
Anonymous RPC:Low-Latency Protection in a 64-Bit Address SpaceCurtis Yarvin, Richard Bukowski, and Thomas AndersonComputer Science DivisionUniversity of California at BerkeleyAbstractIn this paper, we propose a method of reducing the latency of cross-domain remote procedurecall (RPC). Traditional systems use separate address spaces to provide memory protectionbetween separate processes, but even with a highly optimized RPC system, the cost of switchingbetween address spaces can make cross-domain RPC's prohibitively expensive.Our approach is to use anonymity instead of hardware page tables for protection. Logicallyindependent memory segments are placed at random locations in the same address space andprotection domain. With 64-bit virtual addresses, it is unlikely that a process will be able tolocate any other segment by accidental or malicious memory probes; it impossible to corrupta segment without knowing its location. The bene�t is that a cross-domain RPC need notinvolve a hardware context switch. Measurements of our prototype implementation show thata round-trip null RPC takes only 7.7�s on an Intel 486-33.1 IntroductionA traditional function of operating systems is providing protection domains, or areas of memoryaccessible only by the process which owns them. UNIX, for example, keeps every process in an entirelyseparate address space; other systems use a shared address space, but have a di�erent page protection mapfor each process. Either way, keeping separate processes in separate protection domains provides safetyand security: protection from buggy processes which accidentally touch memory locations they don't own,and protection from malicious processes trying to read or alter the memory of other processes. Safety andsecurity are necessary in any modern operating system.Using virtual memory hardware to enforce protection is exible and powerful. However, it is alsoexpensive. Giving each process its own address space increases the amount of context-speci�c state, andthus the cost of context switches. Context-switch cost contributes little to system overhead on normalUNIX systems; but it sets a strong lower bound on the cost of IPC. At a minimum, two context switchesare required for each round-trip interprocess communication. This can limit the feasibility of splittinglogically independent, but closely cooperating, modules into separate protection domains.Software overhead in context switching once dominated the hardware cost. But, as Anderson et al.[1991] discuss, the former has decreased with processor improvements while the latter has not. The resultis that context-switch times for conventionally protected systems have remained static and large, and nowpose a signi�cant impediment to extremely �ne-grained IPC.One solution is lightweight threads which share a single protection domain. Thread switching andcommunication is fast, but threads are not safe or secure, and even when used in a trusted environmentare vulnerable to byzantine memory-corruption bugs.This work was supported in part by the National Science Foundation (CDA-8722788), the Digital Equipment Corporation(the Systems Research Center and the External Research Program), and the AT&T Foundation. Yarvin was supported by aCalifornia MICRO Fellowship, Bukowski by an NSF Graduate Fellowship, and Anderson by a National Science FoundationYoung Investigator Award.



Our goal is to build a system that combines the protection of UNIX processes and the speed ofthreads, to make IPC cheap enough to for heavy use. This could allow application interactions of a much�ner grain than are now feasible, and large software systems could be structured as groups of cooperatingprocesses instead of single monolithic entities.The key to our approach is Druschel and Peterson's observation [Druschel & Peterson 1992] that, in avery large, sparse address space, virtual address mappings can act as capabilities [Dennis & Van Horn 1966].If a process knows a segment's position in its address space, accessing it is trivial; without this knowledge,access is impossible. Protection can be accomplished by restricting the knowledge of segment mappings.We refer to this approach as anonymity.Anonymity was not feasible before the advent of 64-bit architectures. A 32-bit address space is smallenough that every valid page in the address space can be easily found through exhaustive search. Butsearching a 64-bit address space in this way is nontrivial. Thus, on a 64-bit machine, it is possible torandomly map unprotected pages in a shared region and use their virtual addresses as capabilities. Thisprovides a fast and exible way of sharing memory.Druschel and Peterson use their approach to pass bu�ers between user-level protocol layers in theirx-kernel system. We believe that anonymity can be used as a general-purpose protection mechanism,providing reasonable safety and security to independent processes sharing the same address space. Theprotection this provides is probabilistic, but e�ective. Between processes in the same address space, acontext switch is a simple matter of swapping registers and stacks, and can be performed with the samee�ciency as with lightweight threads.We have developed a simple prototype of anonymous protection; our implementation can perform around-trip