
RIMAC: A Novel Redundancy-based Hierarchical Cache
Architecture for Energy Efficient, High Performance

Storage Systems

Xiaoyu Yao and Jun Wang
Department of Computer Science and Engineering

University of Nebraska-Lincoln, Lincoln, NE 68588-0115
{xyao,wang}@cse.unl.edu

ABSTRACT
Energy efficiency becomes increasingly important in today’s
high-performance storage systems. It can be challenging
to save energy and improve performance at the same time
in conventional (i.e. single-rotation-rate) disk-based stor-
age systems. Most existing solutions compromise perfor-
mance for energy conservation. In this paper, we propose
a redundancy-based, two-level I/O cache architecture called
RIMAC to address this problem. The idea of RIMAC is to
enable data on the standby disk to be recovered by accessing
data in the two-level I/O cache or on currently active/idle
disks. At both cache and disk levels, RIMAC dynamically
transforms accesses toward standby disks by exploiting par-
ity redundancy in parity-based redundant disk arrays. Be-
cause I/O requests that require physical accesses on standby
disks involve long waiting time and high power consumption
for disk spin-up (tens of seconds for SCSI disks), transform-
ing those requests to accesses in a two-level, collaborative
I/O cache or on active disks can significantly improve both
energy efficiency and performance.

In RIMAC, we developed i) two power-aware read request
transformation schemes called Transformable Read in Cache
(TRC) and Transformable Read on Disk (TRD), ii) a power-
aware write request transformation policy for parity update
and (iii) a second-chance parity cache replacement algorithm
to improve request transformation rate. We evaluated RI-
MAC by augmenting a validated storage system simulator,
disksim. For several real-life server traces including HP’s
cello99, TPC-D and SPC’s search engine, RIMAC is shown
to reduce energy consumption by up to 33% and simultane-
ously improve the average response time by up to 30%.

1. INTRODUCTION
Recent years have seen a steady growth in storage clus-

ters and data centers. A wide variety of networked services

such as web hosting, e-business and outsourced storage drive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

the need for deploying these large scale storage systems to

reduce operational cost. Among the operational cost cate-

gories in today’s data center, disk storage subsystem con-

sumes the biggest portion, driving the cost of energy up

as much as 25% annually and occupying as much as 75%

of the floor space [5]. Putting idle disks into a standby

state is desirable to reduce energy consumption, but it af-

fects performance. As the performance bottleneck of data

center applications tends to be in disk I/O rather than other

components, it is imperative to develop energy-efficient and

high-performance storage systems to satisfy Service Level

Agreement (SLA) [7] of users, increase the revenue of data

center operators and promote environmental conservation.

1.1 State-of-the-Art
A plethora of schemes have been proposed to actively spin

down mobile disks to conserve energy for laptop computers.

Only in recent years, researchers have started investigating

energy efficient schemes for server-side multiple-disk storage

systems. Since conventional high-performance disks take a

long time to spin up (e.g. 20s for Seagate 15K RPM SCSI

disk), the requests arriving during this period can be signifi-

cantly delayed. For data center applications, it is important

to enforce some forms of SLA, such as average/maximum

response time or throughput [7]. Therefore, it is desirable

that energy-efficient policies for data centers can avoid extra

delay and power consumption caused by passive spin-up as

much as possible. (A passive spin-up means a standby disk

has to be spun up to serve incoming requests.) Experimen-

tal results from Gurumurthi et al. [15] and Zhu etc al. [28,

27] also correlate with this observation.

A categorization of the closely related investigations is

summarized in Table 1, in terms of whether (i) the schemes

work for conventional disks, (ii) they focus on Just a Bunch

of Disks (JBOD) without regard to the storage system orga-

nization(e.g. parity disk array), (iii) they consider effects of

power aware storage cache, and iv) they introduce overhead.

Some researchers proposed new disk models to deal with

the expensive spin-up overhead in high performance disks.

Carrera [9] and Gurumurthi [14] etc al. proposed a novel

multi-speed disk architecture called DRPM to dynamically

Table 1: Comparison of most related studies to this work
Name Conventional Disk? Parity Array? Storage Cache? Overhead

DRPM[14] No Yes No Not Commercialized
MAID[13] Yes No Yes Additional cache disks, Movement
PDC[22] Yes No No Unscalable performance, Movement

PA[28]/PB[29] No No Yes Locality Maintenance
EERAID [19] No Yes No Computation

Hibernator [27] No Yes No Movement
FS2 [17] Yes No No Space

adjust the disk rotation speed for energy saving. This scheme

shares a similar idea with dynamic frequency scaling tech-

nique in low-power CPUs. But the mechanical difference

between the CPU and disk prohibits DRPM disks from be-

ing mass-produced.

Other researchers resort to load concentration techniques

to avoid passive disk spin-up. Researchers from the Univer-

sity of Illinois developed power-aware cache allocation/partition

scheme called PB [29] and replacement algorithms called

PA [28] to concentrate load toward low speed disk onto stor-

age cache, thus achieving good energy efficiency and perfor-

mance. Their solutions are based on multi-speed disks in

which data can still be retrieved from low speed disks. When

applied to a storage system based on single-speed disk, the

power-aware cache allocation/partition scheme cannot work,

as data cannot be easily read from any standby disk, even if

we could aggressively allocate a larger cache space for them.

In addition, allocating more cache space for standby disks

(usually put in standby state due to fewer accesses) may pre-

vent data with better locality from being placed into storage

cache.

The Massive Array of Idle Disks (MAID) [13] and the Pop-

ular Data Concentration scheme (PDC) [22] concentrate the

load on some disks out of a whole disk array by exploiting

either block-level temporal locality or file-level popularity

to conserve energy. However, neither can work for a data

center environment. MAID utilizes cache disks to concen-

trate workload, but it also introduces extra cache disks as

overhead. PDC has performance scalability problems due

to its inflexible load concentration design, i.e., its perfor-

mance is unscalable even when all disks are running in active

mode [27].

Recently, Zhu et al. proposed a flexible disk reshuffle

scheme with performance guarantee called Hibernator [27]

to address the problem of previous inflexible load concentra-

tion schemes for parity disk arrays of multi-speed disks. It

is an effective, coarse-grain power and performance manage-

ment solution for multiple-speed disk based storage systems.

But it still cannot thoroughly solve the passive spin-up prob-

lem of conventional disk based storage systems deployed in

today’s data centers.

Youssef [25] investigated the design issues of low-power

disk arrays for mobile computers. However, his schemes

were designed and evaluated for mobile computer workload.

It is not clear whether they are workable for a data center

environment.

EERAID [19] exploited redundancy in a RAID [21] system

to save energy by concentrating read requests on standby

disks to active disks. But their schemes are based on multi-

speed disks and are solely dependent on disk-level request

transformation. Experimental results indicate that its per-

formance degradation is non-negligible.

Huang et al. proposed FS2 [17] to utilize free space on

the disk to make replicas for hot data blocks at runtime to

improve performance and save energy for the storage system.

Their scheme trades disk space for performance and energy

consumption. Therefore, its effectiveness is circumscribed

by the available free space and the access locality in the

running environment.

Among the six categories shown in Table 1, only MAID,

PDC and FS2 are designed and evaluated for conventional

disk based storage systems. But all of them involve one

or two forms of overhead as shown in Table 1. More im-

portantly, there is no solution that can exclusively avoid the

passive spin-ups for conventional disk based storage systems

without a performance penalty, even though EERAID can

avoid the low-speed DRPM-disk accesses in some cases.

1.2 Motivation
In conventional disk based storage systems, there are three

sources of passive spin-ups: i) Non-blocking Read requests

that cannot be deferred in a server environment; ii) Deriv-

ative Read due to parity updates for write requests in the

parity disk array, which cannot be deferred for data reli-

ability (Derivative Read is defined as those read requests

incurred by parity update in parity disk array) and iii) dirty

block flushing to enforce coherency between cache and disks.

Zhu et al. thoroughly investigated the impacts of the third

type of passive spin-up with write-back and write-through

policies [28]. Most of the aforementioned load concentration

techniques [13, 22, 28, 29, 19, 27] partially solve the first

type of passive spin-up. But they rely on the locality of ac-

cess patterns, which may involve unpredictable overheads.

