
Reducing Energy Consumption of Disk Storage Using Power-Aware Cache

Management

Qingbo Zhu, Francis M. David, Christo F. Devaraj, Zhenmin Li, Yuanyuan Zhou and Pei Cao*
Department of Computer Science

University of Illinois at Urbana Champaign, Urbana, IL 61801
�qzhu1, fdavid, devaraj, zli4, yyzhou�@uiuc.edu

*Cisco Systems Inc., San Jose, CA 95134
cao@cisco.com

Abstract

Reducing energy consumption is an important issue for data
centers. Among the various components of a data center,
storage is one of the biggest consumers of energy. Previous
studies have shown that the average idle period for a server
disk in a data center is very small compared to the time
taken to spin down and spin up. This significantly limits the
effectiveness of disk power management schemes.

This paper proposes several power-aware storage cache
management algorithms that provide more opportunities for
the underlying disk power management schemes to save en-
ergy. More specifically, we present an off-line power-aware
greedy algorithm that is more energy-efficient than Belady’s
off-line algorithm (which minimizes cache misses only). We
also propose an online power-aware cache replacement al-
gorithm. Our trace-driven simulations show that, compared
to LRU, our algorithm saves 16% more disk energy and pro-
vides 50% better average response time for OLTP I/O work-
loads. We have also investigated the effects of four storage
cache write policies on disk energy consumption.

1 Introduction

Trends in Internet infrastructure are driving a shift toward
service-based computing. Data centers will play a key role
in this new architecture since they are commonly used to
provide a wide variety of services including web hosting,
application services, outsourced storage, electronic mar-
kets, and other network services. A data center usually
consists of thousands of components including processors,
memory chips, disks and network hardware. Storage is one
of the biggest components in data centers. Storage demand
is also growing by 60% annually [33]. By 2008, data centers
will manage 10 times as much data as they do today.

The steady growth of data centers introduces a significant
problem: energy consumption. Data centers typically have
very high power requirements. According to EUN (Energy

User News) [32], today’s data centers have power require-
ments that range from 75 W/ft� for small- to medium-sized
enterprises to 150-200 W/ft� for typical service providers.
In the future, this is predicted to increase to 200-300 W/ft�.
These increasing power requirements are driving energy
costs up as much as 25% annually and making it a growing
consideration in the TCO (total cost of ownership) for a data
center [33]. High energy consumption also prevents easy
expansion and has negative environmental implications.

Among various components of a data center, storage is
one of the biggest consumers of energy. A recent indus-
try report [1] shows that storage devices account for almost
27% of the total energy consumed by a data center. This
problem is exacerbated by the availability of faster disks
with higher power needs as well as the increasing shift from
tape backups to disk backups for better performance.

Even though a lot of research has been carried out in disk
power management, most of it has focused on a single disk
for mobile devices. So far only a few studies [8, 19, 18, 5]
have addressed the energy problem for storage systems at
the scale of data centers. These studies have shown that
the average idle time between requests for server disks is
small compared to the time taken to spin down and spin up.
This significantly limits the energy that can be saved since
the disks have to be spinning and ready almost all the time.
To address this problem, Gurumurthi et al. have proposed
the use of multi-speed disks with smaller spin-up and spin-
down times to reduce disk energy consumption for server
workloads [18]. They have proposed a power model for this
scheme and have shown promising results using synthetic
workloads. In another study, Carrera and Bianchini at Rut-
gers have studied using combinations of laptop disks and
server disks and also suggested using multiple rotational
speed disks to save energy [5].

Not all accesses to a storage system go to disks. A typ-
ical architecture for a modern storage system is shown in
Figure 1. Many modern storage systems use a large storage
cache to reduce the number of disk accesses and improve

Processors
L1/L2 Caches

Memory
(Volatile or Non-volatile)

Controller Controller…

Database Server
(IBM DB2, MS-SQL, Oracle,...)

File Server
(NFS, CIFS,…)

…

S
torage A

rea N
etw

ork

Storage System

…

Figure 1: Modern storage architecture

performance. For example, the EMC Symmetrix storage
system with a capacity of 10-50 TBytes can be configured
with up-to 128 GB of non-volatile memory as the storage
cache [13]. The IBM ESS system can also have up-to 64 GB
of storage cache [23]. Different from those small (usually
1-4 MB) buffers on a SCSI disk, which are mainly used for
read-ahead purposes, these large caches are used to cache
blocks for future accesses. Therefore, the cache replace-
ment algorithm plays a very important role in a storage sys-
tem [42, 37, 31, 7].

The storage cache management policy influences the se-
quence of requests that access disks. Different cache man-
agement policies may generate different disk request se-
quences, which directly affects disk energy consumption.
In other words, by changing the cache management scheme,
it is possible to change the average idle time between disk
requests, thus providing more opportunities for the disk
power management scheme to save energy. For example, if
the cache replacement algorithm can selectively keep some
blocks from a particular disk in the cache (without signifi-
cantly increasing the number of misses to other disks), that
disk can stay in a low power mode longer. Since storage
caches are very critical to storage system performance, our
study assumes that storage caches are active all the time.

Besides disk energy consumption, I/O response time is
another concern. If underlying disks use power manage-
ment schemes, some requests can be significantly delayed
because it takes a long time (a few seconds) for a disk to
spin up from a low power mode to the active mode. Conse-
quently, if a cache replacement algorithm is only designed
to minimize the number of cache misses and ignores the
underlying disk power management schemes, it can result
in very high I/O response time. Therefore, it is impor-
tant to design cache management schemes that are power-
aware (aware of the underlying disk energy consumption
and power management schemes).

This paper studies the effects of storage cache manage-
ment schemes on disk energy consumption and proposes
power-aware cache management schemes. We look into
both cache management for read accesses and for write ac-
cesses. Specifically:

� For read accesses, we present an off-line power-aware
greedy algorithm. Our trace-driven simulations show
that the greedy algorithm is more energy-efficient than

Belady’s off-line algorithm (which minimizes cache
misses only) while still providing acceptable average
response time.

� Based on the insights from our analysis of offline algo-
rithms, we propose an online power-aware LRU cache
replacement algorithm called PA-LRU. Simulation re-
sults show that PA-LRU can reduce disk energy con-
sumption by 16% compared to LRU and also provide
50% better average response time for on-line transac-
tion processing (OLTP) workloads.

� For write accesses, we study the effects of storage
cache write policies on disk energy consumption. Our
results show that write-back can save up-to 20% more
energy compared to write-through. Write-back with
eager updates further reduces disk energy consumption
of write-back up-to 45%. We also propose a policy
called write-through with deferred updates that reduce
energy consumption up-to 55% while still providing
persistency semantics comparable to write-through.

The paper is organized as follows: The next section
briefly describes the background. Section 3 discusses the
off-line power-aware greedy algorithm. Section 4 presents
the on-line power-aware algorithm, followed by simula-
tion results for power-aware replacement algorithms in Sec-
tion 5. The sections above deal with read accesses. Sec-
tion 6 discusses the effects of four storage cache write poli-
cies on energy consumption. Section 7 summarizes related
work. Finally, Section 8 concludes the paper.

