
Pergamum: Replacing Tape with Energy Efficient, Reliable,
Disk-Based Archival Storage

Mark W. Storer Kevin M. Greenan Ethan L. Miller Kaladhar Voruganti
University of California, Santa Cruz Network Appliance

Abstract

As the world moves to digital storage for archival pur-
poses, there is an increasing demand for reliable, low-
power, cost-effective, easy-to-maintain storage that can
still provide adequate performance for information re-
trieval and auditing purposes. Unfortunately, no current
archival system adequately fulfills all of these require-
ments. Tape-based archival systems suffer from poor
random access performance, which prevents the use of
inter-media redundancy techniques and auditing, and re-
quires the preservation of legacy hardware. Many disk-
based systems are ill-suited for long-term storage be-
cause their high energy demands and management re-
quirements make them cost-ineffective for archival pur-
poses.

Our solution, Pergamum, is a distributed network of
intelligent, disk-based, storage appliances that stores
data reliably and energy-efficiently. While existing
MAID systems keep disks idle to save energy, Perga-
mum adds NVRAM at each node to store data signa-
tures, metadata, and other small items, allowing deferred
writes, metadata requests and inter-disk data verification
to be performed while the disk is powered off. Perga-
mum uses both intra-disk and inter-disk redundancy to
guard against data loss, relying on hash tree-like struc-
tures of algebraic signatures to efficiently verify the cor-
rectness of stored data. If failures occur, Pergamum uses
staggered rebuild to reduce peak energy usage while re-
building large redundancy stripes. We show that our ap-
proach is comparable in both startup and ongoing costs
to other archival technologies and provides very high re-
liability. An evaluation of our implementation of Perga-
mum shows that it provides adequate performance.

1 Introduction

Businesses and consumers are becoming increasingly
conscious of the value of archival data. In the business

arena, data preservation is often mandated by law, and
data mining has proven to be a boon in shaping busi-
ness strategy. For individuals, archival storage is being
called upon to preserve sentimental and historical arti-
facts such as photos, movies and personal documents. In
both of these areas, archival systems must keep pace with
a growing need for efficient, reliable, long-term storage.

Many storage systems designed for long-term data
preservation rely on sequential-access technologies, such
as tapes, that decouple media from its access hardware.
While effective for back-up workloads (write-once, read-
rarely, newer writes supersede old), such systems are
poorly suited to archival workloads (write-once, read-
maybe, new writes unrelated to old writes). With as
many as 50–100 tapes per drive, a requirement to keep
tapes running at full speed, and a linear media-access
model, random-access performance with tape-media is
relatively poor. This conspires against many archival
storage operations — such as auditing, searching, consis-
tency checking and inter-media reliability operations —
that rely on relatively fast random-access performance.
This is especially important in light of the preservation
and retrieval demands of recent legislation [23, 30]. Fur-
ther, many data retention policies include the notion of
a limited lifetime, after which data is securely deleted;
selective deletion is difficult and inefficient in linear me-
dia. Finally, the separation of media and access hardware
introduces the need to preserve complex chains of hard-
ware; reading an old tape requires a compatible reader,
controller and software.

Recently, hard drives have dropped in price relative
to tape, making them a potential alternative for archival
storage [33]. The availability of high-performance,
low-power CPUs [4] and inexpensive, high-speed net-
works have made it possible to produce a self-contained,
network-attached storage device [16] with reasonable
performance and low power utilization: as little as
500 mW when both the CPU and disk are idle. The use
of disks instead of tapes means that heads are packaged

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 1

with media, removing the need for robotics and reducing
physical movement and system complexity. Using stan-
dardized communication interfaces, such as TCP/IP over
Ethernet, also helps simplify technology migration and
long-term maintenance. By using randomly-accessible
disks instead of linear tapes, systems can take advan-
tage of inter-media redundancy schemes. Unfortunately,
many existing disk-based systems incur high costs asso-
ciated with power, cooling and administration because
of design approaches that favor performance over energy
efficiency. However, recent work on MAIDs (Massive
Arrays of Idle Disks) has demonstrated that considerable
energy-based cost savings can be realized while main-
taining high levels of performance [10, 32, 45], though
such systems often favor performance over even greater
energy savings.

Our design differs from that of existing MAID sys-
tems, which still have centralized controllers. Instead,
our system, Pergamum, takes an approach similar to that
used in high-performance scalable storage systems [36,
46, 48], and is built from thousands of intelligent storage
appliances connected by high-speed networks that co-
operatively provide reliable, efficient, long-term storage.
Each appliance, called a Pergamum tome, is composed of
four hardware components: a commodity hard drive for
persistent, large-capacity storage; on-board flash mem-
ory for persistent, low-latency, metadata storage; a low-
power CPU; and a network port. Each appliance runs its
own copy of the Pergamum software, allowing it to man-
age its own consistency checking, disk scrubbing and re-
dundancy group responsibilities. Additionally, the CPU
and extensible software layer enables disk-level process-
ing, such as compression and virus checking. Finally,
the use of standardized networking interfaces and proto-
cols greatly reduces the problem of maintaining complex
chains of dependent hardware.

Pergamum introduces several new techniques to disk-
based archival storage. First, our system distributes con-
trol to the individual devices, rather than centralizing it,
by including a low-power CPU and network interface on
each disk; this approach reduces power consumption by
eliminating the need for power-hungry servers and RAID
controllers. Systems such as TickerTAIP [8] used dis-
tributed control in a RAID, but did not include reliability
checking and power management. Second, Pergamum
aggressively ensures data reliability using two forms of
redundancy: intra-disk and inter-disk. In the former,
each disk stores a small number of redundancy blocks
with each set of data blocks, providing a self-sufficient
way of recovering from latent sector errors [6]. In the lat-
ter, Pergamum computes redundancy information across
multiple disks to guard against whole disk failure. How-
ever, unlike existing RAID systems, Pergamum can stag-
ger inter-disk activity during data recovery, minimiz-

ing peak energy consumption during rebuilding. Third,
energy-efficient decentralized integrity verification is en-
abled by storing data signatures for disk contents in
NVRAM. Thus, using just the signatures, Pergamum
tomes can verify the integrity of their local contents and,
by exchanging signatures with other Pergamum tomes,
verify the integrity of distributed data without incurring
any spin up costs. Finally, the Pergamum architecture
allows disk-based archives to look like tape: an individ-
ual Pergamum tome may be pulled out of the system and
read independently; the remaining Pergamum tomes will
eventually treat this event like a disk failure and rebuild
the “missing” data in a new location.