To the best of our knowledge, no one has studied the impact

of the second type of passive spin-up on energy consump-

tion. Therefore, we are striving to solve the first two types

of passive spin-ups, i.e. Non-blocking Read and Derivative

Read for better energy saving in this paper.

A large storage cache is widely deployed in modern stor-

age system to improve performance. Existing work on multi-

level I/O cache architectures [26] [24] [12] [11] emphasize

the collaboration between storage client cache and storage

server cache to improve performance. Recent work on a

single level power-aware storage cache called PA-LRU [28]

has proved that performance oriented OPT algorithm does

not necessarily lead to energy efficiency. However, the PA-

LRU [28] and PB-LRU [29] algorithms cannot be directly

applied to conventional disk based storage systems for the

reasons discussed before. Modern hardware disk arrays are

usually equipped with a Non-volatile RAM (or battery sup-

ported SDRAM) based onboard controller cache. The size of

the controller cache is considerable, ranging from 64 MB to

512 MB. More importantly, it contains parity redundancy

information which can be exploited to improve energy ef-

ficiency. Unfortunately, there is no effective collaboration

mechanism between the storage cache and controller caches

to conserve energy in current storage systems.

These observations motivate us to reorganize the multi-

level caches in storage systems such that they can collabo-

rate with each other with awareness of the redundancy and

power state of underlying disks. The objective is to solve

the non-blocking read and derivative read problem for con-

ventional disk based storage system without passive spin-up

overhead, thus achieving both better performance and en-

ergy savings.

1.3 Our Contribution
In this paper, we make several contributions toward energy-

efficient , high-performance storage system based on conven-

tional disks. As a small-scale, striped disk array with parity

is an important building block in modern storage systems1,

we choose small-scale RAID-5 as the focus of this paper. We

summarize our novel contributions, and outline the paper:

1. (Section 3) We design a redundancy-based, two-level

collaborative I/O cache architecture called RIMAC.

The key idea of RIMAC is to provide an effective col-

laboration mechanism between the storage cache and

RAID controller cache, which facilitates redundancy

exploitation during power-aware request transforma-

tions (see details in Section 4) both in two-level I/O

caches and on physical disks.

2. (Section 4) Based on the RIMAC architecture, we de-

velop two power-aware read request transformation schemes

— Transformable Read in Cache (TRC) and Trans-

formable Read on Disk (TRD), and a power-aware

write request transformation policy for parity update

to address the passive spin-up problem in conventional

disk based storage systems. By applying these request

transformation schemes, non-blocking reads and deriv-

ative reads to the standby disk can be satisfied either

directly by a hit in the storage cache, or indirectly by

performing an on-the-fly XOR calculation with i) data

1e.g., IBM Shark and EMC Symmetrix all employ small-
scale RAID-5 (≤ 8 disks) as building blocks.

from the storage cache, ii) parity from the controller

cache, and iii) data or parity from non-standby disk(s)

only if needed. As a consequence, the low power disks

can stay in the standby state for a longer period of

time for better energy efficiency. Better performance

is achieved by avoiding the long delay of passive spin-

up and unnecessary disk accesses.

3. (Section 5) We develop a second-chance parity cache

replacement algorithm to improve the success rate of

the power-aware request transformation polices.

We develop a trace-driven, RAID based storage system

simulator to evaluate the energy and performance of a RIMAC-

assisted storage system. Our simulator is built on top of a

fully-validated simulator, disksim [8], with an integrated 3-

state single-speed disk power model used in reference [15].

Several real-life modern storage server traces, including cello99,

TPC-D and the Storage Performance Council’s search en-

gine, are used for performance evaluation. Simulation re-

sults show that RIMAC is able to achieve energy savings by

up to 33% and simultaneously reduce the average response

time by up to 30%, in comparison to existing systems.

2. BACKGROUND

2.1 Disk Power Model
Magnetic disks are the most widely used storage media in

current large-scale storage systems. The rotation speed, to a

large extent, determines both performance and energy con-

sumption for a single hard drive. High-end storage systems

typically employ high spin rate SCSI disks, ranging from

10,000 to 15,000 rotation per minute (RPM), while low-end

server-class disks revolve from 5,400 RPM to 7,200 RPM.

The faster the hard drive spins, the higher the energy con-

sumption and the longer the latency for a passive spin-up.

Main-stream server-class SCSI disks support three opera-

tional states: Active, Idle and Standby. A set of threshold

values is used to determine the disk power mode switch.

2.2 RAID based Storage Systems

1

5

9

P
4

2

6

P
3

1
0

3

P
2

7

1
1

P
1

4

8

1
2

S
R
1

S
R
2

L
o
g
_
R
e
q
i

D
i
s
k

1
 D
i
s
k

2
 D
i
s
k

3
 D
i
s
k

4

Figure 1: Illustration of Stripe Request Mapping.
In a 4-disk RAID-5, each number represents one
data stripe unit. And P1, P2, P3, P4 represent
parity stripe units. Log Reqi is mapped to two stripe
requests: SR1 = {4, 5, 6} and SR2 = {7, 8}). Unit 7,
8 are called Requested Units of SR2 and unit 9 is
called Complementary Unit of SR2.

RAID-5 and RAID-1 are two major building blocks in

large-scale storage systems such as data centers and storage

clusters. For example, the EMC Symmetrix 8000 [16] holds

up to 384 disks, which are protected either via mirroring

(RAID-1) or a variation of RAID-5 that EMC calls RAID-

S. The RAID-S group size is four or eight with 73 GB per

drive.

RAID-5 is a block-interleaved disk array with distributed

parity. Because the parity is evenly distributed, no disk

bears excessive I/O load as the parity disk in RAID-4. A

set of logically contiguous blocks that exist on each disk

before allocations are made from the next disk in the array

is called Stripe Unit, or Unit. There are two types of stripe

unit in RAID-5: data stripe unit which saves user data, and

parity stripe unit which stores parity data. A group of data

stripe units over which a parity stripe unit is computed is

called a Stripe, or Parity Group [10]. A logical disk request

is mapped to several Stripe Requests (SR). In this paper,

SR is defined as a subset of requested physical stripe units

that falls into the same stripe. Given a stripe, we call the

stripe unit requested by users the Requested Units, while

the stripe unit not requested by users is the Complementary

Unit. Figure 1 illustrates how a logical request is mapped

in a 4-disk RAID-5.

3. ARCHITECTURE OVERVIEW
We develop a redundancy-based, two-level I/O cache ar-

chitecture for RAID-5 based storage systems called RIMAC,

with its architecture illustrated in Figure 2. In RIMAC, we

manage the large storage cache in the unit of low-level data

stripe unit and save only parity stripe units in a small RAID

controller cache for efficiency. We interchangeably use par-

ity cache and controller cache in the RIMAC design for the

rest of the paper. Based on the protection schemes of to-

day’s real storage products and systems [2, 3], we assume

that the memory used for storage cache is UPS supported

and the memory used for parity cache is Non-volatile RAM

(or battery supported SDRAM) to protect data reliability

and recoverability.

A new Cache Service Provider (CSP) is introduced to

handle incoming requests in RIMAC-assisted storage sys-

tems. The specific functions of three components in CSP

are summarized as follows.

• The Front-end of CSP accepts the user requests ar-

riving at the storage system and maintains state for

outstanding requests.

• The Bottom-Half of CSP resides in each RAID con-

troller acting as an agent for RAID controller cache. It

provides a stripe-based request mapping interface for

storage cache. It also monitors, reports and controls

the power modes of underlying disks. Our power-aware

write request transformation procedure (detailed in

Section 4.2) gets executed here only if any write leads

to standby disk access.

S
t
o
r
a
g
e

C
a
c
h
e

(
D
a
t
a

S
t
r
i
p
e

U
n
i
t
s
)

R
A
I
D

C
o
n
t
r
o
l
l
e
r

C
a
c
h
e

(
P
a
r
i
t
y

S
t
r
i
p
e

U
n
i
t
s
)

.
.
.
.
.
.

B
o
t
t
o
m

-
h
a
l
f

F
r
o
n
t
-
e
n
d

U
p
-

H
a
l
f

R
e
q
u
e
s
t

R
A
I
D

C
o
n
t
r
o
l
l
e
r

C
a
c
h
e

(
P
a
r
i
t
y

S
t
r
i
p
e

U
n
i
t
s
)

.
.
.
.
.
.

