-host systems can, by
definition, only detect an attack against a single host and
not infer the presence of a large-scale outbreak. Clearly,
from a management, cost and reuse standpoint, it is ideal
to detect and block new attacks in the network. That
said, end-host approaches offer a level of sensitivity that
is difficult to match in the network and can be a useful
complement – particularly for detecting potential slow
or stealthy worms that do not leave a significant imprint
on the network.

2.2 Characterization
Characterization is the process of analyzing and identify-
ing a new worm or exploit, so that targeted defenses may
be deployed.

One approach is to create a priori vulnerability sig-
natures that match known exploitable vulnerabilities in
deployed software [44, 45]. For example, a vulnerability
signature for the Slammer worm might match all UDP
traffic on port 1434 that is longer than 100 bytes. By
searching for such traffic, either in the network or on
the host, a new worm exploiting the same vulnerability
will be revealed. This is very similar to traditional in-
trusion detection systems (IDS), such as Snort [1] and
Bro [29], which compare traffic content to databases of
strings used in known attacks. This general approach has
the advantage that it can deployed before the outbreak of
a new worm and therefore can offer an added measure
of defense. However, this sort of proactive characteriza-
tion can only be applied to vulnerabilities that are already
well-known and well-characterized manually. Further,
the tradeoff between vulnerability signature specificity,
complexity and false positives remains an open question.
Wang et al’s Shield, is by far the best-known vulnera-
bility blocking system and it focuses on an end-host im-
plementation precisely to better manage some of these
tradeoffs [44]. We do not consider this approach further
in this paper, but we believe it can be a valuable com-
plement to the automated signature extraction alternative
we explore.

The earliest automation for signature extraction is due
to Kephart and Arnold [15]. Their system, used commer-
cially by IBM, allows viruses to infect known “decoy”
programs in a controlled environment, extracts the in-
fected (i.e., modified) regions of the decoys and then uses
a variety of heuristics to identify invariant code strings
across infection instances. Among this set of candidates
an “optimal” signature is determined by estimating the
false positive probability against a measured corpus of



n-grams found in normal computer programs. This ap-
proach is extremely powerful, but assumes the presence
of a known instance of a virus and a controlled environ-
ment to monitor.

The former limitation is partially addressed by the
Honeycomb system of Kreibich and Crowcroft [17].
Honeycomb is a host-based intrusion detection system
that automatically generates signatures by looking for
longest common subsequences among sets of strings
found in message exchanges. This basic procedure is
similar to our own, but there are also important structural
and algorithmic differences between our two approaches,
the most important of which is scale. Honeycomb is de-
signed for a host-based context with orders of magni-
tude less processing required. To put this in context, our
Earlybird system currently processes more traffic in one
second than the prototype Honeycomb observed in 24
hours. However, one clear advantage offered by the host
context is its natural imperviousness to network evasion
techniques [30]. We discuss this issue further in Sec-
tion 7.

Finally, over the last two years of Earlybird’s devel-
opment [34, 35, 37], the clearest parallels can be drawn
to Kim and Karp’s contemporaneously-developed Auto-
graph system [16]. Like Earlybird, Autograph also uses
network-level data to infer worm signatures and both
systems employ Rabin fingerprints to index counters of
content substrings and use white-lists to set aside well-
known false positives. However, there are several im-
portant differences as well. First, Autograph relies on
a prefiltering step that identifies flows with suspicious
scanning activity (particularly the number of unsuccess-
ful TCP connection attempts) before calculating content
prevalence. By contrast, Earlybird measures the preva-
lence of all content entering the network and only then
considers the addressing activity. This difference means
that Autograph cannot detect large classes of worms that
Earlybird can – including almost all e-mail borne worms,
such as MyDoom, UDP-based worms such as Slammer,
spoofed source worms, or worms carried via IM or P2P
clients. Second, Autograph has extensive support for
distributed deployments – involving active cooperation
between multiple sensors. By contrast, Earlybird has
focused almost entirely on the algorithmics required to
support a robust and scalable wire-speed implementation
in a single sensor and only supports distribution through
a centralized aggregator. Third, Earlybird is an on-line
system that has been in near-production use for eight
months and handles over 200 megabits of live traffic,
while, as described, Autograph is an off-line system that
has only been evaluated using traces. Finally, there are
many differences in the details of the algorithms used
(e.g. Autograph breaks content into non-overlapping
variable-length chunks while Earlybird manages over-

lapping fixed-length content strings over each byte off-
set) although it is not currently clear what the impact of
these differences is.

2.3 Containment
Containment refers to the mechanism used to slow or
stop the spread of an active worm. There are three
containment mechanisms in use today: host quarantine,
string-matching and connection throttling. Host quaran-
tine is simply the act of preventing an infected host from
communicating with other hosts – typically implemented
via IP-level access control lists on routers or firewalls.
String-matching containment – typified by signature-
based network intrusion prevention syst ems (NIPS) –
matches network traffic against particular strings, or sig-
natures, of known worms and can then drop associated
packets. To enable high-bandwidth deployments, sev-
eral hardware vendors are now producing high-speed
string matching and regular expression checking chips
for worm and virus filtering. Lockwood et al. describe
an FPGA-based research prototype programmed for this
application [19]. Finally, a different strategy, proposed
by Twycross and Williamson [43], is to proactively limit
the rate of all outgoing connections made by a machine
and thereby slow – but not stop – the spread of any worm.
Their approach was proposed in a host context, but there
is no reason such connection throttling cannot be applied
at the network level as well.

In this paper, we assume the availability of string-
matching containment (perhaps in concert with throt-
tling) and our Earlybird prototype generates signatures
for a Snort in-line intrusion detection system – blocking
all packets containing discovered worm signatures.

3 Defining Worm Behavior
Network worms, due to their distinct purpose, tend to be-
have quite differently from the popular client-server and
peer-to-peer applications deployed on today’s networks.
In this section we explore these key behaviors in more
detail and how they can be exploited to detect and char-
acterize network worms.

3.1 Content invariance
In all existing worms of which we are aware, some or
all of the worm program is invariant across every copy.
Typically, the entire worm program is identical across
every host it infects. However, some worms make use
of limited polymorphism – by encrypting each worm in-
stance independently and/or randomizing filler text. In
these cases, much of the worm body is variable, but key
portions are still invariant (e.g., the decryption routine).
For the purposes of this paper, we assume that a worm
has some amount of invariant content or has relatively
few variants. We discuss violations of this assumption in
Section 7.



3.2 Content prevalence
Since worms are designed foremost to spread, the invari-
ant portion of a worm’s content will appear frequently
on the network as it spreads or attempts to spread. Con-
versely, content which is not prevalent will not represent
the invariant portion of a worm and therefore is not a
useful candidate for constructing signatures.