The goal of Pergamum, is to realize significant cost
savings by keeping the vast majority, as many as 95%,
of the disks spun down while still providing reasonable
performance and excellent reliability. Our techniques al-
low us to greatly reduce energy usage, as compared to
traditional hard drive based systems, making it suitable
for archival storage. The use of signatures to verify data
reduces the need to power disks on, as does the reduced
scrubbing frequency made possible by the extra safety
provided by intra-disk parity. Similarly, staggering disk
rebuilds reduces peak power load, again allowing Perga-
mum to reduce the maximum number of disks that must
be active at the same time. While we believe these tech-
niques are best realized in a distributed system such as
Pergamum—the use of many low-power CPUs is more
efficient than a few high-power servers—they are also
suitable for use in more conventional MAID architec-
tures, and could be used to reduce power consumption
in them as well.

The remainder of this paper is organized as follows.
Section 2, places Pergamum within the context of exist-
ing research. Following that, Section 3 a detailed dis-
cussion of the systems components, including a discus-
sion of the components in each Pergamum tome. Then,
Section 4 details the system’s design, including its re-
dundancy and power management approaches. Section 5
contains our evaluation of Pergamum in terms of cost,
long-term reliability and performance. Finally, following
a discussion of future work in Section 6, we conclude the
paper in Section 7.

2 Related Work

In designing Pergamum to meet the goals of energy-
efficient, reliable, archival storage [7], we used con-
cepts from various systems. These projects can be dis-
tinguished from Pergamum by identifying their intended
workload, cost strategy and redundancy strategy. As Ta-
ble 1 illustrates, many existing systems fulfill some of
the goals of Pergamum, but none adequately address all
of its concerns.

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association2

System Media Workload Redundancy Consistency Power Aware

PARAID disk server clusters RAID Yes
Nomad FS disk server clusters none Yes

Google File System disk data-intensive apps replicas relaxed No
EMC Centera disk archival mirroring or parity WORM media No

Venti disk archival RAID 5 content-based naming, type ids No
Deep Store disk archival selectable replication content-based naming No

Copan Revolution 220A disk archival RAID 5 SHA 256 Yes
Sun StorageTek SL8500 tape backup N+1 WORM media No

RAIL optical backup, archival RAID 4 optional write verification No
Pergamum disk archival 2-level erasure coding algebraic signatures Yes

Table 1: Overview of storage systems described in Section 2.

A number of systems have also sought to achieve cost
savings through the use of commodity hardware [14,
45]. Typically, this strategy assumes that cheaper
SATA drives will fail more often than server-class hard-
ware, requiring that the solution utilize additional redun-
dancy techniques. Recent studies, however, call this as-
sumption into question, showing that SATA drives of-
ten exhibit the same replacement rate as SCSI and FC
disks [37].

Energy efficiency is an area that many designs have
explored in pursuit of cost savings. Some reports state
that commonly used power supplies operate at only 65–
75% efficiency, representing one of the primary culprits
of excess heat production, and contributing to cooling
demands that account for up to 60% of data-center en-
ergy usage [17]. The development of Massive Arrays
of Idle Disks (MAIDs) generated large cost savings by
leaving the majority of a system’s disks spun down [10].
Further work has expanded on the idea by incorporat-
ing strategies such as data migration, the use of drives
that can spin at different speeds, and power-aware redun-
dancy techniques [31, 32, 45, 49, 51]. While these sys-
tems realize energy savings, they are not designed specif-
ically for archival workloads, instead attempting to pro-
vide performance comparable to “full-power” disk arrays
at reduced power. Thus, they do not consider approaches
that could save even more power at the expense of high
performance. For example, some MAID systems, such
as those built by Copan Systems [19], use a relatively
small number of server-class CPUs and controllers that
can control dozens of disks. However, this approach is
still relatively power-hungry because the CPU and con-
trollers are always drawing power, reducing energy effi-
ciency. A Copan MAID system in normal use consumes
11 W/TB [19]; as shown in Table 2, this is comparable
to the 11–13 W required by a spun-up Pergamum tome
with a 1 TB drive. However, it is much higher than the
2–3 W/TB that Pergamum can achieve with 95% of the
disks powered off.

Another class of systems relies on media such as tape
or optical media rather than hard drives [41, 43]; such

systems are typically used for archival or back-up work-
loads. While the raw media cost may be somewhat lower
than that of disk, the cost savings of such media are
often offset by the need for additional hardware, e. g.,
extra drive heads and robotic arms. Additionally, the
random access performance of these systems is often
quite poor, introducing a number of correlated side ef-
fects such as limitations on the system’s choice of re-
dundancy schemes. For example, RAIL stores data on
optical disks and utilizes RAID 4 redundancy, but only
at a very high level: for every five DVD libraries, a sixth
library is solely devoted to storing parity [43]. Other sys-
tems have used striped tape to increase performance [13];
later systems used extra tapes in the stripe to add parity
for reliability [24].

A final class of storage systems is designed for an
archival workload, but lacks a specific cost-saving strat-
egy [2, 20, 34, 50]. Like many systems designed for pri-
mary tier storage, these systems favor performance over
power-efficiency and cost savings. While they may offer
fast random access performance, their lack of cost effi-
ciency makes them ill-suited for the long-term preserva-
tion of large corpora of data. Other wide-area long-term
storage systems, such as SafeStore [26], OceanStore [35]
and Glacier [21], can provide data longevity, but do not
take energy consumption into account. For example,
SafeStore uses multiple remote storage systems to ensure
data safety, but does not address the issue of reducing
power consumption on the remote servers.