2 Background

2.1 Disk Power Model

To reduce energy consumption, modern disks use multiple
power modes that include active, idle, standby and other in-
termediate modes. In active mode, the platters are spinning
and the head is seeking or actively reading or writing. In
idle mode, a disk is spinning at its full speed but no disk
activity is taking place. Therefore, staying in the idle mode
when there is no disk request provides the best-possible ac-
cess time since the disk can immediately service requests,
but it consumes the most energy. To simplify discussion,
we do not differentiate between active mode and idle mode
since in both modes the disk is operating at full power. In
standby mode, the disk consumes much less energy, but in
order to service a request, the disk has to incur significant
energy and time overheads to spin up to active mode.

Recently, Gurumuthi et al. have proposed multi-speed
disks to increase the amount of energy saved with data cen-
ter workloads [18]. Lower rotational speed modes consume
less energy compared to higher speed modes, and the energy
and time costs to shift between different rotational speeds

are relatively small compared to the costs for shifting from
standby to active. Such multi-speed disks are still only a
design on paper and there are no real products yet. We how-
ever simulate and use multi-speed disks in our experiments
because of their potential to save more energy.

A multi-speed disk can be designed to either serve re-
quests at all rotational speeds or serve requests only after
a transition to the highest speed. Carrera and Bianchini [5]
use the first option. We choose the second option since it is a
direct extension to the simple 2-mode power model. We use
the specifications for the IBM Ultrastar 36Z15 disk as listed
in Table 1, with extensions to support 4 extra intermediate
power modes (lower-speed modes).

2.2 Disk Power Management

The goal of disk power management is to try and save en-
ergy by switching disks to lower power modes whenever
possible without adversely affecting performance [8, 5, 19,
18]. If the entire disk request sequence is known in ad-
vance, the power management scheme can make perfect de-
cisions. This is called Oracle disk power management (Ora-
cle DPM) [29] which gives us an upper-bound on the energy
that can be saved for a given request sequence, assuming
that a request cannot be prefetched or delayed. As soon as
a request completes, Oracle DPM decides if the disk should
stay in idle mode, or go down to a lower power mode. The
idle period needed to justify the cost of spinning the disk up
and down is called the break-even time. Oracle DPM ex-
amines the interval length � between the current request and
the next request. If � is greater than the break-even time, it
is more beneficial to spin down the disk to standby mode.
Therefore, the disk is spun down immediately after the cur-
rent request is serviced and spun up to active mode just in
time for the next request. Otherwise it is better to stay in the
idle mode after the current request completes.

This scheme can easily be extended to disk models with
multiple power modes. Let us assume that ��� �� � � � ��
is the power consumed in mode � and that �� is greater than
�� for all � � �. Once an idle interval starts, Oracle DPM
has to switch the disk to one of the � modes that minimizes
energy consumption. The disk must also be back in mode �
when the next request arrives.

To get the minimum energy consumption, we plot lines
����� � ���� � ��� � 	� as in Figure 2 for each power
mode �, where �� is the power dissipation in mode �, and ��

and 	� are the time and energy required to spin-down and
spin-up from power mode � to � (�� and 	� is �). ����� is
the energy consumed if the disk spends the entire interval of
length � in mode �. Let us call the lower envelope of all of
these lines
���� � ���������� ��� �	��. This gives us
the minimum energy consumption possible for an interval of
length � . If the next request is time � away from the current
request, Oracle DPM can use
���� to determine which

t1 t4t3t2

E
n

e
rg

y
C

o
n

su
m

p
tio

n

Interval Length

Mode 0 Mode 1 Mode 2 Mode 3

Mode 4

t0

Figure 2: Energy consumption for each mode in a 5-mode
disk power model and the lower envelope
���� function
for minimum energy consumption

power mode to switch the disk to. If the disk is switched
to the power mode � where
��� � � ���� �, the energy
consumption during this interval is minimized.

Practical disk power management (Practical DPM)
schemes use thresholds to determine when to spin down
disks [9, 11, 28, 16, 10, 26, 21, 40, 5, 19, 18]. These
threshold-based schemes are on-line. In such schemes, after
the disk remains idle at a power mode for a certain thresh-
old time, it is switched into the next lower power mode.
Irani et al. have shown if the threshold values are deter-
mined by the intersection points of the lines in Figure 2, the
power management scheme is 2-competitive to the Oracle
scheme in terms of energy consumption [24]. This scheme
transitions the disk from mode � to mode � � � after time
����, where ���� is the time corresponding to the intersec-
tion point of lines ����� and ������� as shown in Figure 2.
We use thresholds obtained by this method in our study.

3 Power-Aware Off-line Algorithms

Off-line algorithms have knowledge about the future. Such
algorithms are usually studied because they provide upper
and lower bounds for all on-line algorithms. For example,
Belady’s off-line algorithm [2, 30], which replaces the block
with the longest future reference distance, is used to derive
a lower bound on the cache miss rate. Since the study of
off-line algorithms is important, we first investigate such al-
gorithms for power aware cache management.

3.1 Energy-optimal Problem

The goal of a power-aware cache replacement algorithm is
to take a given request sequence as input and generate a miss
sequence for which the disks consume the least energy. If
we use � to denote an I/O request sequence from storage
applications, a replacement algorithm is a function that
maps � and a cache with � blocks into a miss request se-
quence ��, i.e. � ��� �� � �� or ��� �� � ��. Given
a disk power management scheme � and a disk request se-

quence � , let � ��� be the total energy consumed by the
disks. Therefore, we have the following formalization and
definition of an energy-optimal replacement algorithm:
Remark: Given an I/O request sequence�, a cache replace-
ment algorithm �, a cache with � blocks, and a disk power
management scheme � , the total disk energy consumption
is � ����� ���.
Definition: A storage cache replacement algorithm � is
energy-optimal iff for any other algorithm�, � ����� ��� �
� ����� ��� for any I/O request sequence � and any storage
cache size �.

The number of misses resulting from a storage cache
replacement algorithm obviously affects disk energy con-
sumption. One would expect that if there are few cache
misses, the disks would consume little energy. However, the
energy consumption is also affected by the arrival patterns
of the cache misses. If misses are clustered together leav-
ing long idle periods, it would allow disks to stay in the low
power mode for longer periods of time. On the other hand,
if the misses arrive uniformly spaced, most idle periods may
be too small for a disk to save energy by going to the low
power mode, or the disk may spin up and down frequently,
wasting a lot of energy in transitions. Furthermore, when
there are multiple disks, it is better if misses are directed to
a cluster of disks rather than uniformly distributed over all
the disks. This allows the other disks to be in standby mode
more often and thus save energy.

There are two reasons why Belady’s algorithm is sub-
optimal in terms of disk energy consumption. Firstly, it
only minimizes the number of misses and pays no attention
to the arrival patterns of the cache misses or how they are
clustered. In other words, it ignores all information about
time. Below we give an example of this case. Secondly, it
does not take into account the number and characteristics of
disks in a multiple disk scenario.