B
o
t
t
o
m

-
h
a
l
f

.
.
.
.
.
.

Figure 2: RIMAC Architecture Overview. The
shaded rectangles represent CSP Front-end,
Bottom-Half and Up-Half of RIMAC.

• The Up-Half part of CSP resides in the storage cache

acting as an agent for storage cache management. Data

stripe units that pass through the storage system are

only cached in storage cache. Our read request trans-

formation procedure (detailed in Section 4.1) gets exe-

cuted here only if any read leads to standby disk access.

The Front-end and Up-Half are implemented as software

modules in a storage server. The Bottom-Half can be imple-

mented by modifying the firmware of a modularized storage

enclosure that usually incorporates a microprocessor, XOR

engine, NVRAM cache and bus controllers. In our simula-

tor, the Bottom-Half module implementation is about 2000

lines of C code. In this paper, we assume the back-end stor-

age enclosures are connected to the storage server via SCSI

buses. Many other alternatives exist for packaging RIMAC,

such as high speed switches (e.g. FC switches), but are be-

yond the scope of this paper.

The dotted lines in Figure 2 denote the control messages

among three components. Control messages are mainly used

to transfer the cache lookup result and selected power-aware

policy to serve the request. The solid lines denote the data

transferred from and to the storage system. For read re-

quests, the stripe units that hit in storage cache are re-

turned directly. When our request transformation proce-

dures get executed, the parity stripe unit is moved to Up-

Half and XORed with necessary data stripe units to com-

pute the missed stripe unit. The computational overhead

of XOR calculations is minimal as most of current storage

systems employ multi-way powerful CPUs as the process-

ing unit. The time for a simple XOR calculation is far less

than that of reading data blocks from disks. Compared with

the power consumption of several hundreds of disks(10.2 W

* 100 disks), the power consumption of an XOR-engine is

negligible. For example, the power consumption of an I/O

processor (IBM Power PC 750) used in EMC Symmetrix

8000 [16] is only 50 mW [6].

Figure 3 describes a sample scenario where the data stripe

unit 6 on standby disk 2 is requested by a read request.

As illustrated in Figure 3, RIMAC can serve this request

without any passive disk spin-up.

P
1

8

1
2

1

9

P
4

�
5

� �
4

P
a
r
i
t
y

C
a
c
h
e

S
t
o
r
a
g
e

C
a
c
h
e

R
e
a
d

(
a
d
d
r
=
6
,

l
e
n
=
1
)

6
 X
O
R

R
e
s
p
o
n
s
e

i
d
l
e
/
a
c
t
i
v
e
 � �� �P
2
 P
3

U
p
-
H
a
l
f

B
o
t
t
o
m
-
H
a
l
f

2

6

p
3

1
0

i
d
l
e
/
a
c
t
i
v
e

3

7

1
1

i
d
l
e
/
a
c
t
i
v
e
s
t
a
n
d
b
y

D
i
s
k

1
 D
i
s
k

2
 D
i
s
k

3
 D
i
s
k

4

F

r

o

n

t

-

E

n

d

S
t
o
r
a
g
e

S
y
s
t
e
m

R
I
M
A
C

.
.
.
.
.
.

�
4

� �
5
 �P
2

Figure 3: Data stripe unit 6 in a 4-disk parity disk
array is requested by a read request. Because it is
missed in storage cache, traditional schemes need
a passive spin-up for Disk 2 to satisfy the request.
RIMAC can serve the request by XORing stripe
units 4, 5 (hit in storage cache) and p2 (hit in parity
cache) without any passive spin-up at all.

There are several advantages behind the RIMAC design.

First, for the sake of energy-efficiency, RIMAC provides a

better opportunity to perform power-aware request trans-

formation in a two-level collaborative I/O cache environ-

ment. Second, for the sake of performance optimization, an

exclusive two-level cache design that stores data stripes in

storage cache and parity stripes in controller cache can save

space because the current RAID controller cache size (usu-

ally larger than 128 MB [3]) is non-negligible compared with

storage cache size (usually several Gigabytes [16]). Third,

a parity exclusive controller cache design allows RIMAC

to store user data closer to the user and parity closer to

RAID, which avoids the data coherency and movement be-

tween storage cache and RAID controller cache. Last, non-

blocking read and derivative read requests toward standby

disk can be satisfied by XORing data stripe units from the

storage cache and parity stripe unit from controller cache,

which improve both energy efficiency and performance.

4. POWER AWARE REQUEST TRANSFOR-
MATION

The design goal of RIMAC is to save energy by avoiding

any uncontrollable disk spin-up and spin-down derived from

non-blocking reads or derivative reads, and to improve per-

formance by minimizing the total number of disk accesses

and queueing delay. Because of the limited redundancy ratio

maintained in RAID-5, we can only have at most one disk

in standby state in order to perform request transformation

successfully. The theoretical upper bound of energy savings

in a RIMAC-assisted N-disk RAID-5 is 1
N

. As large-scale

storage systems adopt 4 to 8 disk RAID-5 as the building

block, spinning down one disk per small-scale RAID-5 is still

able to achieve good overall energy savings.

The main idea of RIMAC is to exploit power-aware two-

level I/O cache architecture and its redundancy-awareness

to save energy and simultaneously improve performance by

applying Request Transformation both in two-level I/O

cache and on disks for read and write requests. We summa-

rize our request transformation policies in Table 2.

S
t
o
r
a
g
e

C
a
c
h
e

P
a
r
i
t
y

C
a
c
h
e

D
i
s
k
s

T
R
C

T
R
D

P
U
-
D
A
-
C

P
U
-
C
A
-
C

P
U
-
D
A
-
D

P
U
-
C
A
-
D

R
e
a
d
 W
r
i
t
e

Figure 4: Power Aware Request Transformation Poli-
cies in RIMAC.

As indicated in Figure 4, for read requests, our request

transformation follows the left arrow in a top-down manner

triggered by the Up-Half of CSP; namely, the storage cache

uses the redundancy information in parity cache to serve

read requests for the standby disk. For write requests, our

request transformation follows the right arrow in a bottom-

up manner triggered by the Bottom-Half of CSP; namely,

the parity cache utilizes higher level storage cache informa-

tion to fulfill parity update with power awareness. Given

such a two-way collaborative cache design for both reads and

writes, RIMAC is able to exploit the inherent redundancy

at maximum to both save energy and improve performance.

4.1 Read Request Transformation
For read, we design two power-aware schemes, Trans-

formable Read in Cache (TRC) and Transformable Read on

Disk (TRD), by taking storage cache, controller cache and

the power state of underlying disks into consideration. By

applying TRC and TRD, we optimize the disk I/O access

pattern within the array such that the idle period of the

standby disk can be elongated for significant energy sav-

ings while the overall storage system performance can be

improved due to additional hits resulting from TRC.

4.1.1 Transformable Read in Cache

The idea behind TRC is straightforward. Assuming we

have an N-disk RAID-5, given a stripe request, if there are

N-1 stripe units hit in storage cache and controller cache

in total, the missed stripe unit can be generated on-the-fly

by XORing all the hit stripe units without any disk access.

This is a TRC hit. The condition for TRC is defined by

Formula 1.
N − 1 = Num(Hit DataStripeUnits)

+Num(Hit ParityStripeUnit) (1)

Type Level Policy Notes Section

Read
Cache TRC Transformable Read in Cache 4.1.1
Disk TRD Transformable Read on Disk 4.1.2

Write

Cache PU-DA-C Parity Update with Direct Access in Cache 4.2
Cache PU-CA-C Parity Update with Complementary Access in Cache 4.2
Disk PU-DA-D Parity Update with Direct Access on Disk 4.2
Disk PU-CA-D Parity Update with Complementary Access on Disk 4.2

Table 2: Summary of Request Transformation Policies

The advantage of TRC is that even though one disk is

temporarily in a standby state, the requests can still be

served without spinning up the disk, reducing the spin-up

and spin-down frequency. Even if the missed stripe unit is

on an active or idle disk, we can still save one physical disk

access.