Pergamum also expands upon techniques found in sys-
tems spanning various usage models and cost strategies.
Many systems have used hierarchical hashing as a means
of ensuring file integrity [1, 2, 25, 27, 28, 34, 35]; Perga-
mum extends this technique by utilizing hash trees of
algebraic signatures [39]. Additionally, we extend the
use of hierarchical hashing to the power-efficient audit-
ing and consistency checking of inter-device replication.
Intra-disk redundancy strategies were first suggested for
use in full-power RAID systems to avoid loss of data due
to disk failure and simultaneous latent sector errors on
a surviving disk [11, 12]. Finally, a number of hybrid

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 3

drives that combine flash memory with a hard drive have
come to market [40]. However, in such units, the flash
is used primarily as a read and write cache, in contrast
to Pergamum, which uses flash memory on each Perga-
mum tome for metadata consistency, and indexing in-
formation, allowing Pergamum to reduce disk spin-ups
while preserving high levels of functionality.

3 System Components

The design of Pergamum was driven by a workload that
exhibits read, write and delete behavior that differs from
typical disk-based workloads, providing both challenges
and opportunities. The workload is write-heavy, moti-
vated by regulatory compliance and the desire to save
any data that might be valuable at a later date. Reads,
while relatively infrequent, are often part of a query or
audit and thus are likely to be temporally related. Deletes
are also likely to exhibit a temporal relationship as reten-
tion policies often specify a maximum data lifetime. This
workload resembles traditional archival storage work-
loads [34, 50], adding deletion for regulatory compli-
ance.

The Pergamum system is structured as a distributed
network of independent storage appliances, as shown in
Figure 1. Alone, each Pergamum tome acts as an intelli-
gent storage device, utilizing block-level erasure coding
to survive media faults and algebraic signatures to ver-
ify block integrity. Collectively, the storage appliances
provide data reliability through distributed RAID tech-
niques that allow the system to recover from the loss of
a device, and inter-disk data integrity by efficiently ex-
changing hash trees of algebraic signatures. As we will
show, this approach is so reliable that disk scrubbing [38]
need not be done more frequently than annually. In ad-
dition, lost data can be rebuilt with lower peak energy
consumption by staggering disk activity; this approach is
slower, but reduces peak power consumption.

The next two sections discuss the design and imple-
mentation of Pergamum and implementation of these
techniques. This section describes an individual Perga-
mum appliance, or tome, including its components, intra-
appliance redundancy strategy, interconnection network,
and interface. Section 4 then describes how multiple
storage appliances work together to provide reliable,
distributed, archival storage, including a description of
the system’s inter-appliance redundancy and consistency
checking strategy.

3.1 Pergamum Tomes

A Pergamum tome is a storage appliance made up of four
main components: a low-power processor, a commod-
ity hard drive, non-volatile flash memory and an ethernet

NVRAM

Hard

Drive

CPU

Figure 1: High-level system design of Pergamum. In-
dividual Pergamum tomes, described in Section 3.1 are
connected by a commodity network built from off-the-
shelf switches.

Component Power
SATA Hard Drive [47] 7.5 W

ARM-based board (w/ NIC) [4] 3.5 W
NVRAM < 0.6 W

Table 2: Active power consumption (in watts) of the four
primary components that make up a Pergamum tome.

controller. To protect against media errors, erasure cod-
ing techniques are used on both the hard drive and flash
memory.

Each Pergamum tome is managed by an on-board,
low-power CPU; a modern ARM-based single board
computer consumes 2–3 W when active (using a
400 MHz CPU) and less than 300 mW when inactive [4].
The processor handles the usual roles required of a
network-attached storage device [15, 16] such as network
communications, request handling, metadata manage-
ment, and caching. In addition, each Pergamum tome’s
CPU manages consistency checking and parity opera-
tions for the local drive, responds to search requests,
and initiates communications with other disks to provide
inter-disk reliability. The processor can also be used to
handle other operations at the device level, such as virus
checking and compression.

Persistent storage is provided through the unit’s
SATA-class hard drive. The use of commodity hard-
ware offers cost savings over more costly SCSI and
FC drives while providing acceptable performance for
archival workloads. By using both intra-disk redundancy
and distributed redundancy groups, commodity SATA-
class drives can provide excellent reliability for long-
term archival storage [37].

While a single processor could manage multiple hard
drives, Pergamum pairs each processor with a single hard

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association4

drive. This is done for performance matching, power
savings, and ease of maintenance. As Section 5 details,
low-power processors are not fast enough to run even a
single disk at full speed, so there is little incentive to
control multiple disks with a single CPU. Power sav-
ings is another issue: a faster CPU and multi-disk con-
troller would consume more power than multiple individ-
ual low-power CPUs (cutting processor voltage in half
results in half the clock speed but one fourth the power
consumption). Finally, the pairing of a CPU with a sin-
gle disk and network connection makes it simpler to re-
place a failed Pergamum tome. If any part of the Perga-
mum tome fails, the entire Pergamum tome is discarded
and replaced, rather than trying to diagnose which part of
the Pergamum tome failed to “save” working hard drives.
The system then heals itself by rebuilding the data from
the failed device elsewhere in the system. By reducing
the complexity of routine maintenance, Pergamum re-
duces ongoing costs.

In addition to a hard drive, each Pergamum tome in-
cludes a pool of on-board NVRAM for storing metadata
such as the device’s index, data signatures and informa-
tion about pending writes. The purpose of the NVRAM
is to provide low-power, persistent storage; operations
such as metadata searches and signature requests do not
require the unit’s drive to be spun up. While the use
of flash-type NVRAM provides better persistency and
energy-efficiency compared to DRAM, it does raise two
issues: reliability and durability. Our system protects
the flash memory from erroneous writes and media er-
rors through the use of page-level protection and consis-
tency checking [18], ensuring memory reliability. Flash
memory is also limited in that the memory must be writ-
ten in blocks, and each block may only be rewritten a fi-
nite number of times, typically 104–105 times. However,
since the NVRAM primarily holds metadata such as al-
gebraic signatures and index information, flash writes are
relatively rare; flash writes coincide with disk writes. Be-
cause this typically occurs fewer than 1000 times per
year, or 8000 times during the lifetime of a disk, even
if the flash memory is totally overwritten each time, such
activity will still be below the 10,000 write cycles that
flash memory can support. Additionally, while the cur-
rent implementation uses NAND flash memory, other
technologies such as MRAM [44] and phase change
RAM [9] could be used as they become available and
price-competitive, further reducing or eliminating the
rewrite issue.