null procedure call between two protected domains in only 7.7�s on an Intel 486-33.The rest of this paper discusses these topics in more detail. Section 2 shows how we can use alarge address space to implement probabilistic protection; Section 3 shows how we preserve anonymityduring cross-domain communication. Section 4 outlines some potential uses of anonymous protection,while Section 5 outlines some limitations of our approach. Section 6 presents performance results; Section 7considers related work. Section 8 summarizes our experiences.2 Implementing Anonymous ProtectionSafe and secure anonymity is not di�cult to implement, but requires some care.First we need a way to assign addresses. When a segment (any piece of memory that must be mappedcontiguously) is loaded, it needs a virtual address. If the segment is to remain anonymous, no process thatis not explicitly given this address may be allowed to discover or derive it.So we must select the address randomly. If the address is truly random, than no better algorithmexists to discover it than brute-force search. Unfortunately, there is no such thing as a truly randomnumber generator. The best we can do is a cryptosystem, such as DES [Nat 1977]; if the key is a securepassword or code, and the plaintext an allocation sequence number, then the resulting encrypted text willbe securely random. We transform the encrypted text into a virtual address and map the segment at thatposition (unless it would overlap another segment, in which case we compute another address).This ensures that the most e�cient algorithm for �nding other processes' data will be brute-forcesearch: iterating through virtual space and dereferencing every page (or every segment width, if segmentsare larger than pages), intentionally ignoring segmentation faults until a valid page is found. (The UNIXsignal handling machinery, for example, allows processes to catch and ignore segmentation fault signals; forsome applications this is necessary semantics.) If a process is allowed to inde�nitely ignore segmentationfaults, this procedure will eventually �nd all segments in the address space. Security is compromised whenit �nds the �rst one; we analyze how long this will take.



Memory Size 1s Delay 1ms Delay 1�s Delay16MB 24162 years 24 years 1.25 weeks256MB 1510 years 1.5 years 13.2 hours2GB 188 years 2.3 months 1.7 hours16GB 23 years 8.5 days 12 minutesTable 1: Time To Breach Anonymous Security Through Brute-Force SearchThe analysis has the following parameters: V , the size of the virtual address space, M , the amountof physical memory 1, and D, the delay a process incurs on a segmentation fault. To simplify the formula,both V and M are in units of the maximum segment size. The result of the analysis is T , the expectedtime for a malicious process to �nd a segment for which it does not have the capability.We �rst de�ne P (n), the probability that n memory probes will not �nd a mapped segment in n tries,or in other words, after nD seconds. P (n) is equal to the probability that, in a sequence of V references,all of the references to the M mapped segments are after the �rst n references:P (n) = � V � nM �� VM �To �nd T , we set P (n) = 0:50 and solve for nD. Table 1 presents some numerically calculated valuesfor T , as a function of the delay and the amount of mapped memory, assuming a 64-bit address space and8KByte segments. The segment size has little e�ect on the results presented in Table 1.So the processor's natural fault-handling delay is unlikely to su�ce, and the system must impose anadditional delay penalty. The penalty should not only put the faulting process to sleep; to keep a malicioususer from using multiple processes to search the address space, the penalty must also apply to all processesforked by the process's owner. However, this would still allow groups of users to divide the penalty.The penalty time is best set as local policy. Constraints are the desired level of security, the numberof users, and the added di�culty of working with faulty programs. For an currently average system, aconstant delay of 1 second would seem acceptable on all fronts. As the memory size or user base of asystem increases, it may be necessary to switch to adaptive delay functions which examine recent faulthistory. Fault history can also be examined to report suspicious patterns to the administrator.Thus, the security we provide is not perfect; it is only probabilistic. However, we believe that theprobabilities involved are low enough to make them of little concern when compared to external securityissues.Faulty software is also a threat; a faulty program may accidentally reference data it does not own.Normally, though, a failing program will stop once it causes a segmentation fault, and the likelihood thatany individual accidental misreference will be to an otherwise unknown segment is quite small. The safetywe provide is again probabilistic, not guaranteed, but the probabilities involved are minimal next to thechances of damage from external sources.1Note thatM is the amount of physical memory, not the amount of the virtual address space that is in use. When faultingin a page not in primary memory, the operating system can explicitly check the segment permissions at the time of the pagefault.