3.3 Address dispersion
For the same reasons, the number of distinct hosts in-
fected by a worm will grow over time. Consequently,
packets containing a live worm will tend to reflect a vari-
ety of different source and destination addresses. More-
over, during a major outbreak, the number of such ad-
dresses can grow extremely quickly. Finally, it is reason-
able to expect that the distribution of these addresses will
be far more uniform than typical network traffic which
can have significant clustering [9].1 In this paper we only
take advantage of the first of these three observations, but
we believe there is potential value in considering all of
them.

4 Finding worm signatures
From these assumptions, we can conclude that network
worms must generate significant traffic to spread and that
this traffic will contain common substrings and will be
directed between a variety of different sources and desti-
nations. While it is not yet clear that this characterization
is exclusively caused by worms, for now we will assume
that identifying this traffic pattern is sufficient for detect-
ing worms. We examine the issue of false positives later
in the paper. In principle, detecting this traffic pattern
is relatively straightforward. Figure 1 shows an ideal-
ized algorithm that achieves this goal. For each network
packet, the content is extracted and all substrings pro-
cessed. Each substring is indexed into a prevalence table
that increments a count field for a given substring each
time it is found. In effect, this table implements a his-
togram of all observed substrings. To maintain a count of
unique source and destination addresses, each table entry
also maintains two lists, containing IP addresses, that are
searched and potentially updated each time a substring
count is incremented. Sorting this table on the substring
count and the size of the address lists will produce the set
of likely worm traffic. Better still, the table entries meet-
ing this worm behavior criteria are exactly those contain-
ing the invariant substrings of the worm. It is these sub-
strings that can be used as signatures to filter the worm
out of legitimate network traffic.

We call this approach content sifting because it effec-
tively implements a high-pass filter on the contents of
network traffic. Network content which is not prevalent

1As described earlier, the presence of “dark” IP addresses can also
provide qualitatively strong evidence of worm-like behavior.

ProcessTraffic(payload,srcIP,dstIP)
1 prevalence[payload]++
2 Insert(srcIP,dispersion[payload].sources)
3 Insert(dstIP,dispersion[payload].dests)
4 if (prevalence[payload]>PrevalenceTh
5 and size(dispersion[payload].sources)>SrcDispTh
6 and size(dispersion[payload].dests)>DstDispTh)
7 if (payload in knownSignatures)
8 return
9 endif
10 Insert(payload,knownSignatures)
11 NewSignatureAlarm(payload)
12 endif

Figure 1: The idealized content sifting algorithm detects all
packet contents that are seen often enough and are coming from
enough sources and going to enough destinations. The value of
the detection thresholds and the time window over which each
table is used are both parameters of the algorithm.
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Figure 2: Multi-stage Filters. A piece of content is hashed us-
ing hash function h1 into a Stage 1 table, h2 into a Stage 2 table,
etc and each table entry contains a counter that is incremented.
If all the hashed counters are above the prevalence threshold,
then the content string is saved for address dispersion measure-
ments. In previous work we have shown that the probability of
an approximation error decreases exponentially with the number
of stages and consequently is extremely small in practice [10].

or not widely dispersed is sifted out, leaving only the
worm-like content. However, while content sifting can
correctly identify worm signatures, the basic algorithm
we have described is far too inefficient to be practical. In
the next section we describe algorithms for approximat-
ing correctness in exchange for efficiency and practical-
ity.

5 Practical Content Sifting
For automated signature extraction to scale to high-speed
links, the algorithms must have small processing require-
ments (ideally well-suited to parallelization), and small
memory requirements. Finally, to allow arbitrary de-
ployment strategies, the algorithm should not depend
on having a symmetric vantage point in the network.
To satisfy these requirements, we now describe scalable
and accurate algorithms for estimating content preva-
lence and address dispersion, and techniques for man-
aging CPU overload through smooth tradeoffs between
detection time and overhead. For simplicity, in this sec-
tion we describe our algorithms at packet (and not flow)
granularity.

5.1 Estimating content prevalence
Identifying common content involves finding the packet
payloads that appear at least x times among the N pack-
ets sent during a given interval. However, a table indexed



by payload can quickly consume huge amounts of mem-
ory. For example, on a fully loaded 1 Gbps link, this
naive approach could generate a 1 GByte table in less
than 10 seconds. Memory consumption can be reduced
considerably by indexing the table using a fixed size hash
of the packet payload instead of the full payload. After
a certain hash value has repeated x − 1 times, the next
packet with this hash is reported. In the absence of colli-
sions, the associated content will have appeared exactly
x times. By selecting a hash function with suitably large
range (e.g., 32 or 64 bits) the collision probability can be
minimized. Assuming a 16 byte hash table entry and an
average packet size of 500 bytes, this algorithm would
take over 4 minutes to generate the same 1 GByte table.

Memory efficiency can be improved further by observ-
ing that identifying prevalent content is isomorphic to
the well-studied problem of identifying high-bandwidth
flows, frequently called “heavy hitters” [13, 10]. By
modifying the definition of “flow” to reflect content fin-
gerprints instead of the (srcip, dstip, srcport, dstport,
protocol) tuple used for flow analysis, heavy-hitter ap-
proximation algorithms can be used to find prevalent
content using comparatively small amounts of memory.

Our prototype uses multi-stage filters with conserva-
tive update to dramatically reduce the memory footprint
of the problem (see Figure 2 for a general description and
[13, 10] for a thorough analysis). While simple, we be-
lieve this notion of using a content signature as a “flow
identifier” on which to maintain counters is a powerful
technique.2

An important modification is to append the destina-
tion port and protocol to the content before hashing.
Since worms typically target a particular service (they
are designed to exploit a vulnerability in that service)
this will not impact the ability to track worm traffic, but
can effectively exclude large amounts of prevalent con-
tent not generated by worms (i.e., potential false posi-
tives).3 For example, if two users on the same network
both download the Yahoo home page they will receive
many packets with identical payloads. However, traffic
sent from the Web server will be directed to a so-called
“ephemeral” port selected by each client. Since these
ports are selected independently, adding them to the hash
input will generally differentiate these different clients
even when the content being carried is identical.

So far, we have only discussed content at the whole

2We are not the first to use hashing techniques to analyze the content
makeup of network traffic. Snoeren et al. and Duffield et al. both use
hashing to match packet observations across a network [38, 7], and
both Spring et al. and Muthitacharoen et al. use Rabin fingerprints for
compressing content sent over a network [40, 27].