4.1.2 Transformable Read on Disk

TRC is kills two birds with one stone, saving energy and

improving performance. But if there is more than one data

stripe units missing for a stripe request, we need to use a

Transformable Read on Disk (TRD) policy. In essence, TRD

shares a similar idea with TRC in exploiting redundancy to

redirect standby disk accesses. We formulate the condition

of TRD in Formula 2.

N − 1 = Num(Hit DataStripeUnits)

+Num(Hit ParityStripeUnit) (2)

+Num(Missed DataStripeUnits on NonStandbyDisk)

+Num(Missed ParityStripeUnit on NonStandbyDisk)

TRD is applied when the condition of TRC cannot be

satisfied. Due to the non-blocking nature of a read request,

a TPM (Traditional Power Management) based system [14]

has to read the data from the requested disks to get the

missing stripe units. In this paper, we call this policy Direct

Access (DA). If the stripe unit is on a standby disk, TPM has

to spin up the standby disk before serving the request, which

usually takes several seconds and causes non-negligible en-

ergy consumption. However, the TRD policy can bypass ac-

cesses to the standby disk by generating the requested data

through XORing both requested and complementary (non-

requested) data stripe units from the same stripe, which are

available either in storage cache or on non-standby disks.

Given the assumption that one disk per RAID-5 can be

spun down to standby state, TRD always acts as a reliable

backup for TRC for energy-efficiency. When both TRD and

DA policies do not access the standby disk, the one that

results in a smaller number of disk accesses is chosen to run.

4.2 Write Request Transformation
For writes, a write-allocate, write-back policy is adopted

to reduce energy consumption without significant perfor-

mance degradation. The energy impact of write back and

write through policies was fully studied in previous work

[28] with emphasis on parallel disk systems. However, the

energy impact of parity updates caused by writes is not well

addressed. This has to be thoroughly researched because

distinct parity update polices may result in different num-

bers of disk I/Os, and thus different amounts of energy con-

sumption and performance variation. Youssef [25] proposed

a dynamic remapping scheme using a log-based allocation

strategy for write and deferred parity updates to save en-

ergy for disk array in laptops. However, his solution works

well for RAID-4 rather than RAID-5.

To solve the problem, we develop a novel write request

transformation policy for parity update named Parity Up-

date with Power Awareness(PUPA). Since the PUPA can

be accomplished either in caches or on disks, we classify the

parity update scheme of PUPA into four sub-classes:

1. PU-DA-C : update parity by XORing old requested

data stripe units, old parity stripe unit and the newly

written data stripe units. Here all old data stripe units

and parity stripe unit are solely from storage cache and

parity cache;

2. PU-CA-C : update parity by XORing complementary

data stripe units with newly written data stripe units.

Here all the complementary stripe units are solely from

storage cache;

3. PU-DA-D : similar to PU-DA-C policy, update parity

with some of the requested old stripe units from non-

standby disks;

4. PU-CA-D : similar to PU-CA-C policy, update parity

with some of the complementary stripe units from non-

standby disks.

PU-MIN (parity update with minimum disk I/Os) is a proce-

dure used to update parity by choosing either PU-DA-D or

PU-CA-D. The one with the smaller number of physical disk

accesses involved is chosen to run for better performance.

The PUPA algorithm with four parity update schemes

is detailed in Algorithm 1 and Algorithm 2. Both algo-

rithms work for every stripe request SRi mapped from a

logical request Log Req. The output is the sub-policy cho-

sen by our power-aware parity update algorithm based on

the cache lookup result and the power state of underlying

disks. According to the chosen policy, CSP reorganizes the

derivative read requests and dispatches them to the corre-

sponding disks. Once finished, the Bottom-Half XORs all

the necessary stripe units and updates the parity immedi-

ately. Algorithm 1 shows how the PUPA algorithm makes

decisions when all the requested data stripe units hit in the

storage cache.

Algorithm 1: Full Requested Stripe Units Hit Case

Data: SRi (Stripe Request i).
Result: Power-aware parity update policy.
begin

if Old Parity HIT then
return PU-DA-C

else if Old Parity MISS then
if all Complementary Stripe Units HIT then

return PU-CA-C
if Old Parity not on standby disk then

return PU-DA-D
if Old Parity on standby disk then

return PU-CA-D

end

A more complex case about partial hits of stripe request(i.e.,

some of the requested stripe units hit in storage cache) is de-

tailed in Algorithm 2. During the warmup phase, Algorithm

2 can also deal with the full stripe request miss case (i.e.,

none of the requested stripe units hit in storage cache).

Algorithm 2: Partial Requested Stripe Units Hit Case

Data: SRi (Stripe Request i).
Result: Power-aware parity update policy.
begin

if Old Parity HIT then
if Missed Requested Stripe Units on standby disk
then

return PU-CA-D
else

if Missed Complementary Stripe Units on
standby disk then

return PU-DA-D
else

return PU-MIN

else if Old Parity MISS then
if Missed Old Parity on standby disk then

return PU-CA-D
else

if Missed Requested Stripe Units on standby
disk then

return PU-CA-D
else

return PU-MIN

end

5. DESIGN ISSUES

5.1 Cache Placement and Replacement
The cache hit rate and power-aware request transforma-

tion rate of RIMAC are directly related to its two-level cache

placement and replacement policies.

Storage Cache: Our storage cache placement policy is

request based; namely, only the user-requested data stripe

units are placed into the storage cache. To avoid cache pol-

lution, we do not place those stripe units that are fetched

from disks for request transformation into storage cache. A

small buffer is used to temporarily accommodate data for

XOR computation. Given a request transformation policy,

RIMAC sets the upper limit of the total number of stripe

units allocated per stripe in both parity cache and storage

cache to be N − 1 in an N-disk RAID-5. When making

the placement decision, both storage cache and parity cache

refer to the stripe allocation counter in Up-Half to enforce

this constraint. The rationale behind this is to indirectly

enlarge the effective storage cache space and fulfill more re-

quests without increasing the physical cache size. RIMAC

is orthogonal to the state-of-the-art cache replacement poli-

cies, such as LRU, LFU, ARC [20] and MQ [26]. In this

paper, we choose LRU as an example for storage cache re-

placement.

Parity Cache: The placement operation in parity cache

may be triggered by two types of events: i) TRD when the

missing parity stripe unit is fetched from disk, and ii) write

allocation when the parity is missing in parity cache. In both

cases, the parity stripe unit is placed into parity cache. Since

the request transformation and parity update optimization

rely on the parity supplied by the parity cache, there is a

need for developing a replacement algorithm to obtain high

TRC and TRD success ratios while still maintaining good

access locality. An optimal solution in theory is to replace

a parity whose corresponding stripe contains the smallest

number of data stripe units in storage cache. Unfortunately

the runtime overhead to implement such an algorithm is pro-

hibitively high. The MIN-Heap algorithm needs O(log2n)

time to maintain the min-heap property upon each storage

cache placement and replacement, where n is the number of

stripes that have data cached in storage cache.

We develop a variance of the LRU algorithm called the

second-chance parity cache replacement algorithm to strike a

tradeoff between the request transformation ratio and cache

maintenance overhead. Given a parity replacement event,

the algorithm checks the victim chosen by LRU and grants it

a second chance, only if its stripe allocation counter is larger

than or equal to dN−1
2
e. Otherwise, the victim parity stripe

unit is directly replaced. The cache maintenance overhead

for the stripe allocation counter in Up-Half is O(1). We

only need one bit to indicate whether a second chance has

been granted or not. By this way, RIMAC can potentially

increase the ratio of TRC and reduce the I/O overhead when

applying TRD.

5.2 Write Policy
RIMAC uses Non-volatile RAM (or battery supported

SDRAM) for parity cache and UPS supported RAM for

storage cache to recover from system crashes or disk fail-

ures. We adopt a write-back policy same as the one studied

in reference [28]. The threshold to flush dirty blocks was set

to 40% as recommended by EMC [1]. However, the destage

procedure to flush dirty blocks takes the standby disk into

consideration. It only flushes dirty blocks to non-standby

disks and defers writing dirty blocks to the standby disk.

When the dirty blocks of the standby disk exceed a certain

threshold ratio of the maximum cache space allocated for

dirty blocks in storage cache, the standby disk spins up to

enforce reliability. Under normal workload, we set the max-

imum number of standby disks per small RAID-5 to be one.

Therefore, holding dirty blocks for one disk per small RAID-

5 will not lead to severe resource contentions for RIMAC.