3 Anonymous RPCRunning separate processes in the same protection domain will provide fast context switching; to takeadvantage of this, we must devise an interprocess communication mechanism that preserves anonymity.TraditionalUNIX paradigms like pipes and sockets are not easy to use for �ne-grained communication;they involve considerable system and application overhead. A better scheme for our purposes is remoteprocedure call (RPC) [Birrell & Nelson 1984]. In RPC, a server process exports an interface to one of itsprocedures; any client process can then bind to the procedure as if it was linked directly into the client. LocalRPC has been extensively studied [Bershad et al. 1990, Bershad et al. 1991, Schroeder & Burrows 1990],and seems to be the most convenient communication paradigm for integrating software systems acrossdomains.Druschel and Peterson optimized their RPC system mainly for data throughput; we feel that thisgoal has been achieved, and optimize our anonymous RPC system { `ARPC' { for round-trip latency.3.1 Maintaining Anonymity During CommunicationIn principle, there is nothing to stop two processes running in the same address space from commu-nicating directly via procedure calls. Unfortunately, this cannot be used as a protected communicationprotocol. In a normal procedure call, the caller must know the procedure's address in the callee's codesegment; and must tell the callee its own address, to allow return. This is incompatible with anonymity.Even if code segments are write-protected and all data segregated, a malicious process can trace throughcode to �nd data.To preserve anonymity, the path of control must ow through some intermediary: an entity which isitself protected, aware of the RPC binding, and able to manage control and data ow without revealingeither party's address to the other.The most obvious intermediary is the kernel. Once a process traps to the kernel, it loses control of itsexecution, and can be shifted to any domain without having learned where that domain is. This is simple;unfortunately, it is slow. Kernel traps are typically an order of magnitude more expensive than procedurecalls. A better system can be devised if the host architecture supports execute-only page protection.Execute-only code lends itself well to anonymity; jumping to an execute-only entry point is anonymousfor both sides. The caller knows the address of the callee's text, but cannot damage that text or discoverwhere the data might be. We cannot give the caller the actual entry point in the callee's code, however; ajump into an arbitrary point in callee code might compromise data. Instead, we use an execute-only jumptable, synthesized to contain the entry point as an immediate operand. The cost of anonymity is an extrajump. 2The data transfer protocol must also be modi�ed to preserve anonymity. In a normal procedure call,the \server" uses the same stack as the \client" for local storage. It is therefore easy for either to corruptthe other by accidentally or maliciously writing into the wrong stack frame. Thus our RPC protocol mustinclude a stack switch on call and on return. We must also clear registers which may contain data thatcan compromise anonymity.Otherwise, anonymous RPC bears a close resemblance to ordinary procedure call, and can in somecases be performed with comparable e�ciency.3.2 ARPC ProtocolsIn this section we describe our ARPC protocols in considerable detail. A local RPC protocol can beconstructed using either intermediary scheme. As an optimization, we design not one protocol but several,dividing RPC into several cases based on the level of trust between the client and server processes.2Execute-only anonymity also requires an architecture on which branches are atomic; that is, they fully commit theprocessor to execution at the branch point. Some RISC architectures allow the processor to take a branch, execute aninstruction, and then have the branch nulli�ed by another branch in the delay slot.



If process A trusts that it is communicating with a non-malicious, but possibly buggy, process B,then process A can rely on the compiler and the RPC stub generator, instead of the kernel, to preserveits anonymity. This allows a more e�cient implementation of cross-domain RPC. Malicious users cancircumvent these utilities, but benign users are unlikely to do so accidentally.3.2.1 BindingBefore any RPC calls can be performed, the client must bind to the server procedure. Binding is onlyperformed once for each client, server, and procedure; thus it it need not be optimized as heavily as thecall sequence itself.The server initiates the binding sequence, by registering an entry point; it gives the RPC managerthe name and address of the procedure. Once the entry point is present, the client can connect, telling theRPC manager the name of the procedure it wants to access. A permission check may be imposed on theconnection; if it succeeds, the RPC manager generates the binding.At bind time, the RPC manager creates any necessary intermediaries, and reports the RPC entry (beit an execute-only jump table, a kernel trap, or a direct entry into the server) to the client. The manageralso creates an execution stack for use in executing calls through the new binding. All our ARPC protocolsstatically allocate one stack per procedure binding. This may seem wasteful of memory, but stacks can becached and unmapped when not in frequent use. The static approach eliminates the need for a dynamicstack allocation on every call.3.2.2 ARPC, Mutual-DistrustOur �rst protocol is for the most general case, when neither client nor server trusts the other. In thiscase we cannot jump directly from client to server, even anonymously; we also have to save the client'sstack and return address. This must be done in the intermediary. 3 The protocol is outlined in Figure 1.push arguments and return address on client stackenter intermediarysave return addresssave registersclear registerssave address of client stackcopy arguments to server stackswitch to server stackleave intermediary to server procedureexecute server procedureenter intermediarycopy return data to client stackswitch to client stackrestore saved registersclear unsaved registersleave intermediary to client returnFigure 1: ARPC Protocol, Mutual Distrust Between Client and Server3If execute-only page protection is providing the anonymity, we jump to the intermediary through through an execute-onlyjump table.