3Note that it is possible for this assumption to be violated under un-
usual circumstances. In particular, the Witty worm exploited promis-
cuous network devices and only required a fixed source port to exploit
its vulnerability – the destination port was random [6]. Catching this
worm required us to maintain an additional matching table in which the
source port is appended to the hash output instead.

packet granularity. While this is sufficient for detect-
ing most existing worms, it is easy to envision worms
for which the invariant content is a string smaller than a
single packet or for which the invariant content occurs
at different offsets in each instance. However, detecting
common strings of at least a minimum length is compu-
tationally complex. Instead we address the related – yet
far easier – problem of detecting repeating strings with a
small fixed length β. As with full packet contents, stor-
ing individual substrings can require exorbitant memory
and computational resources. Instead, we use a method
similar to the one proposed by Manber for finding simi-
lar files in a large file system [20]. We compute a variant
of Rabin fingerprints for all possible substrings of a cer-
tain length [32]. As these fingerprints are polynomials
they can be computed incrementally while retaining the
property that two equal substrings will generate the same
fingerprint, no matter where they are in a packet.

However, each packet with a payload of s bytes has
s − β + 1 strings of length β, so the memory references
used per packet is still substantially greater than that con-
sumed by a single per-packet hash. In Section 5.3, we
describe a technique called value sampling to consider-
ably reduce memory references.

5.2 Estimating address dispersion
While content prevalence is the key metric for identify-
ing potential worm signatures, address dispersion is crit-
ical for avoiding false positives among this set. With-
out this additional test a system could not distinguish be-
tween a worm and a piece of content that frequently oc-
curs between two computers – for example a mail client
sending the same user name repeatedly as it checks for
new mail on the mail server regularly.

To quantify address dispersion one must count the dis-
tinct source IP addresses and destination IP addresses as-
sociated with each piece of content suspected of being
generated by a worm (note that this is different from the
previous content prevalence problem which only requires
estimating the repetitions of each distinct string). While
one could simply count source-destination address pairs,
counting the source and destination addresses indepen-
dently allows finer distinctions to be made. For example,
mail messages sent to a popular mailing list are associ-
ated with many source-destination address pairs, but with
only two sources – the mail server of the original sender
of the message and the mail server running the list.

While it is possible to count IP addresses exactly us-
ing a simple list or hash table, more efficient solutions
are needed if there are many pieces of content suspected
of being generated by worms. Our solution is to trade
off some precision in these counters for dramatic reduc-
tions in memory requirements. Our first approach was
to appropriate the direct bitmap data structure originally



developed for approximate flow counting [46, 11]. Each
content source is hashed to a bitmap, the corresponding
bit is set, and an alarm is raised when the number of bits
set exceeds a threshold. For example, if the dispersion
threshold T is 30, the source address is hashed into a
bitmap of 32 bits and an alarm is raised if the number
of bits set crosses 20 (the value 20 is calculated analyti-
cally to account for hash collisions). This approach has
minimal memory requirements, but in exchange it loses
the ability to estimate the actual values of each counter
– important for measuring the rate of infection or priori-
tizing alerts. While other techniques such as probabilis-
tic counting [12] and multiresolution bitmaps [11] can
provide accurate counts they require significantly more
memory. For example a multiresolution bitmap requires
512 bits to count to 1 million.

Instead, we have invented a counting algorithm that
leverages the fact that address dispersion continuously
increases during an outbreak. Using this observation we
devise a new, compact data structure, called a scaled
bitmap, that accurately estimates address dispersion us-
ing five times less memory than existing algorithms.

The scaled bitmap achieves this reduction by subsam-
pling the range of the hash space. For example, to count
up to 64 sources using 32 bits, one might hash sources
into a space from 0 to 63 yet only set bits for values
that hash between 0 and 31 – thus ignoring half of the
sources. At the end of a fixed measurement interval, this
subsampling is adjusted by scaling the resulting count to
estimate the true count (a factor of two in the previous ex-
ample). Generalizing, we track a continuously increasing
count by simply increasing this scaling factor whenever
the bitmap is filled. For example the next configuration
of the bitmap might map one quarter of the hash space
to a 32 bit bitmap and scale the resulting count by four.
This allows the storage of the bitmap to remain constant
across an enormous range of counts.

However, once the bitmap is scaled to a new configu-
ration, the addresses that were active throughout the pre-
vious configuration are lost and adjusting for this bias
directly can lead to double counting. To minimize these
errors, the final scaled bitmap algorithm, shown in Fig-
ure 3, uses multiple bitmaps (numbmps = 3 in this ex-
ample) each mapped to progressively smaller and smaller
portions of the hash space. To calculate the count, the
estimated number of sources hashing to each bitmap are
added, and then this sum is divided by the fraction of
the hash space covered by all the bitmaps. When the
bitmap covering the largest portion of the hash space
has too many bits set to be accurate, it is advanced to
the next configuration by recycling it: the bitmap is re-
set and then mapped to the next slice of the hash space
(Figure 4). Consequently, each bitmap covers half the
hash space covered by its predecessor. The first bitmap,

UpdateBitmap(IP)
1 code = Hash(IP)
2 level = CountLeadingZeroes(code)
3 bitcode = FirstBits(code << (level+1))
4 if (level ≥ base and level < base+numbmps)
5 SetBit(bitcode,bitmaps[level-base])
6 if (level == base and CountBitsSet(bitmaps[0]) == max)
7 NextConfiguration()
8 endif
9 endif

ComputeEstimate(bitmaps,base)
1 numIPs=0
2 for i= 0 to numbmps-1
3 numIPs=numIPs+b ln(b/CountBitsNotSet(bitmaps[i]))
4 endfor
5 correction=

2(2base − 1)/(2numbmps − 1) · b ln(b/(b − max))
6 return numIPs ·2base/(1 − 2−numbmps)+correction

Figure 3: A scaled bitmap uses numbmps bitmaps of size b
bits each. The bitmaps cover progressively smaller portions of
the hash space. When the bitmap covering the largest portion of
the hash space gets too full to be accurate (the number of bits
set reaches max), we advance to the next configuration by “recy-
cling” the bitmap (see Figure 4). To compute an estimate of the
number of distinct IP addresses, we multiply a estimate of the
number of addresses that mapped to the bitmaps by the inverse
of the fraction of the hash space covered by the bitmaps. A cor-
rection is added to the result to account for the IP addresses that
were active in earlier configurations, while the current bitmaps
were not in use at their present levels.

the one covering the largest portion of the hash space,
is the most important in computing the estimate, but the
other bitmaps provide “memory” for counts that are still
small and serve to minimize the previously mentioned
biases. Consequently, not much correction is needed
when these bitmaps become the most important. For-
mally, we can prove that the maximum ratio between the
bias of the algorithm and the number of active addresses
is 2/(2numbmps

− 1)[36].
Overall, this new technique allows us to count sources

and destinations quite accurately using only 3 bitmaps
with roughly 5 times less memory than previously known
techniques [12, 11]. This is critical for practical scaling
because it reduces the system’s sensitivity to the effec-
tiveness of the low-pass filter provided by the content
prevalence test.