Finally, each Pergamum tome includes an Ethernet
controller and network port, providing a number of im-
portant advantages. First, a network connection is a stan-
dardized interface that changes very slowly—modern
Ethernet-based systems can interoperate with systems
that are more than fifteen years old. In contrast, tape-

based systems require a unique head unit for each tape
format, and each of those devices may require a differ-
ent interface; supporting legacy tapes could require the
preservation of lengthy hardware chains. The use of a
network also eliminates the need for robotics hardware
(or humans) to load and unload media; such robots might
need to be modified for different generations of tape me-
dia and must be maintained. Instead, the system can use
commodity network interconnects, leaving all media per-
manently connected and always available for messaging.

3.2 Interconnection Network

Since Pergamum must contain thousands of disks to con-
tain the petabytes of data that long-term archives must
hold, its network must scale to such sizes. However,
throughput is not a major issue for such a network—a
modern tape silo with 6,000 tapes typically has fewer
than one hundred tape drives, each of which can read
or write at about 50 MB/s, for an aggregate throughput
of 5 GB/s. Scaling a gigabit Ethernet network to sup-
port comparable bandwidth can be done using a star-type
network with commodity switches at the “leaves” of the
network and, potentially, higher-performance switches in
the core. For example, a system built from 48-port gi-
gabit Ethernet switches could use two switches as hubs
for 48 switches, each of which supports 46 disks, with
the remaining two connections going to each of the two
hubs. This approach would support over 2200 disks at
minimal cost; if the central hubs each had a few 10 Gb/s
uplinks, a single client could easily achieve bandwidth
above 5 GB/s. This structure could then be replicated and
interconnected using a more expensive 10 Gb/s switch,
allowing reasonable-speed access to any one of tens of
thousands of drives, with the vast majority remaining
asleep to conserve power.

The interconnection network must allow any disk to
connect with any network-connected client. By using a
standard Ethernet-based network running IP, Pergamum
ensures that any disk can communicate with any other
disk, allowing the system to both detect newly-connected
disks and allowing them to communicate with existing
disks to “back up” their own data.

The approach described above is highly scalable, with
minimal “startup cost” and low incremental cost for
adding additional disks. Further efficiencies could be
achieved by pairing the Ethernet cable with a higher-
gauge wire capable of distributing the 14–18 W that a
spun-up disk and processor combination requires. Al-
ternatively, the system could use disks that can spin at
variable speeds as low as 5400 RPM [47], reducing disk
power requirements to 7.5 W and overall system power
needs to below 11 W, sufficiently low to use standard
power-over-Ethernet. Central distribution of power has

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 5

several advantages, including lower hardware cost and
lower cabling cost. Additionally, distributing power via
Ethernet greatly simplifies maintenance—adding a new
drive simply requires plugging it into an Ethernet cable.
While the disks in the system will work to keep average
power load below 5% utilization, a central power dis-
tribution system will allow the network switches them-
selves to guarantee that a particular power load will
never be exceeded by restricting power distributed by the
switch.

3.3 Pergamum Tome Interface

There are two distinct data views in Pergamum: a file-
centric view and a block-centric view. Clients utilize
the file-centric view, submitting requests to a Pergamum
tome through traditional read and write operations. In
contrast, requests from one Pergamum tome to another
utilize the block-centric view of data based on redun-
dancy group identifiers and offsets.

Clients access data on a Pergamum tome using a set
of simple commands and a connection-oriented request
and response protocol. Currently, clients address their
commands to a specific device, although future versions
of Pergamum will include a self-routing communications
mechanism. Internally, files are named by a file identi-
fier that is unique within the scope of a single Pergamum
tome. The new command allocates an unused file iden-
tifier and maps it to a filename supplied by the user. This
mapping is used by the open command to provide the
file’s unique identifier to a client. This file id, the de-
vice’s read and write commands, and a byte offset
are then used by the client to access their data.

Requests between Pergamum tomes primarily utilize a
data view based on segment identifiers and block offsets,
as opposed to files. There are four main operations that
take place between Pergamum tomes. First, external par-
ity update requests provide the a Pergamum tome storing
parity with the delta and metadata needed to update its
external redundancy data. Second, signature requests are
used to confirm data integrity. Third, token passing oper-
ations assist in determining which devices to spin up. Fi-
nally, there are commands for the deferred (foster) write
operations discussed in Section 4.3.1.

Management of Pergamum tomes can be done either
with a centralized “console” to which each Pergamum
tome reports its status, or in a distributed fashion where
individual Pergamum tomes report their health via LED.
For example, each Pergamum tome could have a small
green LED that is on when the appliance is working cor-
rectly, and off when it is not. An operator would then re-
place Pergamum tomes whose light is off; this approach
is simple and requires little operator skill. Alternatively,
a central console could report “Pergamum tome 53 has

� � � � � � � � � � 	
 � � � �
 � �
� � � � � � �� � � �� � � � � � � � � � � � � � ! � " # �� $
� � � � � � % & ' � ()

* + , - � $.* + , - � � .* + , - � � .
/ � 0& � � 1 � � #

2 3 - � $.2 3 - � � .2 3 - � � .

Figure 2: Layout of data on a single Pergamum tome.
Data on the disk is divided into blocks and grouped into
segments and regions. Data validity is maintained using
signatures, and parity blocks are available to rebuild lost
or corrupted data.

failed,” triggering a human to replace the failed unit. The
Pergamum design permits both approaches; however, we
do not discuss the tradeoffs between them in this paper.

4 Pergamum Algorithms and Operation

A Pergamum system, deployed as described in Section 3
is highly decentralized, relying upon individual disks to
each manage their own behavior and their own data.
Each disk is responsible for ensuring the reliability of
the data it stores, using both local redundancy informa-
tion and storage on other nodes.

4.1 Intra-Disk Storage and Redundancy

The basic unit of storage in a Pergamum tome are fixed-
size blocks grouped into fixed-size segments, as shown in
Figure 2. Together, blocks and segments form the basic
units of the system’s two levels of redundancy encoding:
intra-disk and inter-disk. Since the system is designed for
archival storage, blocks are relatively large—128 KB–
1 MB or larger—reducing the metadata overhead neces-
sary to store and index them. This approach mirrors that
of tape-based systems, which typically require data to be
stored in large blocks to ensure high efficiency and rea-
sonable performance.