Figure 3 gives an example to show why Belady’s cache
replacement algorithm is not energy-optimal. In this exam-
ple, the storage cache has only four entries and the power
model is the simple 2-mode model. For simplicity, we
assume that the disk can spin up and spin down instan-
taneously. We also assume that disk spins down after 10
units of idle time. This disk power management scheme is
a threshold-based scheme (described in Section 2.2). The
area of the shaded region in the figure represents the energy
consumed. In this example, using Belady’s algorithm re-
sults in more disk energy consumption than the alternative
algorithm, even though the alternative algorithm has 2 more
misses than Belady’s algorithm.

We have developed an energy-optimal cache replacement
algorithm which runs in polynomial time by using dynamic
programming. Due to space constraints, we do not explain
it in detail here. Please refer to our technical report [43] for
more details.

Time Req Belady Alternative
cache Hit? cache Hit?

0 A [A,-,-,-] Miss [A,-,-,-] Miss
1 B [A,B,-,-] Miss [A,B,-,-] Miss
2 C [A,B,C,-] Miss [A,B,C,-] Miss
3 D [A,B,C,D] Miss [A,B,C,D] Miss
4 E [E,B,C,D] Miss [A,E,C,D] Miss
5 B [E,B,C,D] Hit [A,B,C,D] Miss
6 E [E,B,C,D] Hit [A,E,C,D] Miss
7 C [E,B,C,D] Hit [A,E,C,D] Hit
8 D [E,B,C,D] Hit [A,E,C,D] Hit
...
16 A [A,B,C,D] Miss [A,E,C,D] Hit

Disk
Power
State

Disk
Power
State

204 620 18161412108 22 24 26 28 30

204 620 18161412108 22 24 26 28 30

204 620 18161412108 22 24 26 28 30
Time

Time

Time

ADCEBEDCBA
REQUEST

SEQUENCE

ALTERNATIVE

BELADY

Figure 3: An example showing that Belady’s algorithm is
not energy-optimal.

3.2 Off-line Power-Aware Greedy Algorithm

Since the energy-optimal algorithm is too complex to imple-
ment and evaluate, we propose a heuristic off-line power-
aware greedy (OPG) algorithm that consumes less energy
than Belady’s algorithm for real-system workloads.

The main goal of the OPG algorithm is to minimize en-
ergy consumption by taking advantage of information about
future bound-to-happen misses based on cache content at
some point in time. We will call the bound-to-happen
misses deterministic misses because they will happen no
matter what the replacement algorithm does after that point.

If we know that there is a deterministic miss at a future
time �, the disk from which this missed block will be ac-
cessed has to be active at � in order to service this request.
For convenience of description, for any access �, we call
the closest deterministic miss to the same disk but occur-
ring before � as �’s leader. Similarly, we call the closest
deterministic miss to the same disk as � but occurring after
� as �’s follower.

If the disk power management uses the Oracle scheme,
the energy consumption for an idle period of length � is
	
��� � ���
����� as described in Section 2.2 (see Fig-
ure 2). If the disks use the Practical DPM, the disk energy
consumption�	��� during an idle period of length � can be
calculated as follows:

����

���
��� � ������ ������� � Æ���,

where the disk goes to power mode � at time ��, ���� �� is
the cross point closest to � and Æ is the distance between �
and ��, i.e. � � �� � Æ� � � Æ � ���� � �� (see Figure 2).

The cache replacement algorithm uses energy penalties
to choose from all the resident blocks ��� � � � � ��� � � � � ��

when it needs to evict a block, where � is the number of
blocks in the cache. For any �, let �� represent the next ac-
cess to ��. Suppose �� is, respectively, �� and �� time apart
from its leader and its follower. If the algorithm evicts��, it
will cause a miss for ��, whose energy penalty is calculated
as follows:

�
������ � ������� ����� � ��� if Oracle DPM

������ ������������� � ��� if Practical DPM

Intuitively, with the Oracle DPM scheme, the energy
cost for the idle period between the leader and follower is
��������� if �� is not a miss (therefore, there is no misses
to this disk between leader and follower based on the def-
initions of leader and follower) . The access �� cuts the
original idle period into two chunks, whose aggregate en-
ergy cost is ������ � ������. Thus, the energy penalty
for evicting block �� is the difference between the two en-
ergy costs ������ � ������� ����� � ���. The energy
penalty with the Practical DPM can be calculated in a simi-
lar way, replacing ���� by ���� in the formula.

Once the algorithm calculates the energy penalty for
evicting every resident block, it evicts the block with the
minimum energy penalty. If multiple blocks have the same
energy penalty, it evicts the one with the largest forward dis-
tance, i.e., whose next access is the furthest in the future.

Initially, the set of deterministic misses, �, only includes
all the cold misses. After each replacement, the algorithm
updates the set �. Suppose the currently accessed (missed)
block is �� and the evicted block is ��. The algorithm
deletes �� from the set � and adds the first future refer-
ence to �� into �. Then the algorithm moves on to the next
request until all requests are processed. The time complex-
ity of the OPG algorithm for a list of 	 requests is at most
��	�� since the newly inserted deterministic miss can be-
come the leader or follower of many block accesses and the
energy penalties of those blocks should thus be updated.

This algorithm is a heuristic algorithm because it looks
at only the current set of deterministic misses when calcu-
lating the energy penalty for evicting a block. Therefore, it
may not make the best decision at a replacement. As we
discussed in Section 3.1, each cache miss leads to a disk
access, which costs additional energy. Hence, higher miss
ratios would increase the energy consumption. We use a
simple mechanism to consider both miss ratio and energy
penalty for a miss. The main idea is not to differentiate
among blocks whose energy penalties are smaller than a
threshold
. Any energy penalty that is smaller than
 is
rounded up to
. Obviously, when
 is large enough, it is
Belady’s algorithm; when
 � �, it is the pure OPG algo-
rithm. This mechanism thus subsumes Belady’s algorithm
at one extreme, and the pure OPG algorithm at the other.

Mode 1

Mode 2

Mode 3

Mode 4

Mode 0
t1 t4t3t2

E
n

e
rg

y
S

a
vi

n
g

Interval Length

Figure 4: Energy savings (not Energy Consumption) over
mode 0 for each mode in a 5-mode disk power model as a
function of interval length

4 Power-Aware On-line Algorithm

Section 3.2 shows that an algorithm that minimizes the en-
ergy penalty of each eviction could save energy. In practice,
we do not have future knowledge and thus cannot use OPG.
However, it does give us insights on how to design a power
aware online algorithm that saves energy. Such an algorithm
should avoid evicting blocks with larger energy penalties.

We first investigate how the length of the intervals af-
fects energy savings. Figure 4 shows the energy savings
that can be obtained by switching to lower power modes
given the interval length. Similar to Figure 2, we plot lines
������ � ����������� for each power mode �, where���

is the energy saved by going into mode � and�� is defined in
Section 2. Note ��� is 0. Let us define the upper envelope
of all of these lines ����� � ��������, which gives us
the maximum energy saved for an interval of length �.