5.3 CPU scaling
Using multistage filters to detect content prevalence and
scaled bitmaps to estimate address dispersion decreases
memory usage and limits the amount of processing.
However, each payload string still requires significant
processing. In our prototype implementation (detailed
in Section 6), the CPU can easily manage processing
each packet payload as a single string, but when apply-
ing Rabin fingerprints, the processing of every substring
of length β can overload the CPU during high traffic
load. For example, a packet with 1, 000 bytes of pay-
load and β = 40, requires processing 960 Rabin fin-
gerprints. While computing the Rabin fingerprints them-
selves incurs overhead, it is the three order of magnitude
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Figure 4: When the bitmap covering the largest portion of the
hash space fills up, it is recycled. The bitmap is cleared and it
is mapped to the largest uncovered portion of the hash space
which is half the size of the portion covered by the bitmap right-
most before recycling. Recycling increments the variable base
(see Figure 3) by one.

increase in the number of content sifting operations that
exceeds the capacity of our current CPU. While a faster
CPU might solve this problem for a given traffic profile,
the possibility of traffic surges and denial-of-service at-
tacks on a sensor produce the same problem again. We
believe that a security device should not fail in these cir-
cumstances but instead smoothly scale back functionality
to match capacity – still performing the same functions
but perhaps with reduced fidelity or responsiveness.

The obvious approach to address this problem is via
dynamic sampling. However, randomly sampling which
substrings to process could cause us to miss a large frac-
tion of the occurrences of each substring and thus delay
the generation of a worm’s signature. Instead, we use
value sampling [20] and select only those substrings for
which the fingerprint matches a certain pattern (e.g. the
last 6 bits of the fingerprint are 0). Consequently, the al-
gorithm will systematically ignore some substrings, but
track all occurrences of others. However, if a worm con-
tains even a single tracked substring, it will be detected
as promptly as without the sampling. For example, if f
is the fraction of the tracked substrings (e.g. f = 1/64
if we track the substrings whose Rabin fingerprint ends
on 6 0s), then the probability of detecting a worm with a
signature of length x is ptrack(x) = 1 − e−f(x−β+1).

Since Rabin fingerprint are randomly distributed
themselves, the probability of tracking a worm substring
of length β is f . Thus, the probability of missing the
worm is pmiss(β) = 1− f . The probability of not track-
ing the worm is the probability of not tracking any of
its substrings. If the worm signature has length x, it has
x− β + 1 substrings of length β. Assuming that no sub-
string of length β repeats in the signature, the probability
of not tracking the worm is pmiss(x) = (1−f)x−β+1

≈

e−f(x−β+1). For example with f = 1/64 and β = 40,
the probability of tracking a worm with a signature of
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Figure 5: Content Sifting Algorithm as used in EarlyBird.

100 bytes is 55%, but for a worm with a signature of 200
bytes it increases to 92%, and for 400 bytes to 99.64%.

The sampling value f represents a tradeoff between
processing and the probability of missing a worm; pro-
cessing decreases linearly with f and the length of the in-
variant content required increases linearly with f . Note
that all current worms have had invariant content of at
least 400 bytes, for which the probability of false nega-
tives is at most 0.36%. Our user-space software imple-
mentation requires f = 1/64 to keep up with roughly
200Mbps of traffic on a Gigabit Ethernet interface. Fi-
nally, since the parameters of the Rabin fingerprint algo-
rithm p and M are not known, the worm writer cannot
determine which strings will not be sampled in advance.

5.4 Putting it together
Figure 5 depicts the content sifting algorithm imple-
mented in the EarlyBird prototype. As each packet ar-
rives, its content (or substrings of its content) is hashed
and appended with the protocol identifier and destination
port to produce a content hash code. In our implemen-
tation, we use a 32-bit Cyclic Redundancy Check (CRC)
as a packet hash and 40-byte Rabin fingerprints for sub-
string hashes. Each Rabin fingerprint is subsampled with
f = 1/64. The resulting hash codes are used to index
the address dispersion table. If an entry already exists
(the content has been determined to be prevalent) then
the address dispersion table entries for source and desti-
nation IP addresses (implemented as scaled bitmaps) are
updated. If the source and destination counts exceed the
dispersion threshold, then the content string is reported.

If the content hash is not found in the dispersion ta-
ble, it is indexed into the content prevalence table. In
our implementation, we use four independent hash func-
tions of the content hash to create 4 indexes into four
counter arrays. Using the conservative update optimiza-
tion, only the smallest among the four counters is incre-
mented [10]. If all four counters are greater than the
prevalence threshold, then a new entry is made in the ad-



dress dispersion table – with high probability, the content
has appeared frequently enough to be a candidate worm
signature. Pseudocode for the main loop of the EarlyBird
system is shown in Figure 5.

ProcessPacket()
1 InitializeIncrementalHash(payload,payloadLength,dstPort)
2 while (currentHash=GetNextHash())
3 if (currentADEntry=ADEntryMap.Find(currentHash))
4 UpdateADEntry(currentADEntry,srcIP,dstIP,packetTime)
5 if ( (currentADEntry.srcCount > SrcDispTh)

and (currentADEntry.dstCount > DstDispTh) )
6 ReportAnomalousADEntry(currentADEntry,packet)
7 endif
8 else
9 if ( MsfIncrement(currentHash) > PravalenceTh)
10 newADEntry=InitializeADEntry(srcIP,dstIP,packetTime)
11 ADEntryMap.Insert(currentHash,newADEntry)
12 endif
13 endif
14 endwhile

Figure 6: The EarlyBird loop performed on every packet.When
the prevalence threshold is exceeded, dispersion counting is
done by creating an ADentry. ADentry contains the source and
destination bitmaps and the scale factors required for the scaled
bitmap implementation.

The content prevalence table sees the most activity
in the system and serves as a high-pass filter for fre-
quent content. The multi-stage filter data structure is
cleared on a regular interval (60 seconds in our imple-
mentation). By contrast, the address prevalence table has
typically fewer values – only those strings exceeding the
prevalence threshold – and can be garbage collected over
longer time scales (even hours).

Each of these mechanisms can be implemented at high
speeds in either software or hardware, with relatively
modest memory requirements as we quantify in the next
section. Moreover, our approach makes no assumptions
about the point of deployment, whether at the endpoint,
edge, or core. However the optimal parameters settings
may depend on the point of deployments. In Section 6
we empirically explore the parameter settings used by
our EarlyBird prototype.

6 Experience
Based on the content sifting algorithm just described, we
have built a prototype system which has been in use on
the UCSD campus for over eight months. In this sec-
tion, we describe our overall system design, the imple-
mentation and experimental environment, our initial ex-
periments exploring the parameter space of the content
sifting algorithm, our evaluation of false positives and
false negatives, and our preliminary results in finding live
worms at our site.