The validity of individual blocks is checked using
hashes; if a block’s content does not match its hash, it can
be identified as incorrect; this approach has been used in
other file systems [27, 42]. Disks themselves maintain
error-correcting codes, but such codes are insufficiently
accurate for long-term archival storage because they have
a silent failure rate of about 10−14, a rate sufficiently high

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association6

to cause data corruption in large-scale long-term storage.
To avoid this problem, each disk appliance stores both
a hash value and a timestamp for each block on disk.
Assuming a 64-bit hash value and a 32-bit timestamp, a
1 TB disk will require 96 MB of flash memory to main-
tain this data for 128 KB blocks. Keeping this informa-
tion in flash memory has several advantages. First, it en-
sures that block validity information has a different fail-
ure mode from the data itself, reducing the likelihood that
both data and signature will be corrupted. More impor-
tantly, however, it allows the Pergamum tome to access
the signatures and timestamps without powering on the
disk, enabling Pergamum to conduct inter-disk consis-
tency checks without powering on individual disks.

The hash values used in Pergamum are algebraic sig-
natures—hash values that are highly sensitive to small
changes in data, but, unlike SHA-1 and RIPEMD, are
not cryptographically secure. Algebraic signatures are
ideally suited to use in Pergamum because, for many re-
dundancy codes, they exhibit the same relationships that
the underlying data does. For example, for simple parity:

d0 ⊕d1 · · ·⊕dn−1 = p =⇒

sig(d0)⊕ sig(d1) · · ·⊕ sig(dn−1) = sig(p) (1)

While 64-bit algebraic signatures are sufficiently long to
reduce the likelihood of “silent” errors to zero; they are
ineffective against malicious intruders, though there are
approaches to verifying erasure-coded data using signa-
tures or fingerprints that can be used to defeat such at-
tacks [22, 39].

As Figure 2 illustrates, each segment is protected by
one or more parity blocks, providing two important pro-
tections to improve data survivability. First, the extra
parity data provides protection against latent sector er-
rors [6]. If periodic scrubbing reveals unreadable blocks
within a segment, the unreadable data can be rebuilt and
written to a new block using only the parity on the lo-
cal disk. Second, while simple scrubbing merely deter-
mines whether the block is readable, the use of algebraic
signatures and parity blocks allows a disk to determine
whether a particular block has been read back properly,
catching errors that the disk drive itself cannot [22, 39]
and correcting the error without the need to spin up ad-
ditional disks.

4.2 Inter-Disk Redundancy

While intra-disk parity guards against latent sector er-
rors, Pergamum can survive the loss of an entire Perga-
mum tome through the use of inter-tome redundancy en-
coding. Segments on a single disk are grouped into re-
gions, and a redundancy group is built from regions of
identical sizes on multiple disks. To ensure data survival,

4 5 6 7 8
9 99 99 99 99 99 99 99 99 9 4 5 6 7 :

9 99 99 99 99 99 99 99 99 9 4 5 6 7 ;
9 99 99 99 99 99 99 99 99 9 4 5 6 7 <

9 99 99 99 99 99 99 99 99 9= 7 > ? @ > A @ B C D E 5 ? F G
Figure 3: Two levels of redundancy in Pergamum. In-
dividual segments are protected with redundant blocks
on the same disk—those labeled with an R. Redundancy
groups are protected by the shaded segments, which con-
tain erasure correcting codes for the other segments in the
redundancy group. Note that segments used for redun-
dancy still contain intra-disk redundant blocks to protect
them from latent sector errors.

each redundancy group also includes extra regions on ad-
ditional disks that contain erasure correction information
to allow data to be rebuilt if any disks fail. These redun-
dancy regions are stored in the same way as data regions:
they have parity blocks to guard against individual block
failure and the disk appliances that host them store their
algebraic signatures in NVRAM.

The naı̈ve approach to verifying the consistency of a
redundancy group would require spinning up all the disks
in the group, either simultaneously or in sequence, and
verifying that the data in the segments that make up the
regions in the group is consistent. Pergamum dramati-
cally reduces this overhead in two ways. First, the alge-
braic signatures stored in NVRAM can be exchanged be-
tween disks in a redundancy group and verified for con-
sistency as described in Section 4.1. Since the signatures
are retrieved from NVRAM, the disk need not be spun
up during this process as long as changes to on-disk data
are reflected in NVRAM. If inconsistencies are found,
the timestamps may be used to decide on the appropri-
ate fix. For example, if a set of segments is inconsistent
and a data segment is “newer” than the newest parity seg-
ment, the problem is likely that the write was not applied
properly; depending on how writes have been applied
and whether the “old” data is available, the parity may
be fixed without powering up the whole set of segments.

While this approach only requires that signatures,
rather than data, be transmitted, it is still very inefficient,
requiring the transmission of nearly 100 MB of signa-
tures for each disk to verify a redundancy group’s consis-
tency. To further reduce the amount of data and compu-
tation that must be done, Pergamum uses hash trees [29]
built from algebraic signatures, as shown in Figure 4. Us-
ing signatures of blocks as di in Equation 1 shows that

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 7

H I J K L
M N O P QRR R

H I J K S
M N O P Q

T RR R
H I J K U

M N O P QRR R
H I J K V

M N O P QRR RW LW SW U
Figure 4: Trees of algebraic signatures. Tomes in a re-
dundancy group exchange the roots of their trees to ver-
ify consistency; in this diagram, the signatures marked
with an X are inconsistent. The roots (L0) are ex-
changed; since they do not match, the nodes recurse
down the tree to L1 and then L2 to find the source of
the inconsistency. “Children” of consistent signatures
(signatures shaded in gray at L2) are not fetched, sav-
ing transmission and processing time. The inconsistent
block on tome 1 is found by checking the intra-segment
signatures on each block; only those on tome 1 were in-
consistent. Note that only tome 1’s disk need be spun up
to identify and correct the error if it is localized.

signatures of sets of signatures follow the same relation-
ships as the underlying data; this property is maintained
all the way up to the root of the tree. Thus, the signatures
at the roots of each disk’s hash tree for the region should
yield a valid erasure code word when combined together.
If they do not, some block in the redundancy group is
invalid, and the disks recurse down the hash tree to find
the bad block, exchanging the contents at each level to
narrow the location of the “bad” block. This approach
requires O(k) computation and communication when the
group is correct—the normal case—and O(k logn) com-
putation and communication to find an error in a redun-
dancy group with a total of n blocks across k disks. Since
redundancy groups are not large (k≤ 50, typically), high-
level redundancy group verifications can be done quickly
and efficiently.