Our experimental work also proves this conjecture.

5.3 Hybrid Disk Power Management
To effectively adjust disk power states for large storage

systems, previous research adopted an epoch based approach,

choosing either a fixed number of requests called request win-

dow or a fixed period of time called time window as the

epoch for disk dynamic power management [14, 28]. In RI-

MAC, we use a hybrid approach: current epoch duration is

the shorter of 900 seconds (time window) or the duration

in which 15,000 requests have been processed since the last

epoch. When the offered load of an N-disk RAID-5 falls be-

low 80% of the maximum bandwidth of a RAID-5 with (N-1)

disks (assuming spinning down one disk in N-disk RAID-5),

we selectively spin down the disk that has the maximum

average inter-arrival time during the last epoch. Here 80%

represents the saturation knee of system service capacity [9].

Although there are no physical accesses toward the standby

disk in RIMAC because they are transformed into accesses

in cache or on other non-standby disks, the inter-arrival time

of the standby disk is estimated based on the accesses before

applying request transformation policies.

RIMAC has no passive spin-up for non-blocking read and

derivative read requests. Only under two extreme cases, RI-

MAC actively spins up a standby disk. The first is when

the offered load exceeds 80% of the maximum bandwidth

of a RAID-5 with (N-1) disks, which indicates that a (N-

1) disk RAID-5 does not have enough capacity to service

current workload. The second is when the dirty block ratio

of the standby disk in storage cache exceeds certain dirty

flush watermark specifically set for standby disk, which in-

dicates that the standby disk needs to be spun up to enforce

reliability.

6. EVALUATION METHODOLOGY
We developed a trace-driven, RAID based storage system

simulator to evaluate the performance of RIMAC-assisted

storage system, with about 5000 lines of C code to imple-

ment CSP Front-end, Up-Half and Bottom-Half. A vali-

dated simulator, disksim [8], is extended with 1000 lines

of C code for a three-state single speed disk power model

ported from a reference work [15] and interfaces between

RIMAC and disksim. We simulated a 40-MHz 16-bit Ul-

tra160 SCSI bus in disksim to connect the Up-half and the

Bottom-half. Theoretically, the maximum bandwidth (160

MB/s) can transfer an 8 KB parity stripe from Bottom-Half

to the XOR engine in 0.049 ms. In our simulation, the mem-

ory chips we used for both parity cache and storage cache

are DDR SDRAM PC2100, which provides a peak trans-

fer rate of 2128 MB/s. We used an IBM Ultrastar 36Z15

high performance SCSI disk as the disk model during the

experiment. The key parameters are shown in Table 3.

Parameter Value

Standard Interface SCSI
Capacity 18.4 GB
Rotation Speed 15000 RPM
Disk Controller Cache 4 MB
Average Seek Time 3.4 ms
Average Rotation Time 2ms
Transfer Rate 55 MB/s
Power (Active) 13.5 W
Power (Idle) 10.2 W
Power (Standby) 2.5 W
Spin Down Energy (Idle→Standby) 13 J
Spine Down Time (Idle→Standby) 1.5 s
Spin Up Energy (Standby→Active) 135 J
Spin Up Time (Standby→Active) 10.9 s

Table 3: IBM 36Z15 Disk Parameters

The RIMAC CSP components (Front-end, Bottom-Half

and Up-Half) are implemented in our RIMAC simulator. All

I/O requests are handled by CSP in the order of front-end

parsing, cache lookup, request transformation and parity

update optimizations. Once a request has been serviced,

the corresponding energy consumption and response time

are recorded. The response time per request is defined as

the time between a logical I/O request arrives at the CSP

front-end and the response of the logical request departs

the CSP front-end. At the end of each epoch, the average

response time and workload characteristics are reported to

CSP. CSP makes disk power state adjustment decision based

on the offered load and chooses a candidate disk that has a

maximum average inter-arrival time.

In our experiments, we chose three real-life storage server

traces: cello99 and TPC-D collected by the HP Storage Re-

search Lab, and the Storage Performance Council’s search

engine trace [4] (SPC-SE in brief) to evaluate RIMAC. Cello99,

TPC-D and search engine represent a modern file server, a

decision-making database server and modern Web search

engine applications respectively. The statistics of the traces

are summarized in Table 4. Cello99 and TPC-D traces con-

tain mixed read and write requests with different read-to-

Cello99 TPC-D SPC-SE

Read Ratio (MB) 57.3% 82.5% 99.9%
Avg Req Size (KB) 12 53 15

Dataset (MB) 1023 105,075 67,395

Table 4: A summary of Trace Statistics

write ratio from multiple users, which well represent modern

storage system workloads. For cello99, we extracted a one-

hour trace segment with a 1,203 MB data set in total and

57.3% reads. The TPC-D trace segment was collected when

running a TPC-D q10 benchmark. The SPC’s search en-

gine trace (SPC-SE) was a read-exclusive trace collected by

running a popular search engine application.

We chose a five-disk RAID-5 for performance evaluation

without explicit explanation in this paper as small-scale

RAID is the focus. We conducted a scalability study on

RIMAC by changing the RAID size from four to eight disks

in Section 7.6. The stripe unit size was set to 16 KB for

TPC-D, 8 KB for SPC-SE and 4 KB for cello99 because

the average request size in cello99 is smaller. The base-

line RAID system was configured with a storage cache and

a RAID controller cache, both of which adopted an LRU

cache replacement scheme. Its controller cache contained

both data and parity. The cache line size of the baseline

system and RIMAC for both storage cache and parity cache

was set to be the same as the stripe unit size to simplify

alignment handling. During the experiments, both storage

cache and controller cache in the LRU baseline system and

RIMAC were always configured with the same size for fair

comparison. The baseline system employs a threshold-based

dynamic disk power management scheme, with a threshold

value set to a break-even time (two seconds) based on a

competitive analysis in reference [18].

7. EXPERIMENTAL RESULTS
We replayed three traces and collected results by run-

ning simulations for two systems: the LRU baseline system

(BASE for short) and RIMAC. BASE and RIMAC were con-

figured with total cache size varying from 32 MB to 256 MB.

INF is a baseline system with an infinite cache configuration.

Both energy and average response time of all algorithms are

normalized to that of INF.

As the working set of cello99 is smaller than that of TPC-

D, we configured the total cache size to 32 MB and 64 MB

for cello99, 64 MB and 128 MB for TPC-D and 128 MB and

256 MB for SPC-SE. During the experiments, the RAID

controller cache size was fixed to 8 MB while the storage

cache size was equal to the total cache size minus 8 MB for

both systems. We also conducted a sensitivity study on the

impact of parity cache size in Section 7.4.1.

7.1 System Performance
Figure 5 compares the overall average response time of

BASE and RIMAC with three workloads respectively. The

X axis in these figures denotes the total cache size (in MB)

used in experiments. INF means an infinite cache size.

As shown in Figure 5, RIMAC consistently beats the BASE

for all different cache configurations. For example, with

cello99, RIMAC with a 32 MB total cache size (RIMAC-

32 for short) achieves 29% improvement over BASE with

the same cache size 32 MB (BASE-32 for short) in terms of

average response time. Given an increasing total cache size

to 64 MB, RIMAC speeds up the average response time by

30% compared with BASE-64. The reason is that the col-

laborative work between storage cache and controller cache

in RIMAC indirectly increases the effective cache space,

thus obtaining better performance than the baseline sys-

tem. Even with an extreme setting, RIMAC-INF still out-

performs BASE-INF by 20% in average response time. The

reason is that although RIMAC-INF spins down the disk to

standby to save energy, it can service the requests without

bothering the standby disk and thereby reduces the num-

ber of expensive passive disk spin-ups. As a consequence,

even a RIMAC-32 can achieve 6% better performance than

BASE-INF.

Figure 5 (b) and Figure 5 (c) show similar trends of per-

formance improvement by replaying TPC-D and SPC-SE

traces. In terms of average response time, RIMAC improves

performance from 2% to 6% in TPC-D and from 5% to

14% in SPC-SE over the baseline. As the TPC-D workload

has random access patterns, the performance benefit derived

from cache is lower than that of workloads with better locali-

ties, such as cello99 and SPC-SE. However, RIMAC-128 still

achieves 3% better performance than LRU-INF for TPC-D.