For cross-domain procedure calls with few arguments, the dominant cost is saving, clearing, andrestoring the registers. This is particularly true on modern processors with large register sets. For instance,on machines with register windows, the entire register set, not only the current window, must be saved,cleared, and restored on each call and return.Marshaling of indirect parameters may not be necessary if the client organizes its memory properly.Since all addresses in the client are valid in the server, the client can keep data structures to be exported ina segment mapped separately from its private data, and pass pointers. Only if this is infeasible will explicitmarshaling be needed. Direct parameters are marshaled on the client stack by the ordinary procedure-callprotocol.Note that in the absence of marshaling and the presence of execute-only code, no client stub isrequired. The client's view of the remote call can simply be a function pointer whose target address is thejump instruction in the anonymity table, and a generator-supplied header �le can de�ne its dereference asthe function call. The ordinary argument-pushing semantics of a function call are exactly what we want.3.2.3 ARPC, Server Not MaliciousThe second protocol applies to a much more common case, when the server is trusted but the client isnot. This might be the case, for example, in a small-kernel operating system. The protocol is in Figure 2.save live registerspush arguments and return address on stackcall through intermediary to serverpush address of client stackswitch to server stackexecute body of server procedurepop address of client stackpush return data onto client stackclear sensitive registersreturn through intermediary to client procedurerestore live registersFigure 2: ARPC Protocol, Server Not MaliciousTrusting the server not to be malicious has a considerable performance advantage. The client cananonymously jump (through the kernel or a jump table) directly to the server. In the simple case, thejump would be to a stub which would then marshal the client arguments onto the server stack. But wecan achieve better performance by using an RPC generator to do a simple source code transformation ofthe server procedure so that it reads its arguments directly o� the client stack; in this case, no copyingis required. The RPC generator parses the server procedure, converts all argument references into clientstack references, adds the instruction to save the client stack, and replaces ordinary returns with RPCreturns.This protocol is considerably more e�cient than the mutual-distrust version. However, some addi-tional work is required to make it protocol safe and secure.Safety could be compromised if a register containing a client pointer became the initial value of aserver variable. The solution is to ensure that all automatic server variables are initialized before use. Aprogram which relies on a the value of an uninitialized variable is unlikely to be correct, and most moderncompilers can at least warn of such errors.