4.3 Disk Power Management

Reducing power consumption is a key goal of Perga-
mum; since spinning disks are by far the largest con-
sumer of power in a disk appliance, keeping the disk
powered off (“spun down”) dramatically reduces power
consumption. In contrast to earlier systems that aim to
keep 75% of the disks inactive [19], Pergamum tries to
keep 95% or more of the disks inactive all of the time,
reducing disk power consumption by a factor of five
or more over existing MAID approaches. This goal is
achieved with several strategies: sequentially activating
disks to update redundancy information on writes, low-
frequency scrubbing, and sequentially rebuilding regions

on failed disks.
To guard against too many disks being spun up at once,

Pergamum uses spin-up tokens, which are passed from
one node to another to allow spin-up. If multiple nodes
require a token simultaneously, the node currently hold-
ing the token (which may or may not be spun up at the
time) calculate need based on factors such as a unit’s old-
est pending request, the types of requests it has pending,
the number of pending requests and the last time the disk
was spun up.

4.3.1 Reading and Writing Data

When a client requests a data read, the device from which
data is to be read is spun up. This process takes a
few seconds, after which data can be read at full speed.
While a Pergamum tome is somewhat slower than a high-
power network-attached disk, its performance, discussed
in Section 5, is sufficient for archival storage retrieval.
Moreover, since the data is stored on a disk rather than
a tape, random access performance is significantly better
than that of a tape-based system.

As with reads, archive writes require a spun-up disk.
Pergamum clients choose the disks to which they write
data; Pergamum does not impose a choice on users. This
is done because some clients may want to group par-
ticular data on specific disks: for example, a company
might choose to archive email for an individual user on
one drive. On the other hand, a storage client may query
Pergamum nodes to identify spun-up nodes, allowing it
to select a disk that is already spun up.

Since writes require the eventual update of distributed
data, they are more involved than reads. First, the tar-
get disk is spun up if it is not already active. Next, data
is written to blocks on the local disk. However, existing
data blocks are not overwritten in place; instead, data is
written to a new data block, allowing the Pergamum tome
to calculate “deltas” based on the old and new block.
These deltas are then sent to the Pergamum tomes stor-
ing the redundancy regions for the old block’s segment.
On the local device, the segment mapping is updated to
replace the old block with the new block. It is important
to note, however, that the old block is retained until it has
been confirmed that all external parity has been updated.

On the Pergamum tomes storing the redundancy in-
formation, the deltas arrive as a parity update request.
Since the redundancy update destination knows how the
erasure correcting code is calculated, it can use the delta
from the data target disk to update its own redundancy
information; it does not need both the old and new data
block, only the delta. Because the delta may be different
for different parity disks, however, the Pergamum tome
that received the original write request must keep both
old and new data until all of the parity segments have

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association8

been updated. However, doing updates this way ensures
that a write requires no more than two disks to be active
at any time; while the total energy to write the data is
unchanged—a write to an (m,n) redundancy group must
still update n−m+ 1 disks—the peak energy is dramat-
ically reduced from n−m+ 1 disks active to 2 disks ac-
tive, resulting in an improvement for any code that can
correct more than one erasure.

One problem with allowing writes directed to a spe-
cific Pergamum tome is that the disk may not be spun up
when the write is issued. While the destination disk may
be activated, an alternate approach is to write the data
to any currently active disk and later copy the data to
the “correct” destination. This approach is called surro-
gate writing, and is used in Pergamum to avoid spinning
disks up too frequently. Instead, writes are directed to
an already-active disk, and the Pergamum tome to which
data will eventually be sent is also notified. The data can
the be transferred to the correct destination lazily.

4.3.2 Scrubbing and Recovering Data

To ensure reliability, disks in Pergamum are occasionally
scrubbed: every block on the disk is read and checked
for agreement with the signature stored in NVRAM. This
procedure is relatively time-consuming; even at 10 MB/s,
a 1 TB disk requires more than a day to check. However,
Pergamum tome’s use of on-disk redundancy to guard
the data in a segment, described in Section 4.1, greatly
reduces the danger of data loss from latent sector errors,
so the system can reduce the frequency with which it
performs full-disk scrubs. Instead, a Pergamum tome
performs a “limited scrub” each time it is spun up, ei-
ther during idle periods or immediately before the disk
is spun down. This limited scrub checks a few hundred
randomly-chosen locations on the disk for correctness
and examines the drive’s SMART status [5], ensuring
that the disk is basically operating correctly. If the drive
passes this check, the major concern is total drive failure,
either during operation or during spin-up, as Section 5.2
describes.

Complete drive failures are handled by rebuilding the
data on the lost drive in a new location. However, since
fewer than 5% of the disks in Pergamum may be on at
any given time and redundancy groups that may contain
data and parity on 15–40 disks for maximal storage ef-
ficiency, it is impractical to spin up all of the disks in a
redundancy group to rebuild it. Instead, Pergamum uses
techniques similar to those used in writing data to recover
data lost when a disk fails. The rebuilding algorithm be-
gins by choosing a new location for the data that has been
lost; this may be on an existing disk (as long as it is not
already part of the redundancy region), or it may be on a
newly-added disk. Pergamum then spins up the disks in

the redundancy region one by one, with each disk send-
ing its data to the node on which data is being rebuilt.
The node doing the rebuilding folds the incoming data
into the data already written using the redundancy algo-
rithm; thus, it must write each location in the region m
times and read it m− 1 times (the first “read” would re-
sult in all zeros, and is skipped).