6.1 System design
The EarlyBird system consists of two major components:
Sensors and an Aggregator. Each sensor sifts through
traffic on configurable address space “zones” of responsi-
bility and reports anomalous signatures. The aggregator

Figure 7: A screenshot of the main screen of the EarlyBird user
interface. Each zone is labeled by a prefix and shows the cur-
rent anomalies (worms), and prevalence/dispersion parameters
which can be changed by the user. More detailed screens show
detailed counts for each anomaly, as shown for Sasser in Figure
12.

coordinates real-time updates from the sensors, coalesces
related signatures, activates any network-level or host-
level blocking services and is responsible for administra-
tive reporting and control. Our implementation is written
in C and the aggregator also uses the MySql database to
log all events, the popular rrd-tools library for graphical
reporting, and PHP scripting for administrative control.
A screenshot of the main screen of the EarlyBird user
interface showing zones and a summary of the current
system activity is shown in Figure 7.

Finally, in order to automatically block outbreaks, the
EarlyBird system automatically generates and deploys
precise content-based signatures formatted for the Snort-
inline intrusion prevention system [1]. A sample such
signature for Kibvu.B is shown below.

drop tcp $HOME_NET any -> $EXTERNAL_NET 5000
(msg:"2712067784 Fri May 14 03:51:00 2004";
rev:1; content:"|90 90 90 90 4d 3f e3 77 90
90 90 90 ff 63 64 90 90 90 90 90|";)

6.2 Implementation and environment
The current prototype Earlybird sensor executes on a
1.6Ghz AMD Opteron 242 1U server configured with
a standard Linux 2.6 kernel. The server is equipped
with two Broadcom Gigabit copper network interfaces
for data capture. The EarlyBird sensor itself is a single-
threaded application which executes at user-level and
captures packets using the popular libpcap library. The
system is roughly 5000 lines of code (not including ex-
ternal libraries) with the bulk of the code dedicated to
self-monitoring for the purpose of this paper. The scal-
able implementation itself is a much smaller fraction of
this code base. In its present untuned form, EarlyBird
sifts though over 1TB of traffic per day and is able to
keep up with over 200Mbps of continuous traffic when



using Rabin fingerprints with a value sampling probabil-
ity of 1/64 (and at even higher speeds using whole packet
CRCs).

The experiments in the remainder of this paper are
based on data collected from a Cisco Catalyst router con-
figured to mirror all in-bound and out-bound traffic to
our sensor (Earlybird currently makes no distinction be-
tween incoming and outgoing packets). The router man-
ages traffic to and from roughly 5000 hosts, primarily
clients, as well as all traffic to and from a few dedicated
campus servers for DNS, SMTP/POP/IMAP, NFS, etc.
The measured links experience a sustained traffic rate of
roughly 100Mbps, with bursts of up to 500Mbps.

6.3 Parameter tuning
The key parameters used by our algorithm are the con-
tent prevalence threshold (currently 3), the address dis-
persion threshold (currently 30 sources and 30 destina-
tions), and the time to garbage collect address dispersion
table entries (currently several hours). We now describe
the rationale behind these initial choices.

Content prevalence threshold: Figure 8 shows the
distribution of signature repetitions on a trace for differ-
ent hash functions. For example, using a 60 second mea-
surement interval and a whole packet CRC, over 97 per-
cent of all signatures repeat two or fewer times and 94.5
percent are only observed once. Using a finer grained-
content hash or a longer measurement interval increases
these numbers even further. However, to a first approxi-
mation, all reasonable values of these parameters reveal
that very few signatures ever repeat more than 3 times.
Recall that the principal benefit provided by the con-
tent prevalence table is to remove from consideration the
enormous number of substrings which appear rarely and
therefore are not possible worm signature candidates. We
have repeated these experiments on several datasets at
differing times and observed the same pattern. Conse-
quently, for the remainder of this paper we use a preva-
lence threshold of 3.

Address dispersion threshold: Once a signature has
passed the prevalence threshold it is still unlikely that it
represents a worm. Figure 9 shows the number of distinct
signatures found, as a function of time, for different ad-
dress dispersion thresholds. For example, after 10 min-
utes there are over 1000 signatures (note the log scale)
with a low dispersion threshold of 2 – meaning that the
same string has been observed in packets with two dif-
ferent source IP addresses and two different destination
IP addresses. However, as the dispersion threshold is in-
creased, the number of such strings decreases dramati-
cally. By the time a threshold of 30 is reached, there are
only 5 or 6 prevalent strings meeting the dispersion crite-
ria and the increase in this number is very slow over time.
In this particular trace, two of these strings represent live
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worms and the others are benign but consistently reoc-
curring strings that are post-filtered by a whitelist.

Note that there is an inherent tradeoff between the
speed of detecting a new worm and the likelihood of a
false positive. By using a lower dispersion threshold one
can respond to a worm more quickly, but it is increas-
ingly likely that many such signatures will be benign.
For example, we find that the Slammer worm signature
is detected within one second with an address dispersion
threshold of 2, yet takes up to 5 seconds to discover us-
ing the more conservative threshold of 30. At the same
time there are two orders of magnitude more signatures
that will be reported with the lowest dispersion threshold
– most of which will likely be false positives.

Garbage collection: The final key parameter of our
algorithm is the elapsed time before an entry in the ad-
dress dispersion table is garbage collected. The impact
of this setting is shown in Figure 10. When the timeout
is set to 100 seconds, then almost 60 percent of all sig-
natures are garbage collected before a subsequent update
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Figure 10: Log-scale cumulative distribution function of the
maximum time period between updates for entries in the address
dispersion table.

occurs – possibly preventing the signature from meeting
the dispersion threshold and being reported. However,
by a timeout of 1000 seconds, this number is reduced to
roughly 20 percent of signatures. However, since the to-
tal number of signatures in the address dispersion table is
always fairly small (roughly 25,000) we can comfortably
maintain a timeout of several hours.

6.4 Performance
In Section 5 we described mechanisms such as multi-
stage filters to reduce memory, and mechanisms such as
value sampling to reduce CPU time. In this section, we
briefly evaluate the performance of our prototype Early-
Bird sensor in terms of processing time and memory.

Processing Time: To measure overhead, we instru-
mented the interface of each component to count elapsed
CPU cycles. Because these counters are measured on a
live system with varying packet sizes, and some func-
tions (e.g., computing the Rabin hash) depend on packet
size, we report the average and standard deviation over
several million packets.