Likewise, security could be compromised by server data passing through registers back to the client.This is a more serious problem. The server must clear all sensitive registers before returning; if compileranalysis cannot identify which registers are sensitive, all registers must be cleared.Another safety hole is the client stack. Although we allow the server to access its arguments on theclient stack (to eliminate copying), we do not want the server to be able to inadvertently `smash' the clientstack. The solution is to prevent the server procedure from taking the address of any of its arguments; thiscan be enforced in the RPC generator.3.2.4 ARPC, Neither Side MaliciousFinally, our third case: a protocol for cases in which both client and server are trusted to be non-malicious, in Figure 3. save live registerspush arguments and return address on stackcall directly to server procedurepush address of client stackswitch to server stackexecute body of server procedurepop address of client stackpush return data onto client stackreturn directly to client procedurerestore live registersFigure 3: ARPC Protocol, Neither Side MaliciousThe only operation being performed here which is not part of a normal procedure call (assuming thecaller-save register protocol) is the stack switch. And the protocol is safe; data may cross in registers, buta correctly-compiled program will never allow it to be addressed by a variable.3.2.5 Service ManagementLike LRPC [Bershad et al. 1990], ARPC is implemented by running the server procedure in the clientthread. Any alternative would involve a slow interaction with operating system data structures. The logicalsemantics of RPC, however, imply a sleeping service thread which awakes to run the procedure and returnsto sleep when it �nishes. Reconciling these models requires some juggling.One problem comes when the server crashes. We do not want the client thread to die with the server,because it was not the client who caused the error. Instead, the RPC call should return with an errorcondition.Our solution is expensive, but not inappropriate given that such faults should be a rare condition. Wecheck all the server's incoming intermediaries for saved stacks, and restore the client threads from those;if the server has any outgoing calls, we zero the stack in the intermediary so that the call faults when itreturns.This does not work for the mutual-trust protocol, which has no intermediary and saves the clientstack address on the server stack. If separate crash recovery is required, a separate word must be reservedfor the client stack. The separate-recovery model, in any case, is often not the preferred semantics formutual-trust uses.Synchronizing stack allocation is another problem. All of these routines assume one proviso: thatonly one thread of control, including past levels of recursion, is using the same RPC binding at any time.The assumption is convenient because it allows stacks to be statically allocated. If multiple threads must



use the same RPC binding, however, they will have to synchronize externally, as they would for anysingle-consumer resource.Also, in systems which support threads, a simple lock is necessary at the beginning of untrusted-client entry points, to prevent malicious clients from sending multiple threads through the same bindingand causing a stack collision.4 Uses of Anonymous RPCARPC can perform many functions within a system. It can be installed at the user level, to provideadditional safety within large applications that are externally protected by traditional protection domains;or it can be installed at the system level, as the main interprocess protection system; or it can be usedonly for some specialized tasks which require especially low latency. We consider each.4.1 User-Level ARPCMany large programs are written in languages, such as C, which do not guarantee the internal safetyof memory. That is, code in one module may inadvertently corrupt the unrelated data of another, creatinga bug which is hard to �nd in single-threaded code, and almost intractable in a multithreaded program.This is an unpleasant possibility, but software designers accept it because of the high performancepenalty a safe implementation would incur. In conventional systems, safety can only be ensured by activelychecking each pointer dereference, or by placing separate modules in separate hardware protection domains.Either solution incurs a substantial performance penalty and neither is widely used.ARPC o�ers a convenient medium. When neither side is malicious, the cost of an ARPC call is littlegreater than the cost of an ordinary procedure call. In most cases, replacing procedure calls with ARPCcalls will have little impact on performance.We can use this principle to increase internal safety in large software systems. Logically separatemodules, and their heaps, can be placed in separate ARPC domains, providing strong probabilistic safetyat minimal cost.Such a transformation can be installed transparently in a C compiler and linker, providing increasedsafety invisibly to the programmer. It can also be used in compilers for languages that do guaranteememory safety, allowing them to maintain their safe semantics while providing performance competitivewith C. Protecting small objects can waste memory: an anonymous object smaller than a page must stilltake take up an entire page of physical memory.4.2 ARPC as an Operating System BaseWith some care, ARPC can be used as the sole process protection system in a traditional UNIX-style operating system. This would accelerate communication between user-level processes; it might, forexample, allow fast, �ne-grained drawing interaction between imaging software and a display manager.It can also be used, in a more radical design, to improve the internal structure of the operat-ing system. ARPC allows considerable kernel decomposition, even beyond the usual microkernel levelof [Young et al. 1987]; all traditional system services { �lesystem, communication, scheduling, memorymanagement, and device drivers { can be performed at user level.This is possible because, in an ARPC system, all common operating systems primitives can beexecuted without supervisor privilege. Context switches do not require manipulation of the virtual memoryhardware, and process authentication can be performed by giving system servers separate ARPC entrypoints for each process. Even page tables and other hardware-accessed data structures can be mapped intothe user address space and used directly by user-level servers. Memory-mapped devices can be treated thesame way. The only functions that must be performed at supervisor level are system initialization andexecution of privileged instructions. A very small kernel can handle the latter, verifying that requests comefrom genuine system servers by checking the source address of the trap.