5 Experimental Evaluation

Our experiments with the current implementation of
Pergamum were designed to measure several things.
First, we wanted to evaluate the cost of our system in
order to ensure that our solution was economically fea-
sible. Second, we wanted to confirm that Pergamum can
provide long-term reliability through a strategy of mul-
tiple levels of parity and consistency checking using al-
gebraic signatures. Finally, we wanted to measure the
performance of our implementation to show that Perga-
mum is suitable for archival workloads and to identify
potential bottlenecks.

The remainder of this section proceeds as follows.
First, we first present an analytical evaluation of the sys-
tem’s cost. Then, using a series of simulations, we exam-
ine the system’s long-term reliability. Finally, we present
the results of our performance tests with the current im-
plementation of Pergamum.

5.1 Cost

An archival system’s cost can be broken down into two
primary areas: static (initial costs) and operational. The
first figure describes the cost to acquire the system, and
the second figure quantifies the cost to run the system.
Examining both costs together is important because low
static costs can be overshadowed by the total cost of op-
erating and maintaining a system over its lifetime.

We do not consider personnel costs in any of the sys-
tems we describe; we assume that all of the systems
are sufficiently well automated that human maintenance
costs are relatively low. However, this assumption is
somewhat optimistic, especially for large tape-based sys-
tems that use complex hardware that may require re-
pair. In contrast, Pergamum is built from simple, dispos-
able components—a failed Pergamum tome or network
switch may simply be thrown out rather than repaired,
reducing the time and personnel effort required to main-
tain the system.

Static costs reflect the expenses associated with ac-
quiring an archival storage solution, and can be calcu-
lated by totaling a number of individual costs. One is
the system expense, which totals the base hardware and
software costs of a storage system with a given capac-
ity for storage media. This cost is paid at least once per

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 9

storage system, regardless of how much storage is actu-
ally required. Media cost, in dollars per terabyte, is a
second expense. Large archival storage systems may re-
quire several “base” systems; for example, an archival
system that uses tape silos and robots might require one
silo per 6,000 tape cartridges, even if the silo will not be
filled initially.

Operational costs reflect those costs incurred by day
to day operation of an archival storage system. This cost
can be measured using a dollars per operational period
figure, normalized to the amount of storage being man-
aged. Some of the primary contributors to a system’s
total operational expenses include power, cooling, floor
space and management. As described above, we omit
management cost, both because we assume it will be
similar for different storage technologies, and because it
is extremely difficult to quantify. We also omit the cost
of floor space since it is highly variable depending on
the location of the data center. However, an important,
but often omitted, aspect of operational costs includes
the expenses related to reliability: expected replacement
costs for failed media and the operational cost associated
with parity operations. This cost, along with power and
cooling, forms the basis of our comparison of operational
costs.

The static and operational costs must include the cost
for any redundant hardware or storage. However, since
existing solutions vary in their reliability, even within a
particular technology, we have not attempted to quan-
tify the interplay between capacity and reliability. In-
stead, we assume that a system that requires mirroring
simply costs twice as much to purchase and run per byte
as a non-redundant system. In this respect, Pergamum
is very low cost: the storage overhead for a system with
segments using 62 data and 2 parity blocks and redun-
dancy groups with 13 data disks and 3 parity disks is
64
62 ×

16
13 − 1 = 0.27 times usable data capacity. In such

a system, 1 TB of raw storage can hold 787 GB of user
data.

All of these factors—static cost, operational cost,
and redundancy overhead—are summarized in Table 3.
Static costs are approximations based on publically avail-
able hardware prices. For operational costs, We have
used a constant rate of $0.20/kWh for electricity to cover
both the direct cost of power and the cost of cooling. Ta-
ble 3 shows the costs for a 10 PB archive for each tech-
nology, including sufficient base systems to reach this ca-
pacity. While the costs reflected in the table are approxi-
mate, they are useful for comparative purposes. Also, we
note that some systems have ranges for redundancy over-
head because they can be configured in several ways to
ensure sufficient reliability; we chose the least expensive
reliability option for each technology. For example, the
EMC Centera [20] can be used with mirroring; doing so

might increase reliability, but will certainly increase total
cost.

The results summarized in Table 3 illustrate a number
of cost-related archival storage issues. First, as shown
by PARAID, even energy-efficient, non-archival systems
are too expensive for archival scenarios. Second, media
with low storage densities can become expensive very
quickly because they require a large amount of hardware
to manage the high numbers of media. For example,
RAIL uses UDO2 optical media that only offers 60 GB
per disk and thus the system requires numerous cabinets
and drives to handle the volume of media. Using off-the-
shelf dual-layer DVDs, with capacity under 10 GB per
disk, would reduce the media cost, but would increase
the hardware cost by a factor of six because of the added
media; such an approach would require 100 DVDs per
terabyte, making the cost prohibitive. Third, the Copan
and Centera demonstrate two different strategies for cost
effective storage: lower initial costs versus lower runtime
costs. Finally, we see that Pergamum is competitive in
cost to Sun’s StorageTek SL8500 system while provid-
ing functionality, such as inter-archive redundancy, that
tape-based systems are unable to provide.

An understanding of the costs associated with reliabil-
ity is important because it assists in matching the data
to be protected with an economically efficient reliability
strategy. Unfortunately, because it is largely dependent
on the data itself, the economic impact of lost data is
difficult to calculate. Moreover, many of the costs re-
sulting from data loss are, at best, difficult to quantify.
For example, the cost to replace data can vary from zero
(don’t replace it) to nearly priceless (how much is bank
account data worth?). Another factor, opportunity costs,
expresses the cost of lost time; every hour spent dealing
with data loss is an hour that is not spent doing some-
thing else. In a professional setting, data loss may also
involve mandatory disclosures that could introduce costs
associated with bad publicity and fines. While we do not
quantify these costs, we note that long-term archive reli-
ability is a serious issue [7].

5.2 Reliability

There are many tradeoffs that influence the reliability of
an archival storage system. Factors such as stripe size,
both on an individual disk and between disks, disk fail-
ure rate, disk rebuild time and the expected rate of latent
sector errors must be considered when building a long-
term archival system. Our analysis considers these fac-
tors along with strict power-management constraints to
compute the expected mean time to data loss (MTTDL)
of a deployed Pergamum system.

