FSU COP 4530 / CGS 5425 (Fall 2003)
Data Structures, Algorithms, and Generic Programming

Assignment 6: Huffman Code Generation (Due 12/5/2003)

Teaching assistants

Zhiqian Hu (zhiqiahu@cs.fsu.edu)
Nobuyasu Fukuhara (nff0150@garnet.acns.fsu.edu)

Office:
CS Majors Lab

Office: CS Majors Lab

Office hours:
T 3:00pm – 5:00pm
Office hours: M 10:00am – 11:00am, W 2:00pm – 3:00pm

Educational Objectives: Apply the binary tree data structure and the heap data structure to generate Huffman code, which is commonly used in data compression schemes.
Assignment: Write a program that takes a text file (in ASCII) and generates the Huffman code for characters used in that file (include white spaces, carriage returns, and so on).
Deliverables: Use project6submit.sh to turn in your development log, documentations, and all files that are needed to build your software (including the makefile) on 12/5. In addition, you will need to submit an interface and pseudocode design of your software in class on 11/24.
Requirements:

1. Create a subdirectory called proj6. Make sure that your code distribution directories are up to date by invoking your “update” command.

2. Your makefile, header files, and source files should be placed in the proj6 directory. You should not use code from the class code distribution. Instead, please use STL classes and implement any other classes yourself.
3. Your code will take the file name of a text file as its command line argument. It will then analyze the frequency of occurrences for each ASCII character. You can use a tree node to store an ASCII character and a corresponding counter to track its occurrences in the file.

4. You will design and implement a modified heap data structure, so you can retrieve a node with the least counter value from the front of the heap.
5. Construct the Huffman encoding tree bottom up by using the following steps:

· Find and remove two nodes with the smallest counter values from the heap.

· Create a parent node and link those two nodes as its children. The parent’s counter value is the sum of its children’s counter values.
· Insert the parent node back to the heap.

· Repeat until only the root of the Huffman encoding tree remains in the heap.

6. Traverse the tree and print out the code for each character.

Sample Session:

Suppose you have a file, test, which contains a word ‘tallahassee’.

Unix prompt> proj6 test
e 00

 010

t 0110

h 0111

a 10

s 110

l 111
Note that ‘a’ and ‘e’ have the highest frequency and the shortest code. The second line is odd looking because of the carriage return ‘\n’ character. Your output does not need to match the code. However, the length of code should be inversely proportional to the frequency of occurrences for the corresponding character. Also, the code for a character should not be the prefix for another code. In this case, 00 is the code for ‘e’ and not a prefix for other characters. On the other hand, if you had 01 for ‘e’, the code would no longer be legitimate, because 00 is the prefix for 010, 0110, and 0111.
Bonus (5pts):
Use the Huffman code you generated to perform compression and decompression on ASCII text files. You will need to use the bitvector class you built back in assignment 1.