This model has some practical de�ciencies. UNIX semantics require separate address spaces for siblingprocesses after a fork(); although the extra space can be discarded upon the �rst exec(), handling it mayprove a considerable design nuisance.We also caution against using ARPC as the sole protection device in applications where local se-curity is mission-critical. In an ARPC-based system, it seems too easy for small software errors inimplementation { the accidental release of capabilities { to leave obscure security holes that could beexploited by dedicated intruders. This is true in any system that uses cryptographic capabilities { e.g.Amoeba [Mullender et al. 1990] { but especially so in ARPC, where every pointer is a capability.4.3 Limited Uses of ARPCTo be useful, ARPC need not be the main protection device in a system. Its use can be restricted tospecial circumstances where speed is important, with traditional hardware domains used in all other placeswhere protection is needed.One such use might be network communications. Some new networks [Anderson et al. 1992] o�erlatency on the order of microseconds, a useful feature which traditional software architectures have di�cultyexporting to the user. An ARPC solution would be to map the network device anonymously and give itsaddress to a user-level device manager, which would in turn accept ARPC calls. Network-critical processeswould have to share an address space with the device manager and the device; all other tasks could havetheir own spaces.5 Some Problems and Disadvantages of ARPCOne potential problem with an ARPC-based environment is that image initialization is slower; sinceprograms must be remapped randomly every time they are instantiated, they must be relocated on execu-tion. This is a concern, but the latency of initialization is already great and relocation can be performedas part of copying the program into memory.An anonymous address space may be very sparse and di�cult to manage. If logical domains becomeas small as one page, a traditional multilevel page-table scheme will be prohibitively expensive. However,inverted page tables [IBM 1990] will work; as will a software-loaded TLB [Kane 1987] backed by a simplesearch scheme such as binary tree or hash table.Tagging TLBs and virtual caches with process identi�ers would decrease the cost of context switchesand makes conventional protection more competitive with ARPC. Tagged TLBs and caches eliminate theneed to ush state on context switch, one of the most expensive components of a traditional domain switch.However, not many architectures support tagged TLB's; even if they do, the switch must still be performedin supervisor mode.It is also uncertain whether the imbalance of virtual and physical memory will continue. One cannotpredict whether or not the industry will move to a 128-bit bus before available physical memory approaches64 bits. It is worth noting, however, than in the past bus size has increased faster than physical memorysize. Also, ARPC precludes other uses for the 64-bit address space which may be superior. Large databases[Stonebraker & Dozier 1991] or distributed systems [Carter et al. 1992] can use most of a 64-bit space.6 Performance ResultsWe implemented a test prototype of anonymity on an Intel 486-33 machine, capable of about 15SPECint. The base operating system was Linux 0.98.4, a copylefted POSIX clone for the 386 architec-ture [Torvalds 1992]. The 486 is a 32-bit machine, and as such a truly functional implementation wasimpossible; however, we did our best to assure that practical concerns were treated as realistically aspossible.We did not convert the entire system to use a shared virtual address space; only specially-aggedrelocatable executables were run in the same address space. Even on the 32-bit 486, it would have been



Protocol Time (�s) Processor MIPS �s/MIPSRC RPC 454 C-VAX 2.7 1226Mach RPC 95 R2000 10 950LRPC 157 C-VAX 2.7 424URPC 93 C-VAX 2.7 251ARPC 7.7 i486-33 15 116Table 2: Null RPC Performance Resultsfeasible to run all processes in the same space, but Linux is distributed largely in binary form, and �ndingand rebuilding source for all our utilities to make them relocatable would have been a task not worth thebene�t.Under this system we chose to test the slowest possible version of RPC; the protocol for two mutuallyuntrusted processes, implemented without the use of execute-only code. Although the intermediary wasaccessed by traps, it ran in user mode.Our time for a user-to-user round-trip null RPC in C was 7.7 microseconds. Of this, 3.4�s were dueto the user-level traps; 2.4�s to segment peculiarities associated with the Linux implementation; 0.5�s tosave, clear, and restore registers; and 1.8� for overhead in the intermediate region. That overhead was 29instructions; of them, 15 were involved in loading static parameters, and could be eliminated were we tosynthesize the intermediary for each bind [Massalin & Pu 1989]. This is somewhat more overhead than wehad hoped for, but we consider it acceptable.It is di�cult to �nd comparable performance �gures for other RPC systems, since we do not know ofany other optimized local RPC results on the same architecture. Instead, Table 2 compares