The reason is that all request transformation policies in RI-

MAC avoid some of the passive spin-ups. In addition, TRC,

PU-CA-C, and PU-DA-C can indirectly reduce the number

of cold misses in storage cache and thus further boost the

performance.

7.2 Energy Consumption
Figure 6 shows the energy consumption of the three traces

for RIMAC and BASE with different configurations. In ad-

dition to performance improvement, RIMAC also saves en-

ergy in serving I/O requests. As shown in Figure 6 (a), with

the cello99 trace, RIMAC can consistently save 14-15% en-

ergy compared with LRU baseline systems. Figure 6 (b)

and (c) show similar trends for TPC-D (33-34%) and SPC-

SE (13-16%). The main reason RIMAC can save energy

while simultaneously improving the performance is that RI-

MAC can selectively spin down a disk to standby, service the

requests without bothering the standby disk and thereby re-

duce the number of expensive disk passive spin-ups. As a

consequence, the standby disk can stay at the low power

state much longer to obtain better energy efficiency without

blocking any request.

In RIMAC, the key to saving energy is redundancy ex-

ploitation, which sets a theoretical upper bound for en-

ergy conservation in an N-disk RAID-5 as 1
N

. Here the

upper bound is 20% (1/5), which matches the energy con-

sumption results for cello99 and SPC-SE. However, the en-

ergy savings of TPC-D significantly breaks the 20% upper

bound. After analysis of the traced outputs, we find that the

threshold-based power management scheme used in BASE

works pathologically under a random workload like TPC-D.

More passive spin-ups were observed for the TPC-D work-

INF 64 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Cache Size (MB)

(a) Cello99

INF 128 64
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Cache Size (MB)

(b) TPC−D

INF 256 128
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Cache Size (MB)

(c) SPC−SE

BASE
RIMAC

BASE
RIMAC

BASE
RIMAC

Figure 5: Comparison of normalized average response time for different workloads.

INF 64 32
0

0.2

0.4

0.6

0.8

1

(a) Cello99

Cache Size (MB)
INF 128 64

0

0.2

0.4

0.6

0.8

1

(b) TPC−D

Cache Size (MB)
INF 256 128

0

0.2

0.4

0.6

0.8

1

(c) SPC−SE

Cache Size (MB)

BASE
RIMAC

BASE
RIMAC

BASE
RIMAC

Figure 6: Comparison of normalized energy consumption for different workloads.

load, which negatively contributes to the energy efficiency of

BASE. RIMAC, on the other hand, can throttle the number

of passive spin-ups for better energy efficiency. But more

disk access overhead due to disk level request transforma-

tions among random accesses of TPC-D prevents RIMAC

from offering significant performance improvement compa-

rable to that of cello99 and SPC-SE.

Combining the performance results, we found that in-

creasing the cache size does improve the storage system

performance but does not necessarily improve the energy

efficiency in both systems. Given a proper cache size con-

figuration, RIMAC can achieve near-optimal performance

and energy efficiency comparable to that of RIMAC with an

infinite cache size. This implies our algorithms work well

enough.

7.3 Performance Analysis of Request Trans-
formation

To find out why RIMAC can save energy and improve

performance at the same time, we investigate the effects of

the power-aware request transformation on performance im-

provement and energy saving in this section. We first study

the effects of the read request transformation and its over-

head compared with an LRU baseline system of commen-

surate size. Then we look into the effects of power-aware

parity update policies and their overhead. Due to space

limitations, we only present the results of RIMAC with a 64

MB total cache size for cello99, 128 MB for TPC-D and 256

MB for SPC-SE and the LRU baseline system of commen-

surate cache size in this section.

We break down the cache performance results into read-

hit ratio, transformable read in cache (TRC) ratio and trans-

formable read on disk (TRD) ratio. Since TRD introduces

extra disk accesses toward non-standby disks, an extra ac-

cess (EA) ratio is used to justify such overhead during the

request transformation. Here the ratio is the fraction of all

requested blocks that fall into a specific category.

7.3.1 Effects of Read Policies

Figure 7 (a) shows the results of a 64 MB BASE and RI-

MAC under the cello99 workload. For performance, RIMAC

achieves a 2.1% higher read hit ratio than BASE. This in-

crease derives from the ”stripe size minus one” constraint

that indirectly increase the overall cache space. An addi-

tional 3% TRC ratio (out of the overall accesses) is ob-

served in RIMAC. TRC can absorb requests on standby

disks by two-level cache collaboration, compared with ex-

pensive passive disk spin-ups in baseline systems. In all,

RIMAC achieves a 33.8% (17.2+3−15.1
15.1

) higher cache hit rate

than BASE. For energy conservation, RIMAC redirects 10.1%

(3% + 7.1%) of all block accesses to bypass the standby disk

and save energy, which is impossible to realize by existing

solutions.

Figure 7 (b) shows the results of a 128 MB BASE and

RIMAC under the TPC-D workload. The relatively lower

cache hit ratio for both RIMAC (5%) and BASE (6.3%)

is mainly caused by the random access pattern and larger

request size of the TPC-D workload. Although the read

hit ratio of RIMAC is 1.3% lower than that of BASE, the

aggregate RIMAC cache hit rate is 0.8% higher than that of

BASE RIMAC
0

5

10

15

20

25

30

35

40
R

at
io

 (
%

)

(a) Cello99

BASE RIMAC
0

2

4

6

8

10

12

14

R
at

io
 (

%
)

(b) TPC−D

BASE RIMAC
0

3

6

9

12

15

18

21

23

R
at

io
 (

%
)

(c) SPC−SE

Read Hit
TRC
TRD

Read Hit
TRC
TRD

Read Hit
TRC
TRD

Figure 7: Read hit ratio of RIMAC vs. BASE for
different workloads.

BASE, which represents 12.8% (5+2.1−6.3
6.3

) improvement on

the cache hit rate. In addition, RMIAC redirects 4.1% (2.1%

+ 2%) of all block accesses to bypass the standby disk for

energy conservation.

For the read-exclusive Web search engine application, Fig-

ure 7 (c) shows that RIMAC improves the read hit ratio by

49.5% (9.9+4.3−9.5
9.5

) and simultaneously redirects 6.9% of all

block accesses to bypass the standby disk for energy saving.

7.3.2 Overhead of Read Policies

For those blocks that are missing from the caches, the

baseline system always resorts to DA (direct access policy)

which may involve expensive passive spin-ups. Both TRC

and TRD in RIMAC eliminate passive spin-up overhead.

But TRD introduces additional I/O requests to some of the

non-standby disks. Figure 8 quantifies the overhead of read

request transformation policies with the same cache settings

as section 7.3.1.

BASE RIMAC
0

10

20

30

40

50

60

70

80
(a) Cello99

Ra
tio

 (%
)

BASE RIMAC
0

10

20

30

40

50

60

70

80

90

100
(b) TPC−D

Ra
tio

 (%
)

BASE RIMAC
0

10

20

30

40

50

60

70

80

90

100
(c) SPC−SE

Ra
tio

 (%
)

DA
EA

DA
EA

DA
EA

Figure 8: Read overhead of RIMAC vs. BASE for
different workloads.

As shown in Figure 8 (a), for disk access, the sum of the

ratio for direct access (explained before, disk access derived

from cache miss without transformation) and extra access in

RIMAC is only 2% (29.9%+14.2%−42.1%) higher than that

of direct access in BASE, which implies our transformation

schemes introduce minor disk I/O overheads. For TPC-

D workload, as shown in Figure 8 (b), we observe 13.1%

(73.4%+15.9%-76.2%) additional disk accesses sacrificed to

bypass the standby disk. This overhead, to some extent,

explains why TPC-D only achieves a small performance im-

provement (3%) over BASE. Figure 8 (c) shows that SPC-SE

even has (18.6%) less disk accesses than BASE, which pro-

duces 8% performance improvement and 15% energy saving

as discussed in Section 7.1 and 7.2.

7.3.3 Effects of Power Aware Parity Update Policy

Figure 9 compares the performance of parity update pol-

icy on RIMAC and the baseline system. Because SPC-SE is

a read-exclusive workload, we only present the results of a

64 MB total cache size for cello99 and 128 MB for TPC-D.

In both cases, RIMAC achieves a comparable hit ratio for

data writes to that of the LRU baseline system.