The super-linear property of ����� indicates that even
small increases in the interval length of inactive disks can
result in significant energy savings. The cache replacement
algorithm can reshape the access pattern for each disk. By
keeping more blocks from inactive disks in the cache, we
can make the average interval length for these disks larger.
Then these disks could stay in the low power modes longer.
Although the average interval lengths for other active disks
may be decreased due to an increased number of misses, the
energy penalty we pay for these other disks is much smaller
than the energy savings we gain from the inactive disks. As
shown in Figure 4, assuming there are two disks, although
the average idle period of disk 0 is reduced from �� to ��,
we increase the average interval length of disk 1 from �� to
��. Therefore, overall energy saving is achieved.

However, average interval length is not the only factor
that affects the amount of energy that can be saved (1) the
percentage of capacity misses (misses caused by previous
evictions) should be reasonably large since a cache replace-
ment algorithm cannot avoid any cold misses(misses due to
first-time accesses). If most of the accesses to a disk are cold
misses, we cannot do much to avoid expensive disk spin-

0

0.2

0.4

0.6

0.8

1

Interval Length

C
u
m
u
l
a
t
i
v
e

P
r
o
b
a
b
i
l
i
t
y

t2t1 t7t6t5t4 t8

p

Cumulative

Distribution

Function F(x)

t0 Tt3 t9

Figure 5: The histogram approximates the cumulative dis-
tribution function of interval lengths.

ups or make interval lengths longer. (2) the distribution of
accesses also affects the opportunities to save energy. For
example, for the same average interval length �� in Figure 4,
disks with larger deviation have more opportunities to save
energy than disks with strictly periodic arrivals.

To keep track of the number of cold misses, we use a
Bloom Filter [3, 14] to identify cold misses. The idea is
to allocate a vector � of � bits, all set to � initially, and
then choose � independent hash functions, ��� ��� � � � � ��,
each with range ��� � � � ���. Given an access for block �

we check the bits at positions ������ ������ � � � � �����. If
any of them is �, then � is definitely a cold miss. In this
case, the bits at positions ������ ������ � � � � ����� in � are
set to �. Otherwise, we conjecture that � is already in the
set, which means it is not a cold miss, although there is a
certain probability that we are wrong due to hash conflicts.
For an estimated ���� blocks, with � set to �� bytes and
� � �, this probability is only ������.

To estimate the distribution of accesses for each disk, in-
stead of using mean and standard deviation, we employ a
simple but effective epoch-based histogram technique [39].
In each epoch, we keep track of the interval length between
two consecutive accesses for each disk. We obtain a his-
togram as shown in Figure 5. Let 	� be the number of in-
tervals of length between 	��� ��
 �� and let 	 be the total
number of intervals. The height of each bin in Figure 5
is
��

���

��

�
, which approximates the cumulative probabil-

ity of the interval length being less than ����. All the bins
together form a histogram, which approximates the cumu-
lative distribution function of interval length for a disk, i.e.,

 ��� � � 	 � ��, where is a random variable that
represents the interval length for a disk.

We design a power-aware on-line cache management
scheme called PA. The main idea is to dynamically keep
track of workload characteristics for each disk, including
the percentage of cold misses and the cumulative distribu-
tion of interval lengths. Based on these characteristics, PA
classifies all disks into two categories, regular and priority.
Disks that exhibit (1) small percentage of cold misses, (2)
large interval lengths with high probability belong to “pri-

ority” class, and others belong to “regular” class. To adapt
to workload changes, the classification is epoch-based, and
is thus adjusted periodically based on the latest workload.

PA can be combined with most existing storage cache re-
placement algorithms to make them “power aware”. This
includes several recently proposed algorithms such as ARC
[31], LIRS [25],DEMOTE [37], and MQ [42]. In this pa-
per, we use the common LRU algorithm as an example and
present a Power-Aware LRU algorithm (PA-LRU).

PA-LRU maintains two LRU stacks, LRU0 which keeps
blocks that belong to disks in the “regular” class and LRU1
which keeps blocks that belong to disks in the “priority”
class. When choosing a block to evict, PA-LRU always
evicts the bottom block of LRU0 if it is not empty. If LRU0
is empty, PA-LRU evicts the bottom block from LRU1.

PA-LRU uses the request sequence’s characteristics dur-
ing the previous epoch for each disk. (1) If the percentage of
cold misses is larger than a threshold �, the blocks from this
disk go to LRU0 during the current epoch. (2) As shown in
Figure 5, given a cumulative probability �, we can easily
calculate the corresponding � based on the cumulative dis-
tribution function, that is, � � � � � � �. If � is less than
a threshold �, the blocks from this disk go to LRU0 as well.
Otherwise, blocks go to LRU1. �, �, � and the length of the
epoch can be specified by the target system.

5 Evaluation of Power-Aware Cache Re-
placement Algorithms

5.1 Evaluation Methodology

We simulate a complete storage system to evaluate our
power-aware cache management schemes. We have en-
hanced the widely used DiskSim simulator [15] and aug-
mented it with a disk power model. The power model we
use is similar to that used by Gurumurthi et al. [18] for
multi-speed disks. We have also developed a storage cache
simulator, CacheSim and we use it together with DiskSim
to simulate a complete storage system. CacheSim imple-
ments several cache management policies. Accesses to the

IBM Ultrastar 36Z15
Standard Interface SCSI
Individual Disk Capacity 18.4 GB
Maximum Disk Rotation Speed 15000 RPM
Minimum Disk Rotation Speed 3000 RPM
RPM Step-Size 3000 RPM
Active Power(Read/Write) 13.5 W
Seek Power 13.5 W
Idle Power@15000RPM 10.2 W
Standby Power 2.5 W
Spinup Time(Standby to Active) 10.9 secs
Spinup Energy(Standby to Active) 135 J
Spindown Time(Active to Standby) 1.5 secs
Spindown Energy(Active to Standby) 13 J

Table 1: Simulation Parameters

simulated disks first go through a simulated storage cache.
The simulator reports the energy consumed by each disk in
every power mode and the energy consumed in servicing
requests (energy to perform seek, rotation, and transfer).
Therefore, if a power-aware replacement algorithm intro-
duces extra misses, the disk energy consumed in servicing
those extra misses is also included in the numbers reported.

The specifications for the disk used in our study are sim-
ilar to that of the IBM Ultrastar 36Z15. The parameters are
taken from the disk’s data sheet [22, 5]. Some of these pa-
rameters are shown in Table 1.

Other than active and standby, we also use four low-speed
power modes: 12k RPM, 9k RPM, 6k RPM and 3k RPM.
For convenience of description, we call them NAP modes:
NAP1, NAP2, NAP3 and NAP4. To calculate the parame-
ters for each NAP mode, we use the linear power and time
models proposed in [18]. We use the 2-competitive thresh-
olds described in Section 2 for Practical DPM. For PA-LRU,
we use an epoch length of 15 minutes. Other parameters
are � � ���, � � ��� and � � ��������. �	 �	 � are
described in Section 4. � is set to be the same as the break-
even time for NAP1 mode.