our performanceto that of four other RPC implementations running on other hardware: Mach RPC [Bershad et al. 1992],SRC RPC [Schroeder & Burrows 1990], LRPC [Bershad et al. 1990], and URPC [Bershad et al. 1991].These are all optimized RPC implementations; commercial RPC implementations are frequently anotherorder of magnitude slower.7 Related WorkThe most closely related work to ours is Druschel and Peterson's fbufs, packet bu�ers mapped in ashared anonymous space [Druschel & Peterson 1992]. User-level protocols communicate via fbufs to ex-change packets at very high speed. Fbufs are a much more robust and conservative use of anonymity; theuser-level protocol layers which use fbufs to communicate each have their own protection domain. Perfor-mance improvements are achieved by increased exibility and e�ciency in bu�er management. Bu�ers donot need to be remapped in the middle of a transfer, nor must they be assigned to speci�c protocol pairsbeforehand. Fbufs achieve data transfer rates near the theoretical limits of memory.Other systems, like Pilot [Redell et al. 1980], use a single address space without separate hardwaredomains, and rely for protection on languages which restrict the use of pointers. Pilot was designed forinstallations which do not need security, like some personal computers, and thus bene�ts from the abilityto optimize its protection mechanisms only for safety.Wahbe et al. [1993] propose a di�erent approach to enforcing protection. Instead of relying on hard-ware, or on anonymity, they enforce protection in software by installing extra instructions into the objectcode to prevent out-of-bounds pointer dereferences. Unlike Pilot, Wahbe et al.'s approach is language-independent because the protection is enforced at runtime, not in the compiler. The bene�t is thatseparate processes can run in the same address space and communicate e�ciently, at the expense of aslight slowdown in memory operations.



The Opal system [Chase et al. 1992] also uses a 64-bit shared address space, but each Opal task hasits own protection domain; the goal is uniformity of naming. Using identical addresses to reference the sameobjects in all domains allows increased exibility in sharing complex data structures. A context switch,however, still involves switching page tables. Other systems also follow this pattern [Carter et al. 1992].8 ConclusionAnonymous RPC exploits a simple property of memory systems: that it is impossible to address datawhose address is unknown. With the advent of 64-bit machines, it is now possible to take advantage ofthis property, by placing segments at random locations in a very large, sparse address space. This allowse�cient interprocess communication without expensive hardware domains.We believe that ARPC is a useful technique for high-speed communication between closely coupleddomains. Even if it is not used to organize an entire operating system, it can be used as to protect individualsubsystems which use especially �ne-grained communication. We suggest that software designers consider itas an option, and that hardware designers consider including features, such as execute-only page protection,which help its implementation.9 AcknowledgementsWe would like to thank Peter Druschel, Dave Keppel, and Ed Lazowska for their helpful commentson this paper.References[Anderson et al. 1991] Anderson, T., Levy, H., Bershad, B., and Lazowska, E. The Interaction of Archi-tecture and Operating System Design. In Proceedings of the 4th International Conference onArchitectural Support for Programming Languages and Operating Systems, pp. 108{120, April1991.[Anderson et al. 1992] Anderson, T., Owicki, S., Saxe, J., and Thacker, C. High Speed Switch Schedulingfor Local Area Networks. In Proceedings of the 5th International Conference on ArchitecturalSupport for Programming Languages and Operating Systems, pp. 98{110, October 1992.[Bershad et al. 1990] Bershad, B., Anderson, T., Lazowska, E., and Levy, H. Lightweight Remote Proce-dure Call. ACM Transactions on Computer Systems, 8(1), February 1990.[Bershad et al. 1991] Bershad, B., Anderson, T., Lazowska, E., and Levy, H. User-Level InterprocessCommunication for Shared-Memory Multiprocessors. ACM Transactions on Computer Systems,9(2), May 1991.[Bershad et al. 1992] Bershad, B., Draves, R., and Forin, A. Using Microbenchmarks to Evaluate SystemPerformance. In Proceedings of the Third Workshop on Workstation Operating Systems, April1992.[Birrell & Nelson 1984] Birrell, A. and Nelson, B. Implementing Remote Procedure Calls. ACM Transac-tions on Computer Systems, 2(1):39{59, February 1984.[Carter et al. 1992] Carter, J. B., Cox, A. L., Johnson, D. B., and Zwaenepoel, W. Distributed OperatingSystems Based on a Protected Global Address Space. In Proceedings of the Third Workshop onWorkstation Operating Systems, April 1992.[Chase et al. 1992] Chase, J., Levy, H., Baker-Harvey, M., and Lazowska, E. Opal: A Single AddressSpace System for 64-bit Architectures. In Proceedings of the Third Workshop on WorkstationOperating Systems, April 1992.[Dennis & Van Horn 1966] Dennis, J. B. and Van Horn, E. C. Programming Semantics for Multipro-grammed Computations. Communications of the ACM, 9(3):143{155, March 1966.



