FSU COP 4530 / CGS 5425 (Fall 2003)
Data Structures, Algorithms, and Generic Programming

Assignment 2: A Simple Address Book (Due 9/26/2003)

Teaching assistants

Zhiqian Hu (zhiqiahu@cs.fsu.edu)
Nobuyasu Fukuhara (nff0150@garnet.acns.fsu.edu)

Office:
CS Majors Lab

Office: CS Majors Lab

Office hours:
T 3:00pm – 5:00pm
Office hours: M 10:00am – 11:00am, W 2:00pm – 3:00pm

Educational Objectives: Gain further experience in design and implementation of C++ classes, manage program development using make, and apply the use of hash functions.

Statement of Work: Write a simple address book using a hash table, which allows insertion, lookup and removal of address entries.

Deliverables: Turn in makefile, hashtable.h, hashtable.cpp, and main.cpp using project2submit.sh (due 9/26). In each lecture, you need to turn in a hardcopy of your cumulative development log. For example, on 9/17, you need to turn in the log that documents the development from 9/15 to 9/17. On 9/22, you need to turn in the log that documents the development from 9/15 to 9/22. For each day that you worked, please list the features you implemented, bugs you fixed, and the help you obtained from others.

Requirements:

1. Create a subdirectory called proj2. Make sure that your code distribution directories are up to date by invoking your “update” command.

2. For this project, you need to create the following files: Makefile, hashtable.h, hashtable.cpp, and main.cpp. All these files should be placed in the proj2 directory.

3. The file hashtable.h must contain the definition of the class HashTable, and hashtable.cpp must contain the implementation of the HashTable methods.

4. The class HashTable should provide the following services through its public interface:

// insert an address with associated name

bool Insert(const string &name, const string &address);

// lookup an address by name

bool Lookup(const string &name, string *address) const;

// remove an address by name

string Remove(const string &name);

5. The HashTable constructor should take an unsigned int to specify the initial size of the hash table. The default size is 5.

6. The Insert function adds an address into the hash table with its associated name. Note that name and address may contain white spaces.The Insert function should return false if the operation is not successful (e.g., the name is already in the table); true, otherwise.

7. For the Insert function, if name A is hashed to a table entry that is currently occupied by name B (it is commonly referred as a collision), you need to design a scheme to store the name A in an alternative entry. Make sure that your scheme allows name A to be later retrieved through the same hashing scheme, even if name B is removed.

8. The Insert function returns false when the table is full. As extra credits (5pts), you can enhance your hash table to dynamically double the table size whenever the table is full and half the table size whenever the number of occupied entry is fewer than half of the total table entries.

9. The Lookup function returns true if the name is found; false, otherwise. The caller obtains the result through the address argument.

10. The Remove function removes an address by name and returns the address.

11. Your hash function should take a sequence of characters (name) as input. The computation of the hash value should involve all characters and their ordering information. Short names should not result in clustering in the hash table.

12. The name of your executable file is hash.x.

Milestones:

1. Create all files. Make sure that all .cpp files include the proper header files. All .h files include the #ifndef directives. Create a simple main() in main.cpp. Edit your Makefile to make sure that it can make and make clean.

2. Add the class definitions into the header files. Make sure that you can compile at every step.

3. Write the code skeleton in your .cpp files. Each file should contain nothing but a simple print statement. Compile your program to track down problems with your interface design.

4. Write pseudo code (comments) in each skeleton function.

5. Implement the constructor/deconstructor routines. Add private functions as necessary. Compile and test those routines.

6. Implement a dump routine to show the states of a hash table.

7. Implement the read accessor routines to the private data members. Compile and test those routines.

8. Implement the write accessor routines to the private data members. Compile and test those routines.

9. Implement the Insert routine with associated hash function. Try the hash function in isolation to see if the generated values are not clustered. At this step, ignore the collision handling.

10. Implement the collision handling of the Insert routine.

11. Implement the Lookup routine. Compile and test the routine.

12. Implement the Remove routine. Compile and test the routine.

You should try to accomplish 1 to 2 milestones a day. Start your project early!