BASE RIMAC
0

10

20

30

40

50

60

70

80

90

100

R
a

tio
 (

%
)

(a) Cello99

Write Hit
PU−DA−C
PU−CA−C
PU−DA−D
+PU−CA−D

BASE RIMAC
0

5

10

15

20

25

30

35

40

45

50

R
a

tio
 (

%
)

(b) TPC−D

Write Hit
PU−DA−C
PU−CA−C
PU−DA−D
+PU−CA−D

Cello99 TPC−D
0

2

4

6

8

10

12

14

16

18

R
a

tio
 (

%
)

(c) Parity Hit Ratio

BASE
RIMAC

Figure 9: Write update performance of RIMAC vs.
BASE for Cello99 and TPC-D.

As shown in Figure 9 (a), for cello99, the fraction of all

requested blocks that are cache write hits in RIMAC is 21%.

For parity update purpose, not all write hits directly lead

to performance improvement and energy savings. To avoid

standby disk access, we observed only 5.1% of old data that

hit in storage cache can be directly used to update parity us-

ing the PU-DA-C policy. And 12.9% of writes resort to the

complementary update method by reconstructing the parity

using complementary stripe units from the same stripe that

are in storage cache. The reason is that more parity up-

dates in cello99 may access missed parity or old data from

standby disks. Under this situation, complementary access

in cache can work effectively as a backup to improve both

performance and energy efficiency during parity update.

As shown in Figure 9 (b), for TPC-D, the fraction of all

requested blocks that are cache write hits is only 3%. One

reason may be that there are only 17.5% writes in total in the

TPC-D workload while cello99 has 43% writes. In addition,

most of the request size is relatively large. Therefore, the

chance to apply PU-DA-C (2.2%) and PU-CA-C (1.2%) is

smaller than that of cello99.

As shown in Figure 9 (c), the parity hit ratio has been im-

proved in RIMAC by 83.7% (16.9−9.2
9.2

for cello99 and 13.8%

for TPC-D, because RIMAC employs a parity-exclusive RAID

controller cache design along with a second chance replace-

ment algorithm.

7.3.4 Overhead of Power Aware Parity Update Policy

For those missing blocks necessary for a parity update,

baseline system always resorts to parity update with mini-

mum number of disk accesses (PU-MIN), assuming best per-

formance is solely dependent on the number of disk accesses.

However, this policy may not be optimal in energy-saving

contexts because it may involve expensive passive spin-ups.

The power-aware parity update policy in RIMAC can avoid

passive spin-up overhead. But it also adds I/O requests

to some of the non-standby disks. Figure 10 quantifies the

overhead of the power-aware parity update policies under

cello99 and TPC-D with the same settings as section 7.3.3.

Cello99 TPC−D
0

5

10

15

20

25

30

35

Ra
tio

 o
f D

isk
 I/

O
fo

r P
ar

ity
 U

pd
at

e
(%

) PU−MIN
PUPA

Figure 10: Parity update overhead of RIMAC vs.
BASE for Cello99 and TPC-D.

As shown in Figure 10, RIMAC only increases 4.2% (cello99)

and 2.3% (TPC-D) disk accesses due to the power-aware

parity update, compared to a PU-MIN exclusive policy in

baseline system. This cost is still far less than that of access-

ing a standby disk directly, which implies both the energy

and performance benefits outweigh the cost of RIMAC.

7.4 Impact of Parity Cache Design in RIMAC
As Non-volatile RAM for parity cache (32 MB to 256 MB)

is relatively small and expensive, RIMAC relieves RAID con-

trollers from caching data that is inclusive to a larger stor-

age cache. In SectionS 7.1 and 7.2, we studied the effects of

storage cache size on performance and energy saving with a

fixed 8 MB parity cache. In this section, we investigate the

impact of parity cache size and the replacement algorithm

on performance and energy consumption.

7.4.1 Effects of Parity Cache Size

We proportionally scale down the latest storage and RAID

controller cache configuration pair (16 GB [2], 256 MB [3])

to the basic setting (64 MB, 1 MB) used in this study. Then,

we vary the the size of parity cache from 1 MB to 32 MB and

compare the performance improvement and energy savings

to a baseline system with infinite storage cache. The results

of RIMAC are normalized to those of the baseline system

with infinite storage cache and commensurate parity cache.

1 2 4 8 16 24 32

5

10

15

20

25

Parity Cache Size (MB)

Ra
tio

 (%
)

Performance Improvement
Energy Saving

Figure 11: Normalized energy saving and perfor-
mance improvement of RIMAC with different parity
cache size.

Figure 11 shows the energy consumption and performance

result for cello99. In one extreme, when the parity cache is

small (e.g. 1 MB), both the energy savings and performance

improvement of RIMAC are limited. With an appropriate

parity cache size (e.g. ≥ 8 MB in our experiments), the

chance to perform cache-level request transformations and

power aware parity updates is greatly increased. As a re-

sult, both the energy savings and performance improvement

approach the optimal results. In this case, further increase

in parity cache size will not be a cost-effective solution. The

effects of increasing parity cache size under other workloads

are similar.

7.4.2 Effects Parity Cache Replacement Algorithm

Table 5 compares the performance of the second-chance

cache replacement algorithm used in RIMAC with the basic

LRU based replacement algorithm. For both schemes, the

parity cache size is fixed at 8 MB for fair comparison. The

size of the storage caches for cello99, TPC-D and SPC-SE

are 64 MB, 128 MB and 256 MB, respectively. The parity

cache hit ratio has been improved by 141.3% (from 9.2% to

22.2%) for cello99, 42.5% (from 10.6% to 15.1%) for TPC-D,

and 75.7% from (3.3% to 5.8%) for SPC-SE. These results

indicate that our second-chance parity cache replacement al-

gorithm is good enough to provide parity stripes required by

request transformation policies of RIMAC. It is also noted

that the hit ratio of the read-exclusive SPC-SE workload is

relatively lower than cello99 and TPC-D. This is because

both cello99 and TPC-D are read and write mixed work-

loads. The parity update for write request also helps to

increase the ratio of parity hit.

7.5 Energy Analysis
To show how RIMAC can both save energy and improve

performance, we break down the energy consumed in each

power state for two representative disks.

Algorithm Cello99 TPC-D SPC-SE

LRU 9.2% 10.6% 3.3%
2-Chance 22.2% 15.1% 5.8%

Table 5: Effect of Second-chance Parity Cache Re-
placement Algorithm vs. LRU in RIMAC

Disk1(BASE) Disk1(RIMAC) Disk4(BASE) Disk4(RIMAC)
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

En
erg

y C
on

su
mp

tio
n (

J)

Active
Idle
Seek
Standby

Figure 12: Energy consumption breakdown of cello99

Figure 12 shows the results of two representative disks —

disk 1 and disk 4 for the cello99 trace with 64 MB total cache

size for LRU and RIMAC respectively. Disk 1 consumes

1,671.5 J in the idle mode for RIMAC and 34,767.2 J for

LRU. This is because most requests of disk 1 are transformed

to other active disks in RIMAC. The fact that 8,386.4 J

energy is consumed in the standby state on disk 1 indicates

disk 1 is in the standby state for a much longer duration

than disk 4.

Although most energy is consumed in the idle state in

LRU baseline system, all disks can rarely find isolated idle

periods longer than the break-even threshold. That is why

we observe negligible energy consumption derived from standby

for all the disks in baseline systems. Researchers from Penn-

sylvania State University [15, 23] made similar observations.

They found that for an OLTP workload, TPC-H does not

show any visible idle periods longer than 1 second and TPC-

C only shows less than 1% of idle time longer than 2 seconds.

Given our request transformation policies, short idle pe-

riods can be accumulated into longer idle periods without

incurring much overhead. The effects of request transfor-

mation policies on energy can be observed from the small

increase in seek and active portions, amounting to 1,510.5

J and 918.7 J on disk 4 respectively. However, compared

with 24,709.3 J energy saved on disk 1, overall energy con-

sumption is dramatically reduced for the whole RAID-based

storage system.