The top of Table 1 shows the overhead (in microsec-
onds) incurred by each individual component of the
EarlyBird algorithm as shown in Figure 6. The most sig-
nificant operations are the initial Rabin fingerprint, ac-
cessing the multistage filter and creating a new Address
Dispersion Table entry (dominated by the cost of malloc
in this implementation). The Rabin algorithm is highly
optimized based on Manber’s original code (as modified
by Neil Spring), and incrementally amounts to a multiply
and a mask (AND) operation. It seems difficult to opti-
mize this particular hash function further in software, but
it would be easy to implement in hardware. Similarly,
a hardware implementation of multistage filters can use
parallel memories to reduce the lookup time in propor-
tion to the number of filter stages.

The bottom of Table 1 shows the overall processing
time (in microseconds) taken by EarlyBird to process a

Mean Std. Dev.
Component wise breakdown
Rabin Fingerprint
First Fingerprint (40 bytes) 0.349 0.472

Increment (each byte) 0.037 0.004

Multi Stage Filter
Test & Increment 0.146 0.049

AD Table Entry
Lookup 0.021 0.032

Update 0.027 0.013

Create 0.252 0.306

Insert 0.113 0.075

Overall Packet
Header Parsing & First Fingerprint 0.444 0.522

Per-byte processing 0.409 0.148

Overall Packet with Flow-Reassembly
Header Parsing & Flow maintenance 0.671 0.923

Per-byte processing 0.451 0.186

Table 1: This table shows overhead (in microseconds) incurred
by each of the individual operations performed on a packet. The
mean and standard deviation are computed over a 10 minute in-
terval (25 million Packets). This table represents raw overheads
before sampling. Using 1 in 64 value sampling, the effective
mean per byte processing time reduces to 0.042 microseconds.

packet. Without the use of value sampling, on an average
it takes approximately 0.44 microseconds to parse the
packet header and compute the first hash from the packet
payload. Additionally for each byte in the packet pay-
load EarlyBird adds an additional processing overhead of
0.409 microseconds on average. Utilizing (1 in 64) value
sampling, as described in Section 5, brings down the av-
erage per-byte time to under 0.042 microseconds. This
equates to 0.005 microseconds per bit, or a 200 Mbps
line rate. We confirmed this by also examining the packet
drop rate and comparing the output packet rate of the
router, and the input packet rate seen by the system: at
a sampling rate of 1 in 64 there are almost no dropped
packets during 200Mbps load, but at smaller sampling
rates there were significant numbers of dropped packets
for equivalent input. In hardware, given the same value
sampling rate, assuming that multiplies can be pipelined,
and that the multistage filter memories and address dis-
persion tables operate in parallel, there is no reason why
the algorithm should not scale with memory speeds even
up to 40 Gbps.

Memory Consumption: The major memory hog is
the content prevalence table, implemented using multi-
stage filters with 4 stages, with each stage containing
524288 bins, and where each bin is 8 bits, for a total of
2MB. While this number of bins may appear to be large,
recall that we are using a small prevalence threshold, and
the amount of memory is still dramatically smaller than
what would be required to index all content substrings.

The other major component of memory usage is the
Address Dispersion Table which, in our experience, has



between 5K and 25K entries of 28 bytes each. All 25,000
of the Address Dispersion table entries combined uti-
lize well under a Megabyte of memory. The other com-
ponents use a negligible amount of memory. Thus the
core EarlyBird function currently consumes less than 4
Mbytes of memory. If the content prevalence thresh-
old was made higher (as could be done in deployments
nearer the core of the network), the memory needs of
the multistage filters and address dispersion tables will
go down dramatically, allowing potential on-chip imple-
mentations; current FPGAs allow 1 Mbyte of on-chip
SRAM, and custom chips allow up to 32 Mbytes.

6.5 Trace-based verification
In this subsection, we report on experimental results for
false positives and false negatives. While a key feature of
our system is that it runs on live network traffic, for these
experiments we replayed a captured trace in real-time to
support comparisons across runs. We report on some of
our live experience in the next subsection.

False Positives: Any worm detection device must
contend with false positives. Figure 11 shows the preva-
lence of different signatures over time that meet the dis-
persion threshold of 10 (we set the threshold in this ex-
periment lower than the current parameter setting of 30
used in our live system to produce more signatures),
while the signatures themselves are listed in Table 2.
The two most active signatures belong to the Slammer
and Opaserv worms, followed by a pervasive string on
TCP port 445 used for distributed port scanning, and the
Blaster worm. The remaining signatures fall into two cat-
egories: those that are likely worms or distributed scans
(likely, due to the high degree of such traffic sent to these
ports from outside the LAN) and a few strings that repre-
sent true false positives and arise from particular protocol
structures.

Over longer live runs we have found two principal
sources of false positives: common protocol headers and
unsolicited bulk email (SPAM). In the former category,
over 99 percent of all false positives result from distinct
SMTP header strings or HTTP user-agent or content-type
strings. We have observed over 2000 of these combina-
tions in practice, all of which are easily whitelisted pro-
cedurally via a protocol parser. It is critical to do so how-
ever, since automatically blocking or rate-limiting even a
significant subset of HTTP traffic could have disastrous
consequences. The other principal source of false posi-
tives are SPAM e-mails which can exceed address disper-
sion thresholds due to the use of distributed mailers and
mail relays. While these are far more difficult to whilelist
since many e-mail viruses also propagate via TCP port
25, the effect of their interdiction is far more benign as
well. Moreover, false positives arising from SPAM are
bursty in practice since they coincide with a mass mail-
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ing cycle. Consequently, even without additional policy,
countermeasures for such traffic tends to automatically
self-limit.

We have also seen a few false positives that simply
reflected unique aspects of a few popular protocol imple-
mentations. For example, the most common signatures
in our data (not shown above) are strings of all zeros
and all ones in base64 encoding (caused by a popular
mail reader’s text encoding) and we exclude these from
consideration statically. Similarly, the HEADER-TCP-
CLOSE signature show above, is a string “tcp-close, dur-
ing connect” that is included in TCP RST packets sent
by the MAC OS X operating system. The system itself
is sufficiently common that the address dispersion and
content prevalence criteria are met. However, there are
sufficiently few of these, even over extended periods of
analysis, that a handful of static whitelist entries have
been sufficient to remove them.

Finally, over long traces we have observed one source
of false positives that defies easy analysis. In particu-
lar, popular files distributed by the BitTorrent peer-to-
peer system can satisfy the content prevalence and ad-
dress dispersion criteria during their peak periods of pop-
ularity. This does not seem to happen in practice with
other peer-to-peer systems that rely on whole-file down-
load, but BitTorrent’s file striping creates a many-to-
many download profile that mimics that of a worm.

In general, all of our false positives appear consistently
across multiple trials over different time periods. This
leads us to believe that most are relatively stable and re-
flect a small number of pathologies. Consequently, in
live use we excluded such signatures in a small “white
list” which is used to post-filter signature reports.