Our experiments use two real system traces to evaluate
the power-aware cache replacement algorithms. The OLTP
trace is an I/O trace collected on our previously built VI-
attached database storage system connected to a Microsoft
SQL Server via a storage area network. The Microsoft SQL
Server client connects to the Microsoft SQL Server via Eth-
ernet and runs the TPC-C benchmark [27] for 2 hours. The
OLTP trace includes all I/O accesses from the Microsoft
SQL server to the storage system. Writes to log disks are
not included in the trace. A more detailed description of this
trace can be found in our previous work [42, 7]. The other
trace, Cello96, is obtained from HP and was collected from
the Cello File Server. The characteristics of these traces are
listed in Table 2. In our experiments, we use 128 MBytes as
the storage cache size for the OLTP trace, and 32 MBytes
for the Cello96 trace because its working set size is smaller
than that of the OLTP trace.

5.2 Overall Results

We evaluate four cache replacement algorithms: Belady,
OPG, LRU and PA-LRU, using the two real-system traces.
We have also measured the disk energy consumption with
an infinitely large cache size, in which case only cold misses
go to disks. This serves as a lower bound for the energy con-
sumed as a result of any cache replacement algorithm be-
cause no cache replacement algorithm with a limited cache

Disks Writes Average interarrival time
OLTP 21 22% 99ms
Cello96 19 38% 5.61ms

Table 2: Trace Characteristics

size can save more energy if the underlying disks use the
Oracle DPM.

With the Practical DPM, infinite storage cache size may
cause more energy consumption than limited cache sizes,
so it cannot serve as a theoretical lower bound. To give
a counter-example, suppose the inter-arrival time between
two consecutive cold misses to the same disk is just slightly
larger than the idle threshold value. After the first cold miss,
the disk will transition into a low-power mode after remain-
ing idle for a threshold period of time. Then it has to imme-
diately transit back to active in order to service the second
cold miss. So it spends extra energy in disk spin-down/spin-
up. However, if a replacement algorithm can introduce an-
other miss in between these two cold misses, it is possible
to avoid the disk spin-down/spin-up.

Figures 6 (a) and (b) compare the disk energy con-
sumption for all four storage cache replacement algorithms
and an infinite cache with both Oracle DPM and Practical
DPM. Figure 6 (c) shows the average response time for the
four storage cache replacement algorithms for the Practical
DPM. Since the Oracle DPM can always spin up disks in
time for the next request, the average response time differ-
ence among the four schemes is very small.

Comparing the two off-line algorithms, even though Be-
lady’s algorithm gives the optimal cache miss ratios, OPG
can save 2-9% more energy than Belady’s algorithm. With
the Cello96 trace, OPG can save 5-7% more energy than Be-
lady’s algorithm. With the OLTP trace, OPG can save 9%
more energy than Belady’s algorithm if disks use the Oracle
scheme. With the Practical DPM, OPG’s savings over Be-
lady’s is smaller, only 2%. For average response time, OPG
is 5% better with OLTP but 6.4% worse with Cello96.

In the OLTP I/O trace, PA-LRU can save 16% more en-
ergy compared to LRU and it also improves the average re-
sponse time by 50%. The reason is that PA-LRU can selec-
tively keep blocks from certain disks in the storage cache
for a longer time. Those disks could stay in the low power
modes longer and we avoid expensive disk spin-ups. Since
a disk-spin up from a low power mode takes a few seconds,
avoiding this can also improve the average I/O response
time. If underlying disks use the Practical DPM, PA-LRU
saves more energy than OPG because OPG results in more
disk spin-ups.

However, PA-LRU can only save 2-3% energy over LRU
for the Cello96 trace. The reason is that in this trace, 64% of
accesses are cold misses. In other words, 64% of accesses
will go to disks even with an infinite cache size. In addi-
tion, the request inter-arrival gap is very small, even for the
cold miss sequence, which does not allow PA-LRU to save
energy. Even with an infinite cache size, the energy con-
sumption is only 12% lower than LRU with 128 MBytes of
cache. The difference in average I/O response time between
LRU and PA-LRU is very small for Cello96.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Practical ORACLE

InfiniteCache Belady OPG LRU PA-LRU

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Practical ORACLE

InfiniteCache Belady OPG LRU PA-LRU

0

0.2

0.4

0.6

0.8

1

1.2

OLTP Cello

Belady OPG LRU PA-LRU

(a) Energy: OLTP (b) Energy: Cello96 (c)Average response time

Figure 6: Effects of power-aware cache replacement (normalized to LRU).

For the OLTP trace, an infinite cache size saves 28% more
energy than LRU, and 20% more than Belady’s algorithm.
Since OPG is power-aware, the differences between an in-
finite cache size and OPG are smaller, 10% for OLTP and
less than 1% for Cello96.

5.3 Performance Analysis

In this section, we analyze the results to understand why
PA-LRU can reduce disk energy consumption over LRU for
the OLTP trace.

Figure 7 (a) shows the percentage time breakdowns for
two representative disks. Each breakdown gives the per-
centage of time consumed in each power mode and also
during spin-up/spin-downs. With PA-LRU, disk 14 spends
59% of time in standby mode , whereas it spends only 16%
of time in standby mode with LRU. Moreover, PA-LRU sig-
nificantly reduces time in performing spin-up/downs from
25% to 13%. Even though PA-LRU increases the percent-
age of time in active mode for other disks such as disk 4
from 78% to 84%, the amount of increase is very small.
PA-LRU also reduces the time that disk 4 spends in spin-
up/downs from 16% to 6%. Also, because of the signifi-
cantly fewer disk spin-up/downs, PA-LRU has 50% lower
average I/O response time.

Figure 7 (b) shows the mean request inter-arrival time,
i.e., average interval length, for the same two representative
disks (disk 4 and disk 14). The mean request inter-arrival
time shown here is much larger than the inter-arrival time in
the original application I/O sequence because requests are
first filtered through a 128 MByte storage cache.

Since PA-LRU keeps blocks from disk 14 in the priority
LRU list, there are fewer accesses to disk 14. As a result, the
mean request inter-arrival time on disk 14 from a PA-LRU-
managed cache is three times as large as that from a LRU-
managed cache. With 40 second inter-arrival gaps, disk 14
has a lot of long idle periods to stay in low power modes,
and thus saves significant amounts of energy.

To favor disk 14’s blocks, disk 4’s blocks are more likely
to be evicted with PA-LRU than with LRU. Thus, the mean
request inter-arrival time on disk 4 with PA-LRU is a fac-
tor of 2.4 shorter than that with LRU, which explains why
PA-LRU causes disk 4 to stay in the active mode longer.

Since the original mean inter-arrival time with LRU is al-
ready smaller than the threshold, disk 4 does not have too
much opportunity to go to the low power modes. Thus, to
shorten the mean inter-arrival time on disk 4 does not cause
disk 4 to spend significantly less time in low power modes.

5.4 Effects of Spin-up Cost

In our simulations, we use the spin-up cost of the IBM Ul-
trastar 36Z15, i.e., 135J from standby to active mode. In
this section, we discuss how spin-up cost affects the energy-
savings of PA-LRU over LRU using the OLTP trace. We
vary spin-up costs as energy needed for transitioning from
standby mode to active mode. The spin-up costs from other
modes to active mode are still calculated based on the linear
power model described earlier.