7.6 Scalability
Although RAID-5 can be as large as hundreds of disks

in theory, the reliability issue prohibits us from building a

large scale RAID-5. The size of commonly used RAID-5

as building blocks in today’s data centers are 4, 5, 6, and

8 disks. In this section, we quantify the energy savings of

our solutions on 4, 5, 6 and 8 disk RAID-5s. Due to space

limitations, we only present the results of cello99 with a 64

MB total cache size.

4−Disk 5−Disk 6−Disk 8−Disk
−10

−5

0

5

10

15

20

25

30

35

Performance Improvement
Energy Saving

Figure 13: Energy saving and performance improve-
ment of RIMAC when scaling the number of disks
from 4 to 8.

Figure 13 shows the results of energy savings and perfor-

mance improvement on average response times for 4, 5, 6

and 8 disk RAID-5 configurations. The results shown are

normalized to a baseline system with infinite storage cache

and commensurate parity cache. RIMAC with a four-disk

RAID-5 can save 17.7% in energy consumption and 33.8%

in average response time compared with the baseline sys-

tem using LRU. Even though the RAID size increases to 6,

RIMAC still achieves 10.8% energy savings and 6.8% perfor-

mance improvement. Because RIMAC needs more accesses

to do a request transformation when the size of RAID-5 fur-

ther increases, we observe 5.2% performance degradation in

an 8-disk RIMAC configuration, but we still realize 9.1%

energy saving. Based on these results, we can conclude that

RIMAC strikes a good tradeoff between energy-efficiency

and high-performance by applying the power-aware request

transformation and parity update optimization techniques.

8. CONCLUSION
In this article, we develop a redundancy-based, two-level

I/O cache architecture called RIMAC to significantly reduce

energy costs and simultaneously improve performance for

RAID-based storage systems. RIMAC exploits inherent re-

dundancy to perform power-aware request transformations

for reads and writes both in two-level I/O cache and on phys-

ical disks. Comprehensive simulation results with several

real-life server traces show that RIMAC outperforms exist-

ing solutions by up to 33% in terms of energy savings and

up to 30% in terms of average response time.

9. ACKNOWLEDGEMENTS
We thank Anastassia Ailamaki for her excellent shepherd-

ing that improved the quality of this paper, and the anony-

mous reviewers for their thoughtful suggestions. We also

thank Hewlett-Packard Labs Storage Systems Department

for providing storage traces used in this paper. This work

is supported in part by the US National Science Founda-

tion under grants CNS-0509480 and CCF-0429995, the US

Department of Energy Early Career Principal Investigator

Award DE-FG02-05ER25687.

10. REFERENCES
[1] Dell/EMC SAN Configurations.

http://www.dell.com/downloads/global/power/
ps2q4-022.pdf/.

[2] IBM TotalStorage DS8000 Overview.
http://www-1.ibm.com/servers/storage/disk/ds8000/.

[3] Intel RAID Controller.
http://www.intel.com/design/servers/RAID/srcu42e
/index.htm/.

[4] Storage Performance Council-Search Engine Traces.
http://prisms.cs.umass.edu/repository/walk.php
?cat=Storage/.

[5] More Power Needed. Energy User News, November 2002.
[6] Powerpc 750 microprocessors data sheet.

http://www-306.ibm.com/chips/techlib/techlib.nsf
/products/PowerPC 750 Microprocessor, Sep 2002.

[7] Service level agreement in the data center.
http://www.sun.com/blueprints/0402/sla.pdf, April 2002.

[8] J. S. Bucy and G. R. Ganger. The disksim simulation
environment version 3.0 reference manual. Technical Report
CMU-CS-03-102, Carnegie Mellon University, School of
Computer Science, Jan. 2003.

[9] E. V. Carrera, E. Pinheiro, and R. Bianchini. Conserving
disk energy in network servers. In Proceedings of the 2003
International Conference on Supercomputing (ICS-03),
pages 86–97, New York, June 23–26 2003. ACM Press.

[10] P. M. Chen and E. K. Lee. Striping in a RAID level 5 disk
array. In Proceedings of ACM International Conference on
Measurement and Modeling of Computing Systems
(SIGMETRICS’95), 1995.

[11] Z. Chen, Y. Zhang, Y. Zhou, H. Scott, and B. Schiefer.
Empirical evaluation of multi-level buffer cache
collaboration for storage system. In Proceedings of ACM
International Conference on Measurement and Modeling of
Computing Systems (SIGMETRICS’05), June 2005.

[12] Z. Chen, Y. Zhou, and K. Li. Eviction-based cache
placement for storage caches. In Proceedings of the
USENIX Annual Technical Conference, General Track
2003, pages 269–281, 2003.

[13] D. Colarelli and D. Grunwald. Massive arrays of idle disks
for storage archives. In Supercomputing ’02: Proceedings of
the 2002 ACM/IEEE conference on Supercomputing, pages
1–11, Los Alamitos, CA, USA, 2002. IEEE Computer
Society Press.

[14] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. DRPM: dynamic speed control for power
management in server class disks. In D. DeGroot, editor,
Proceedings of the 30th Annual International Symposium
on Computer Architecture (ISCA-03), volume 31, 2 of
Computer Architecture News, pages 169–181, New York,
June 9–11 2003. ACM Press.

[15] S. Gurumurthi, J. Zhang, A. Sivasubramaniam,
M. Kandemir, H. Franke, N. Vijaykrishnan, and M. J.
Irwin. Interplay of energy and performance for disk arrays
running transaction processing workloads. In Performance
Analysis of Systems and Software (ISPASS), pages
123–132, Mar. 2003.

[16] J. L. Hennessy and D. A. Patterson. Computer Architecture
— A Quantitative Approach. Morgan Kaufmann
Publishing Company, 2003.

[17] H. Huang, W. Hung, and K. G. Shin. Fs2: Dynamic data
replication in free disk space for improving disk
performance and energy consumption. In Proceedings of the
20th ACM Symposium on Operating Systems Principles
(SOSP’05), October 2005.

[18] S. Irani, S. Shukla, and R. Gupta. Competitive analysis of
dynamic power management strategies for systems with
multiple power saving states. Technical report, UCI-ICS,
2001.

[19] D. Li and J. Wang. EERAID: Energy-efficient Redundant
and Inexpensive Disk Array. In Proceedings of the 11th
ACM SIGOPS European Workshop, September 20-22 2004.

[20] N. Megiddo and D. S. Modha. Arc: A self-tuning, low
overhead replacement cache. In Proceedings of the 2nd
USENIX Conference on File and Storage Technologies
(FAST 03), San Franciso, CA, 2003.

[21] D. Patterson et al. RAID: Redundant arrays of inexpensive
disks. In 19 ACM SIGMOD Conf. on the Management of
Data, Chicago, June 1988.

[22] E. Pinheiro and R. Bianchini. Energy conservation
techniques for disk array-based servers. In Proceedings of
the 18th International Conference on Supercomputing,
pages 68–78, June 26 - July 01 2004.

[23] A. S. V. Natarajan, S. Gurumurthi. Is traditional power
management + prefetching == drpm for server disks? In
Eighth Workshop on Computer Architecture Evaluation
using Commercial Workloads (CAECW-8), San Francisco,
CA, February 2005.

[24] T. M. Wong and J. Wilkes. My cache or yours? making
storage more exclusive. In Proceedings of the USENIX
Annual Technical Conference, General Track 2002, pages
161–175, 2002.

[25] R. Youssef. RAID for mobile computers. Master’s thesis,
Carnegie Mellon University Information Networking
Institute, Aug. 1995. Available as INI-TR 1995-3.

[26] Y. Zhou, J. Philbin, and K. Li. The multiqueue
replacement algorithm for second level buffer caches. In
Proceedings of the USENIX Annual Technical Conference,
General Track 2001, Boston, Massachusetts, June 2001.

[27] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and
J. Wilkes. Hibernator: Helping disk arrays sleep through
the winter. In Proceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP’05), October 2005.

[28] Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou, and
P. Cao. Reducing energy consumption of disk storage using
power-aware cache management. In Tenth International
Symposium on High Performance Computer Architecture
(HPCA-10), Madrid, Spain, Feb. 14–18, 2004.

[29] Q. Zhu, A. Shankar, and Y. Zhou. Power-aware storage
cache replacement algorithms. In Proceedings of the
International Conference on Supercomputing (ICS’04),
pages 79–88, June 26 - July 01 2004.