False negatives: Since our experiments have been
run in an uncontrolled environment it is not possible to
quantitatively demonstrate the absence of false negatives.
However, a strong qualitative indication is that Earlybird
running live detected every worm outbreak reported on



Label Service Sources Dests

SLAMMER UDP/1434 3328 23607
SCAN-TCP-PORT22 TCP/22 70 53
MAIL-HEADER-FROM TCP/25 12 11
SMB-139 TCP/139 603 378
SMB-445 TCP/445 2039 223
HEADER-TCP-CLOSE TCP/80 33 136
MAIL-HEADER-FROM2 TCP/25 13 14
PROTOCOL-HEADER-EXT TCP/80 15 24
BLASTER TCP/135 1690 17
OPASERV-WORM UDP/137 180 21033
SMB-445-SIG2 TCP/445 11 145

Table 2: Summary signatures reported using an address dis-
persion threshold of 10.

public security mailing lists (including BugTraq, Full-
Disclosure, and snort-signatures) during our period of
operation. We also checked for false negatives by com-
paring the trace we used against a Snort rulebase includ-
ing over 340 worm and worm-related signatures aggre-
gated from the official Snort distribution as well as the
snort-signatures mailing list. We found no false nega-
tives via this method, although the Snort system alerted
on a number of instances that were not worms.

6.6 Inter-packet signatures
As described, the content-sifting algorithm used in
EarlyBird does not keep any per-flow state and can there-
fore only generate content signatures that are fully con-
tained within a single packet. Thus an attacker might
evade detection by splitting an invariant string into
pieces one byte smaller than β – one per packet.

We have extended the content sifting algorithm to de-
tect such simple evasions at the cost of per flow state
management. While there are many approaches to flow
reassembly, our initial design point is one that trades
the fully general reassembly for reduced overhead by
exploiting Earlybird’s use of incremental fingerprints.
Thus, for each flow we maintain a circular buffer con-
taining the last 40 bytes, as well as the Rabin fingerprint
for this string and some book-keeping state for managing
flow expiration. Using this data we are able to continue
the signature matching process from each packet to its
successor (in fact the computation cost is reduced as a re-
sult, since the expensive per-packet Rabin fingerprint is
only necessary for the first packet in a flow). Currently,
we manage flows first-come first-served via a flow cache,
although it is easy to bias this allocation to favor sources
exhibiting abnormal activity such as port-scanning or ac-
cessing unused address space [34, 35, 37, 24]. It should
be clear that a sophisticated worm or virus which sub-
verts the host operating system will be able to reorder
or arbitrarily delay packets in a way that evades this ap-
proach. We describe the challenges of more complex

evasions in Section 7. We briefly evaluated the perfor-
mance impact of this extension and found that using a
flow cache of 131072 elements (7MB in total) the aver-
age cost for processing the first packet of a flow is in-
creased by 0.227 microseconds and the average per-byte
cost is increased by 0.042 (absolute numbers and associ-
ated standard deviations are reported in Table 1).

6.7 Live experience with EarlyBird
In addition to the worms described above, Earlybird has
also detected precise signatures for variants of CodeRed,
the MyDoom mail worm and most recently for the
Sasser, and Kibvu.B worm. In the case of new worms
such as Kibvu.B and MyDoom, Earlybird reported signa-
tures long before there were public reports of the worm’s
spread – let alone signatures available – and we were able
to use these signatures to assist our network operations
staff in tracking down infected hosts.

While we have experience with all recent worms, we
limit ourselves to describing our experience with two re-
cent outbreaks, Sasser and Kibvu.B.

Sasser: We detected Sasser on the morning of Sat-
urday May 1st, 2004. Though we cannot claim to be the
first ones to detect Sasser, we certanly did detect it before
signatures were made available by the various anti-virus
vendors. Part of the reason for us not detecting Sasser
earlier is because all inbound traffic destined to port 445
is dropped at the upstream router and thus we could only
use strictly internal traffic to make an identification. Fig-
ure 12 shows a screenshot of the live EarlyBird system
tracking the rate in growth of infected Sasser hosts and
their attempts to infect others in the UCSD network.

Kibvu.B: Kibvu.B is a recent worm that Earlybird de-
tected on Friday May 14th, 2003 at 3:08AM PDT. In con-
trast to other outbreaks, Kibvu.B was extremely subdued
(perhaps because it targeted a two year old vulnerabil-
ity that was less prevalent in the host population). In the
40 minute window following our first recorded instance
of the worm, there were a total of 37 infection attempts
to 30 unique destinations, allowing us to trigger based
on our 30-30 dispersion threshold. The Kibvu.B experi-
ence suggests that simply utilizing content prevalence as
a metric as in [16] may not be sufficient; address disper-
sion is essential. We have provided a signature for this
worm in section 6.1.

7 Limitations and Extensions
While we have been highly successful with our prototype
system, we recognize a number of limitations, potential
challenges and problems facing those building a com-
plete worm defense system. In this section we discuss
these and discuss current extensions that we are adding
to our system to address these issues.



Figure 12: A detailed screen showing EarlyBird’s capture of
the Sasser outbreak. The anomaly is labeled 6042387755325
because at the time of discovery the anomaly was not named.
The top of the screen-shot shows the signature and the num-
ber of sources and destinations. The middle of the screen shot
shows a time-series plot of the packets containing the signature
over roughly 2 days. The bottom of the screen shot shows a
time-series plot of unique destinations (top curve) and unique
sources (bottom curve) with the content. The destinations are
much larger because the same sources are attempting to infect
a large number of destinations.

7.1 Variant content
If content sifting were to be widely deployed this could
create an incentive for worm writers to design worms
with little or no invariant content. For example, poly-
morphic viruses encrypt their content in each generation
and so-called “metamorphic viruses” have even demon-
strated the ability to mutate their entire instruction se-
quence with semantically equivalent, but textually dis-
tinct, code. This is an extremely challenging prob-
lem that is currently addressed by antivirus vendors us-
ing controlled emulation [2] and procedural signatures.
While many of these subterfuges are trivially detectable
(e.g. since polymorphic decryption code may be itself
invariant), and others can detected by modifying our con-
tent sifting approach to identify textually “similar” con-
tent – in the limit this threat is a fundamental one. As part
of future work we are investigating hybrid pattern match-
ing approaches that quickly separate non-code strings
(identifiable by unavoidable terminating instruction se-
quences) from potential exploits – and focus complex
analysis only on those sequences which pose a threat.