Figure 8 shows the percentage energy-savings for PA-
LRU over LRU. Between 67.5J and 270J, the energy-
savings of PA-LRU over LRU are fairly stable. The spin-
up costs of most current SCSI disks lie in this range. At
one extreme, with the increase of spin-up cost, the break-
even times increase. Therefore, the thresholds calculated
based on the break-even times also increase. In this case,
disks have less opportunities to stay in low power modes
due to lack of long-enough intervals even using PA-LRU.
At the other extreme, if the spin-up cost decreases a lot and
spin-up becomes very cheap, the energy savings of PA-LRU
decreases because in this case, even with LRU, disks are al-
ready in low-power modes most of the time.

6 Effects of Write Policies on Disk Energy
Consumption

In this section, we investigate the effects of four storage
cache write policies on energy consumption. The first two
policies, write-back and write-through, are commonly used
in caches. The write-back caching policy only writes a dirty
block to disks when the block is evicted from the cache.
This policy reduces the number of disk writes and enables
fast response to clients, but could compromise data persis-
tency if the cache is on volatile storage. The write-through
caching policy always writes dirty blocks to disk immedi-
ately and does not tell clients that the writes are successful

(a) Percentage time breakdown (b) Mean request inter-arrival time

Figure 7: Percentage time breakdown and mean request inter-arrival time for two representative disks in OLTP

0%

4%

8%

12%

16%

20%

33.75 67.5 101.25 135 202.5 270 675

Spinup Cost(J)

E
ne

rg
y

S
av

in
g

P
er

ce
nt

ag
e

Figure 8: Percentage energy-savings for PA-LRU over LRU
versus spin-up cost (energy needed for transitioning from
standby mode to active mode)

until the data is committed to disks. The two other policies
are variations of the write-back and write-through policies.
“Write-back with eager update” (WBEU) does not wait for
a dirty block to be evicted from the cache before writing it
to the disk. The policy writes back dirty blocks of a disk
whenever that disk becomes active. “Write-through with
deferred update” (WTDU) temporarily writes dirty blocks
to a log instead of writing them to their true destinations, if
the destination disks are in low power modes.

To evaluate the effects of write policies, we use synthetic
traces with varying write/read ratios. The synthetic traces
are also generated with controlled spatial locality and tem-
poral locality. Spatial locality is controlled by the proba-
bilities of sequential accesses, local accesses and random
accesses. Temporal locality is controlled by a Zipf distri-
bution of stack distances. The default parameters for the
trace generator are listed in Table 3. Similar to [18], we
consider two types of distributions for inter-arrival times,
Exponential and Pareto. Exponential distribution models
a Poisson process, which is almost regular traffic without
burstiness while the Pareto distribution introduces bursti-
ness in arrivals. The Pareto distribution is controlled by two
parameters, Shape � and Scale �. We use a Pareto distribu-
tion with a finite mean and infinite variance. We use LRU
as the cache replacement algorithm in our simulation.

Write-back (WB) vs. Write-through (WT): Intuitively,
write-back is more energy-efficient than write-through due
to a reduced number of writes and potentially longer idle

periods. However, few studies have measured the difference
in energy consumption quantitatively. Is the difference large
enough to justify trading persistency for energy?

Figure 9(a1) and (a2) show the percentage energy savings
of write-back over write-through. Figure 9(a1) shows the
results for a mean inter-arrival time of 250ms, and varying
write ratios from 0% to 100%. Figure 9(a2) shows the re-
sults when the write ratio is 50% and the mean inter-arrival
time varies from 10ms to 10,000ms. The results with Oracle
DPM are very similar to those with Practical DPM, so we
only present results with Practical DPM.

With 100% writes, write-back can save around 20% en-
ergy compared to write-through. The difference becomes
smaller when the write ratio decreases. When fewer than
40% of the requests are writes, the percentage energy sav-
ings of write-back over write-through is less than 5%. As
shown in Figure 9 (a2), with a write ratio of 0.5, the benefits
of write-back peaks during 100ms to 1000ms mean inter-
arrival time, but the benefits are always smaller than 10%.
The benefits of write-back over write-through are slightly
better in the traces with exponential distributions than in the
traces with Pareto distributions because the latter has bursty
requests, which can reduce the number of disk spin-ups.

Write-back with Eager Updates (WBEU): The energy
consumption with write-back can be further reduced by ea-
gerly flushing dirty blocks to disks when the correspond-
ing disks become active due to a read miss. In the extreme
case, if a disk � always stays in a low-power mode, the
storage cache will end up with a lot of �’s dirty blocks.
To avoid this scenario, if the number of such dirty blocks
reaches a certain threshold,� is forced to transition into ac-

Request Number 1 million
Disk Number 20
Exponential Distribution �

�
� ����

Pareto Distribution � � � � �, � � ���

Hit Ratio 0.3
Write Ratio 0.2
Disk Size 18 GB
Sequential Access Probability 0.1
Local Access Probability 0.2
Random Access Probability 0.7
Maximum Local Distance 100 blocks

Table 3: Default Synthetic Trace Parameters

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

E
ne

rg
y

S
av

in
g

P
er

ce
nt

ag
e

Write Ratio

Exponential Traffic
Pareto Traffic

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

E
ne

rg
y

S
av

in
g

P
er

ce
nt

ag
e

Write Ratio

Exponential Traffic
Pareto Traffic

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

E
ne

rg
y

S
av

in
g

P
er

ce
nt

ag
e

Write Ratio

Exponential Traffic
Pareto Traffic

(a1) WB vs. WT (b1) WBEU vs. WT (c1) WTDU vs. WT

(1) Percentage energy savings for different write ratios (inter-arrival time: 250ms)

0

5

10

15

20

25

10 20 50 100 200 500 1000 5000 10000

E
ne

rg
y

S
av

in
g

P
er

ce
nt

ag
e

Mean Interarrival Time(ms)

Exponential Traffic
Pareto Traffic

0

5

10

15

20

25

10 20 50 100 200 500 1000 5000 10000

E
ne

rg
y

S
av

in
g

P
er

ce
nt

ag
e

Mean Interarrival Time(ms)

Exponential Traffic
Pareto Traffic

0

5

10

15

20

25

10 20 50 100 200 500 1000 5000 10000

E
ne

rg
y

S
av

in
g

P
er

ce
nt

ag
e

Mean Interarrival Time(ms)

Exponential Traffic
Pareto Traffic

(a2) WB vs. WT (b2) WBEU vs. WT (c2) WTDU vs. WT

(2) Percentage energy savings for different mean inter-arrival time (write ratio: 50%)

Figure 9: Effects of write policies on disk energy consumption (All the numbers are percentage energy savings relative to the
write-through policy. The underlying disk uses the Practical DRM. Results with the Oracle DPM are similar.)

tive mode and the storage cache flushes �’s dirty blocks.
This policy is similar to the ones used in [38, 34, 8]. The
advantage of this write policy is that writes avoid causing
energy-expensive disk spin-ups.