[Druschel & Peterson 1992] Druschel, P. and Peterson, L. L. High Performance Cross-Domain Data Trans-fer. Technical report, Department of Computer Science, University of Arizona, 1992. TechnicalReport 92-11.[IBM 1990] IBM Corporation. POWER Processor Architecture, 1990.[Kane 1987] Kane, G. MIPS R2000 RISC Architecture. Prentice Hall, 1987.[Massalin & Pu 1989] Massalin, H. and Pu, C. Threads and Input/Output in the Synthesis Kernel. In Pro-ceedings of the 12th ACM Symposium on Operating Systems Principles, pp. 191{201, December1989.[Mullender et al. 1990] Mullender, S. J., van Rossum, G., Tanenbaum, A. S., van Renesse, R., and vanStaveren, H. Amoeba: A Distributed Operating System for the 1990s. IEEE Computer Maga-zine, 23(5):44{54, May 1990.[Nat 1977] National Bureau of Standards. The Data Encryption System, 1977. Federal Information Pro-cessing Standards Publication 46.[Redell et al. 1980] Redell, D. D., Dalal, Y. K., Horsley, T. R., Lauer, H. C., Lynch, W. C., McJones,P. R., Murray, H. G., and Purcell, S. C. Pilot: An Operating System for a Personal Computer.Communications of the ACM, 23(2):81{92, February 1980.[Schroeder & Burrows 1990] Schroeder, M. and Burrows, M. Performance of Firey RPC. ACM Transac-tions on Computer Systems, 8(1):1{17, February 1990.[Stonebraker & Dozier 1991] Stonebraker, M. and Dozier, J. Sequoia 2000: Large Capacity Object Serversto Support Global Change Research. Technical report, Computer Science Division, Universityof California, Berkeley, July 1991.[Torvalds 1992] Torvalds, L. Free Unix for the 386, 1992. �nger torvalds@kruuna.helsinki.�.[Wahbe et al. 1993] Wahbe, R., Lucco, S., Anderson, T., and Graham, S. Low Latency RPC Via Software-Enforced Protection Domains. Technical report, Computer Science Division, University of Cal-ifornia, Berkeley, April 1993.[Young et al. 1987] Young, M., Tevanian, A., Rashid, R., Golub, D., Eppinger, J., Chew, J., Bolosky, W.,Black, D., and Baron, R. The Duality of Memory and Communication in the Implementation ofa Multiprocessor Operating System. In Proceedings of the 11th ACM Symposium on OperatingSystems Principles, pp. 63{76, November 1987.10 Author InformationCurtis Yarvin is a �rst-year graduate student in the Computer Science Division at the Universityof California at Berkeley. He graduated from Brown University in 1992. His e-mail address is \cur-tis@cs.berkeley.edu".Richard Bukowski is a �rst-year graduate student in Computer Science Division at the Univer-sity of California at Berkeley. He graduated from Cornell University in 1992. His e-mail address is\bukowski@cs.berkeley.edu".Thomas Anderson is an Assistant Professor in the Computer Science Division at the University ofCalifornia at Berkeley. He received his A.B. in philosophy from Harvard University in 1983 and his M.S.and Ph.D. in computer science from the University of Washington in 1989 and 1991, respectively. He wonan NSF Young Investigator Award in 1992, and he co-authored award papers at the 1989 SIGMETRICSConference, the 1989 and 1991 Symposia on Operating Systems Principles, the 1992 ASPLOS Conference,and the 1993 Winter USENIX Conference. His interests include operating systems, computer architecture,multiprocessors, high speed networks, massive storage systems, and computer science education. His e-mailaddress is \tea@cs.berkeley.edu".