Other problems are presented by compression. While

existing self-encoding viruses maintain an invariant de-
coding routine, a worm author might choose to reuse
a common code sequence (e.g., such as one used for a
popular self-decompressing executable format, like ZIP
executables). Using this string as a worm signature
could produce many false positives for content using the
same sequence. Finally, several vulnerabilities have been
found in popular implementations of encrypted session
protocols such as ssh and SSL. Worms exploiting such
vulnerabilities can opportunistically make use of the per-
session encryption offered by these services. As a re-
sult, content-oriented traffic analysis, like that described
in this paper, would be impossible. The same problem is
posed by widespread deployment of end-to-end IPSEC
and virtual private networks (VPNs). This problem ap-
pears to be fundamental. Indeed if such deployments
become widespread much of the current security mar-
ket (especially including current intrusion detection sys-
tems) will have to be rethought.

7.2 Network evasion
Just as attackers may attempt to evade content sifting al-
gorithms by creating metamorphic worms, they may also
attempt to evade our monitor through traditional IDS eva-
sion techniques [30]. While we discussed the problem
of flow reassembly earlier, a sophisticated attacker might
send overlapping IP fragments or TCP segments to cre-
ate a network-level polymorphism. To address this issue
requires traffic normalization, in which datagrams are re-
assembled in a single consistent fashion [14]. However,
in its full generality, this approach requires far more per-
flow state and per-packet computation than mere flow re-
assembly and therefore may not scale well without fur-
ther performance-enhancing techniques. An alternative
we are considering is to simply filter such obviously odd-
ball packets – at the cost of some impact on sites which
actually depend on non-standard TCP segmentation or IP
fragmentation implementations.

Finally, incidental network evasion may occur if the
assumptions underlying the address dispersion threshold
are violated. For example, if a worm requires only a sin-
gle packet for transmission then the attacker could spoof
the source address so all packets appear to originate from
the same source. While such evasions are easy to detect,
it is requires special purpose code outside the general
content sifting framework.

7.3 Extensions
In addition to the potential challenges posed by malicious
actors, there are a number of additional improvements
that could be made to our system even in the current
environment. For example, while we have experienced
that given parameter settings appear to provide consis-
tent results on our link across time, our settings were



themselves based on measurement and experimentation.
We believe they are sensitive to the number of live hosts
interdicted by the monitor, but exactly how remains an
open question. In the next generation of our system,
we plan to use techniques similar to [10] to “autotune”
EarlyBird’s content sifting parameters for a given envi-
ronment.

Finally, while most worms to date have sought to max-
imize their growth over time, it is important to address
the issue of slow worms as well. In our current proto-
type, worms which are seen less frequently than every
60 seconds have no hope of registering. One method
to address this limitation within our system is to main-
tain triggering data across multiple time scales. Alterna-
tively, one might deploy a hybrid system, using Early-
bird to intercept high-speed outbreaks worms and host-
based intrusion detection or large-scale honeypots to de-
tect slowly spreading pathogens. Indeed, even small de-
tection probabilities can eliminate the stealthy advantage
of slow worms and thus the incentive for deploying them.

7.4 Containment
Our current system reports the suspected worm signa-
tures, but can be configured to generate Snort signatures
in a few seconds which can then be blocked by an online
Snort deployment. We have been doing so on a small
scale on a laboratory switch, and the system has blocked
worm traffic based on the signatures we feed the blocker.
Unfortunately, the policy for applying such a contain-
ment strategy can be quite complex. For example, since
there is an inherent tradeoff between detection speed and
false positives, as we discussed earlier, one reasonable
policy is to temporarily rate-limit traffic matching signa-
tures with only moderate address dispersion. If the sig-
nature is a false positive then it likely will never reach
a higher level of dispersion and the rate-limit can be re-
pealed. If it is a worm, then this conservative reaction
will slow its spread and once its dispersion increases to a
higher level the system can decide to drop all packets car-
rying the signature. However, this is just one such policy
option and the question deserves additional attention.

Moreover, automated containment also provokes the
issue of attackers purposely trying to trigger a worm de-
fense – thereby causing denial-of-service on legitimate
traffic also carrying the string. Thus, a clear area of re-
search for us is to develop efficient mechanisms for com-
paring signatures with existing traffic corpus’ – to un-
derstand the impact of filtering such traffic before we do
so. However, even this approach may fall short against
a sophisticated attacker with prior knowledge of an un-
released document. In this scenario an attacker might
coerce Earlybird into blocking the documents release by
simulating a worm containing substrings unique only to
the unreleased document.

7.5 Coordination
One of the key benefits of signature extraction is that a
given signature can be shared. This provides a “network
effect” because the more deployments are made of a sys-
tem such as ours, the more value there is to all deploy-
ments because of sharing. This sharing in turn can re-
duce response times, since the first site to discover a new
worm signature can share it immediately. A more ag-
gressive possibility is to add this detection capability to
core routers which can then spread the signatures to edge
networks. The issue of coordination brings up substan-
tial questions related to trust, validation and policy that
will require additional research attention to address.

8 Conclusions
New worm outbreaks routinely compromise hundreds
of thousands of hosts and despite the enormous recov-
ery costs incurred for past worms, we have been ex-
tremely fortunate in the degree of restraint demonstrated
by worm authors. Thus the need for an adequate defense
against future worm episodes is self-evident.

In this paper, we have described an approach for real-
time detection of unknown worms and automated extrac-
tion of unique content signatures. Our content sifting al-
gorithm efficiently analyses network traffic for prevalent
and widely dispersed content strings – behavioral cues of
worm activity. We have demonstrated that content sifting
can be implemented with moderate memory and com-
putational requirements and our untuned software-based
prototype has been able to process over 200Mbps of live
traffic. While the security field is inherently an “arms
race”, we believe that systems based on content sifting
significantly raise the bar for worm authors. To wit, in
our experience Earlybird has been able to detect and ex-
tract signatures for all contemporary worms and has also
demonstrated that it can extract signatures for new, pre-
viously unknown, worms.

While we believe that EarlyBird can be a useful sys-
tem in itself, we believe that the underlying method
(maintaining state keyed by content signatures) may gen-
eralize to address a number of other interesting research
problems. For example, we have found that slight mod-
ifications to Earlybird are able to detect large amounts
of unsolicited bulk e-mail (SPAM) based on the same
general principles as worm detection. Similarly, mass-
intrusion attempts can also be revealed by this approach,
as can denial-of-service attacks and peer-to-peer system
activity.

Finally, the EarlyBird system demonstrates the fea-
sibility of sophisticated wire-speed network security.
While many industrial systems have only recently an-
nounced signature detection at Gigabit speeds, our ex-
perience with Earlybird suggests that signature learning
at Gigabit speeds is equally viable. This leads us to hope



that other components of network security may also per-
mit wire-speed implementation and allow security func-
tions to be integrated – as a standard part of routers and
switches – into the very heart of the network.
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