Figure 9 (b1) and (b2) show the percentage energy sav-
ings of WBEU over write-through. WBEU can significantly
reduce energy consumption. If 100% of the requests are
writes, WBEU can save 60-65% more energy than write-
through. Therefore, when the percentage of writes is signif-
icant in a workload, it is much more energy-efficient to use
WBEU if persistency is not a big concern.

For the traces with exponential distributions, WBEU
is more sensitive to the mean inter-arrival time. With a
write ratio of 0.5, if the mean inter-arrival time is large
(10,000ms), the benefits of WBEU are very small. This
is because disks are “sleeping” most of the time and re-
quests only cause little energy consumption. If the mean
inter-arrival time is small (10ms), WBEU does not provide
huge benefits, either. This is because disks are active most
of the time due to fast arriving read requests. Mean inter-
arrival time has less effect on WBEU’s benefits with Pareto
traffic because disks have longer idle periods and tend to
stay in low power modes.

Write-through with Deferred Update (WTDU): Since
write-through causes a lot of energy consumption, WTDU
defers updates using a persistent log to avoid spinning up
a disk in low power mode. This log can reside in any per-
sistent device such as NVRAM or a log disk that is likely
to be always active. In databases, log disks are usually al-

ways active because databases rely on its performance for
fast transaction commits. With such a log, we can defer
energy-expensive updates in write-through.

To ensure persistency, we divide the log space into log
regions with one for each disk. The first block of a log re-
gion keeps the timestamp for the corresponding disk. This
timestamp is also stored together with each block in the log
region. The storage cache also keeps a pointer for each disk
to remember the next free block in the corresponding log
region. When a write request arrives for an inactive disk�,
the blocks are first written to the corresponding log region
and each block is timestamped with �’s timestamp. The
cache copies of these blocks are marked as “logged”. When
� becomes active due to a read miss, all “logged” blocks
are flushed from the storage cache into � before servicing
any write requests. Then the timestamp stored in the first
block of �’s log region is incremented by one. Finally, the
corresponding free block pointer is reset.

The timestamp is used to ensure consistent recovery
when the system crashes. After the system reboots, it first
checks each log region to get the timestamps from its first
block. Suppose the timestamp for a region � is �. If the
timestamps of some blocks in the same region are also �,
it means some blocks may not be written back to the cor-
responding data disk. Thus, the recovery process will write
all blocks with the same timestamp back to the correspond-
ing data disk. Otherwise, all blocks are already written back
and the recovery process does not need to do anything for
this log region. So it can move on to the next log region.

Figure 9(c1) and (c2) show the percentage energy savings
for WTDU over write-through. When we evaluate MTDU,
the extra energy consumption for writing to log regions is
included in MTDU’s results. If all accesses are writes,
WTDU can reduce the disk energy consumption by 55%
compared to write-through, which indicates WTDU is quite
effective. Since this scheme can also provide persistency,
it is good for workloads which have a high percentage of
writes and require persistency semantics.

7 Related Work

Most previous work focuses on saving energy for a single
disk in mobile devices, such as laptops, MP3 players, dig-
ital cameras. These studies can be roughly divided into
three groups. The first group investigates how to dynami-
cally adapt thresholds used to switch to low power modes.
Many adaptive schemes have been proposed to vary thresh-
olds based on workloads [16, 10, 26, 21]. Thresholds can
also be calculated analytically [28, 24].

The second group deals with modeling of disk energy
consumption. For example, Greenawalt proposes a purely
analytical model that assumes requests arrive according to
a Poisson distribution [17]. Helmbold et al. model disk
power consumption in terms of seconds of activity [21]. A
recent study conducted by Zedlewski et al. [40] presents a
disk simulator called Dempsey to accurately model energy
consumption of a single disk for mobile devices.

The third group of research investigates ways to reorga-
nize idle periods in I/O request sequences by delaying or
prefetching requests. Weissel et al. proposed a scheme
called Cooperative I/O to allow applications to specify time-
outs and abort options for I/O operations in order to provide
more flexibility for disk power management [36]. Pap-
athanasiou suggested delaying asynchronous requests if the
disk is at low-power mode and prefetching some requests
while the disk is at full power mode [34].

Though our study also tries to reorganize idle periods in
I/O request sequences, this paper differs from these studies
in two aspects. First, our work investigates changing storage
cache management to reorganize idle periods, and therefore
does not require any modifications to storage applications.
Second, other studies focus on a single disk with multimedia
workloads while our work focuses on multiple disks with
data center workloads.

Recently, a few studies [8, 18, 19, 5] looked into energy
management for high-end storage systems. A number of
them [5, 18, 19] have shown that idle periods in data cen-
ter workloads are usually very small compared to the time
taken to spin-down and spin-up. Due to the high spin-up
energy and time costs of server disks, there is not enough
opportunity to save energy. To overcome this problem,
Gurumurthi et al. have proposed using multi-speed disks

to increase the amount of disk energy saved for data cen-
ter workloads. Carrera and Bianchini at Rutgers have also
suggested using multiple rotational speed disks to save en-
ergy [5]. These works motivate our study on power-aware
cache management.

In addition to the works mentioned above, our project
is also related to a couple of other studies. Corella and
Grunwald [8] proposed a disk backup organization called
MAID that uses power management of individual drives to
achieve a very small power budget. Several recent stud-
ies [35, 20] have been conducted to conserve energy for net-
worked servers. Most of them focus on conserving energy
by dynamically reconfiguring or shrinking a cluster of net-
worked servers to operate with a few nodes under light load.
[6] proposes an architecture to allow services to “bid” for
energy and other resources as a function of delivered per-
formance in a hosting center. A few studies [4, 12] have in-
vestigated the energy consumption of front-end servers such
as web-servers using dynamic voltage scaling of CPUs. Dif-
ferent from these studies, our research focuses on back-end
storage in data centers.

8 Conclusions

In this paper, we show that power-aware storage cache man-
agement policies can significantly reduce disk energy con-
sumption. We present OPG, a simple power-aware off-
line greedy algorithm that is more energy-efficient than Be-
lady’s cache replacement algorithm. We propose PA-LRU,
a power-aware version of LRU, and show that it can use
16% less energy and lead to 50% better average response
time than the LRU algorithm. Even though PA-LRU is
based on LRU, this technique can also be applied to other
replacement algorithms such as ARC [31] or MQ [42].

We also evaluate the effects of different cache write poli-
cies on disk energy consumption. Our results show that
write-back uses up to 20% less energy than write-through.
WBEU further reduces the disk energy consumption by up-
to 45%. For systems with strong persistency requirements,
we propose the use of a log disk with write through, and
show that this policy (WTDU) can reduce the disk energy
consumption by up to 55% compared to write-through.

Our study has some limitations. First, the OPG algorithm
also works for a single disk. But our power-aware on-line
algorithm is only designed for multiple disks since our study
focuses on high-end storage systems. It remains our imme-
diate future work to design power-aware on-line algorithms
that work for a single disk. Second, we plan to extend our
work to consider prefetching as well. Third, similar to many
previous studies [36, 34], our experimental measurements
do not include storage cache energy consumption because
storage caches are usually kept active all the time to provide
high performance. Fourth, similar to most previous stud-

ies [21, 18, 40], we use a simulator in our experiments. We
are in the process of adding a disk power model to our pre-
viously built V3 storage system [41] to emulate disk spin
up/spin down in a way similar to Carrera and Bianchini’s
study [5]. This will allow us to measure energy consump-
tion in a real storage system.

9 Acknowledgments

The authors would like to thank the anonymous review-
ers for the invaluable feedback. We are also grateful for
the insightful discussion with Lenny Pitt on dynamic pro-
gramming. This research is partially supported by the NSF
CCR-0313286 grant and NSF CCR-0305854. Our exper-
iments are conducted on equipments provided through the
IBM SUR grant and the NSF EIA 02-24453 grant.

References

[1] Power, heat, and sledgehammer. White paper, Maximum Institu-
tion Inc., http://www.max-t.com/ downloads/ whitepapers/ Sledge-
hammerPowerHeat20411.pdf, 2002.

[2] L. A. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 5(2):78–101, 1966.

[3] B. Bloom. Space/time trade-offs in hash coding with allowable er-
rors. Communications of ACM, 13(7):422–426, July 1970.

[4] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. Mc-
Dowell, and R. Rajamony. The case for power management in web
servers. Power Aware Computing, Editors R. Graybill and R. Mel-
hem, Klewer Academic Publishers, 2002.

[5] E. V. Carrera, E. Pinheiro, and R. Bianchini. Conserving disk energy
in network servers. In ICS, June 2003.

[6] J. S. Chase, D. C. Anderson, P. N. Thakar, A. Vahdat, and R. P. Doyle.
Managing energy and server resources in hosting centres. In SOSP,
pages 103–116, 2001.

[7] Z. Chen, Y. Zhou, and K. Li. Eviction-based cache placement for
storage caches. In Usenix Technical Conference, 2003.

[8] D. Colarelli and D. Grunwald. Massive arrays of idle disks for stor-
age archives. In SC – 2002, Nov 2002.

[9] F. Douglis, R. Caceres, M. F. Kaashoek, K. Li, B. Marsh, and J. A.
Tauber. Storage alternatives for mobile computers. In OSDI, pages
25–37, 1994.

[10] F. Douglis, P. Krishnan, and B. Bershad. Adaptive disk spin-down
policies for mobile computers. In Proc. 2nd USENIX Symp. on Mo-
bile and Location-Independent Computing, 1995.

[11] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the power-hungry
disk. In USENIX Winter, pages 292–306, 1994.

[12] E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient server
clusters. In the Second Workshop on Power Aware Computing Sys-
tems(held in conjunction with HPCA-2002), Feb 2002.

[13] EMC Corporation. Symmetrix 3000 and 5000 Enterprise Storage
Systems product description guide., 1999.

[14] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scal-
able wide-area Web cache sharing protocol. IEEE/ACM Transactions
on Networking, 8(3):281–293, 2000.

[15] G. R. Ganger, B. L. Worthington, and Y. N. Patt. The DiskSim sim-
ulation environment - version 2.0 reference manual.

[16] R. A. Golding, P. B. II, C. Staelin, T. Sullivan, and J. Wilkes. Idleness
is not sloth. In USENIX Winter, pages 201–212, 1995.

[17] P. Greenawalt. Modeling power management for hard disks. In the
Conference on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, Jan 1994.

[18] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke.
DRPM: Dynamic speed control for power management in server
class disks. In ISCA, pages 169–179, June 2003.

[19] S. Gurumurthi, J. Zhang, A. Sivasubramaniam, M. Kandemir,
H. Franke, N. Vijaykrishnan, and M. Irwin. Interplay of energy and
performance for disk arrays running transaction processing work-
loads. In ISPASS, pages 123–132, Mar. 2003.

[20] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and R. Bianchini. Self-
configuring heterogeneous server clusters. In COLP’03, Sept. 2003.

[21] D. P. Helmbold, D. D. E. Long, T. L. Sconyers, and B. Sherrod.
Adaptive disk spin-down for mobile computers. Mobile Networks
and Applications, 5(4):285–297, 2000.

[22] IBM hard disk drive - Ultrastar 36Z15.
[23] IBM. ESS-the performance leader. IBM Corporation, 1999.
[24] S. Irani, S. Shukla, and R. Gupta. Competitive analysis of dynamic

power management strategies for systems with multiple power saving
states. Technical report, UCI-ICS, Sept 2001.

[25] S. Jiang and X. Zhang. LIRS: an efficient low inter-reference re-
cency set replacement policy to improve buffer cache performance.
In SIGMETRICS, pages 31–42. ACM Press, 2002.

[26] P. Krishnan, P. M. Long, and J. S. Vitter. Adaptive disk spindown via
optimal rent-to-buy in probabilistic environments. In 12th Interna-
tional Conference on Machine Learning, 1995.

[27] S. T. Leutenegger and D. Dias. A modeling study of the TPC-C
benchmark. SIGMOD Record, 22(2):22–31, June 1993.

[28] K. Li, R. Kumpf, P. Horton, and T. E. Anderson. A quantitative
analysis of disk drive power management in portable computers. In
USENIX Winter, pages 279–291, 1994.

[29] Y.-H. Lu and G. D. Micheli. Comparing system-level power man-
agement policies. IEEE Design and Test of Computers, 18(2):10–19,
March 2001.

[30] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM Systems Journal, 9(2):78–
117, 1970.

[31] N. Megiddo and D. S. Modha. Arc: A self-tuning, low overhead
replacement cache. In FAST’03, 2003.

[32] B. Moore. Taking the data center power and cooling challenge. En-
ergy User News, August 27th, 2002.

[33] F. Moore. More power needed. Energy User News, Nov 25th, 2002.
[34] A. E. Papathanasiou and M. L. Scott. Increasing disk burstiness for

energy efficiency. Technical Report 792, University of Rochester,
November 2002.

[35] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Load bal-
ancing and unbalancing for power and performance in cluster-based
systems. COLP’01, 2001.

[36] A. Weissel, B. Beutel, and F. Bellosa. Cooperative I/O: A novel I/O
semantics for energy-aware applications. In OSDI, Dec. 2002.

[37] T. Wong and J. Wilkes. My cache or yours? making storage more ex-
clusive. In USENIX Annual Technical Conference (USENIX), 2002.

[38] R. Youssef. RAID for mobile computers. Master’s thesis, CMU,
1995.

[39] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time CPU
scheduling for mobile multimedia systems. In SOSP’03, Oct. 2003.

[40] J. Zedlewski, S. Sobti, N. Garg, A. Krishnamurthy, and R. Wang.
Modeling hard-disk power consumption. In the 2nd USENIX Con-
ference on File and Storage Technologies, 2002.

[41] Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J. F. Philbin, and
K. Li. Experiences with VI communication for database storage. In
ISCA’02, May 2002.

[42] Y. Zhou, J. F. Philbin, and K. Li. The multi-queue replacement al-
gorithm for second level buffer caches. In Proceedings of the Usenix
Technical Conference, June 2001.

[43] Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou, and P. Cao. Re-
ducing energy consumption of disk storage using power-aware cache
management. Technical report, UIUC, Nov. 2003.