Table 4 shows the parameters used in our analysis. In
the absence of an archival workload for our reliability

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association10

System Media Static cost Oper. cost Redundancy
Sun StorageTek SL8500 T10000 tape $4,250 $60 None

EMC Centera SATA HD $6,600 $1,800 parity
PARAID SCSI HD $37,800 $1,200 RAID

Copan Revolution SATA HD $19,000 $250 RAID-5
RAIL UDO2 $57,000 $225 RAID-4 (5+1)

Pergamum SATA HD $4,700 $50 2-level

Table 3: Comparison of system and operational costs for 10 PB of storage. All costs are in thousands of dollars and
reflect common configurations. Operational costs were calculated assuming energy costs of $0.20/kWh (including
cooling costs).

Parameter Value

Disk Fail Rate (λD) 1/100000 hours
Disk Repair Rate (µD) 1/100 hours

Latent Sector Fault Rate (λS) 1/13245 hours
Scrub Rate (µS) 1/8640 hours

Table 4: Simulator and model parameters.

analysis, we assume that each active device transfers a
constant 2 MB/s, on average. Given a byte error rate of
1×10−14, the on-disk sector error rate is approximately
1/13245 hours. Due to the incremental nature of our
rebuild algorithm, we approximate the time to rebuild a
single device in our system to be roughly 100 hours, or
3 MB/s. Finally each disk in the system fails at a rate of
1/100000 hours and is subject to a full scrub every year
or 8640 hours. We consider these estimates to be liberal
and provide a near-worst-case MTTDL of our system.

In order to determine the reliability of our system, we
developed a discrete event simulator in Python using the
SimPy module. There are four core events in our simu-
lator: DiskFail, DiskRebuild, SectorFail and
Scrub. Values for disk failure time, sector failure time
and disk scrub are all drawn from an exponential distri-
bution, while disk rebuild takes place in simulation time
at 3 MB/s. We model the effects of disk spin-up by sub-
tracting 10 hours from the life of a disk every time it is
spun up [38]; this may well be pessimistic, resulting in
an MTTDL that is shorter than in a real system. Each
iteration of the simulator runs until a data loss event is
reached and the current time is recorded. Although we
found that around 100 iterations is sufficient, we cal-
culate the MTTDL of a single configuration by running
1000 iterations with that configuration.

We also use Markov models to compute the reliabil-
ity of single, double and triple disk fault tolerant codes.
These models only capture disk failure and rebuild, and
thus serve two purposes. First, the models give us a
straightforward way to verify the behavior of the simula-
tor. Most importantly, the MTTDL computed from each
model serves as an approximation to a system that has

Inter−disk reliability level
15+1 14+2 13+3

M
ea

n
tim

e
to

 d
at

a
lo

ss
 (h

ou
rs

)
1e3

1e4

1e5

1e6

1e7

1e8

1e9

1e10 Ideal
Intra 61+3
Intra 62+2
Intra 63+1
Intra 64+0

Figure 5: Mean time to data loss in hours for a single 16
disk group. 61+3 intra-disk parity is nearly equivalent
to the “ideal” system, in which latent sector errors never
occur. Note that MTTDL of 1010 hours for 16 disks cor-
responds to a 1000 year MTTDL for a 10 PB Pergamum
system.

the ability to handle any number of latent sector errors.
Recent work has shown that latent sector errors make

a non-trivial contribution to system reliability [6]. We
thus modeled data loss in our system for configurations
with 1, 2, and 3 parity segments per redundancy group
under several different assumptions: levels of intra-disk
parity protection ranging from 0–3 parity blocks per seg-
ment, and an “ideal” analytical model which assumed no
latent sector errors occurred and considered only whole-
disk failures. The results of our modeling using a scrub
rate of once per year for each disk, shown in Figure 5,
indicate that latent sector errors do indeed cause data
loss if nothing is done to guard against them. The dis-
tance between the top curve (“ideal” MTTDL without
latent sector errors) and bottom curve (no intra-disk par-
ity) is approximately two orders of magnitude, show-
ing that Pergamum must guard against data loss from
latent sector errors. However, by using intra-disk era-
sure coding, the effect of latent sectors on MTTDL is
nearly eliminated. In essence, we are trading disk space
for a longer scrub interval, saving power in the process.
Figure 5 shows that a configuration of 3 intra-disk par-
ity blocks per 64 block segment provides nearly two or-

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 11

ders of magnitude longer MTTDL than no protection at
all, approaching the “ideal” situation where latent sector
errors never exist. With the exception of the configu-
rations with 3 inter-disk parity elements and the “ideal”
case, all of the MTTDL values in the graph are based on
1000 iterations of the simulator; we were only able to
capture tens of MTTDL numbers for the configurations
involving 3 inter-disk parity elements and 1 or 2 intra-
parity elements, and the simulation for 3 inter-disk par-
ity and 3 intra-disk parity elements took a great deal of
time to run and only resulted in a few data points. This
lack of data is due to the extremely high reliability of
these configurations—the simulator modeled many fail-
ures, but so few caused data loss that the simulation ran
very slowly. This behavior is precisely what we want
from an archival storage system: it can gracefully handle
many failure events without losing data. Even though we
captured fewer data points for the triple inter-parity con-
figuration, we believe the reported MTTDL is a reason-
able approximation. As we see in the graph, the use of 3
intra-disk parity elements is close to the “ideal” situation
across all inter-parity configurations.

Our simulation and modeling show that a configura-
tion of 3 inter-disk parity segments per 16-disk reliability
group and 3 intra-disk parity blocks per segment will re-
sult in an MTTDL of approximately 1010 hours. If each
disk has a raw capacity of 1 TB, a Pergamum system ca-
pable of storing 10 PB of user data will require about 800
such groups, resulting an MTTDL of 1.25× 107 hours,
or about 1,400 years. Should this MTTDL for an entire
archive be too low, we would recommend using more
inter-disk parity—3 parity blocks per 64 block segment
can correct most of the latent sector errors.

5.3 Performance

The current Pergamum prototype system consists of ap-
proximately 1,400 lines of Python 2.5 code, with an ad-
ditional 300 lines of C code that were used to implement
performance-sensitive operations such as data encoding
and low-level disk operations. Our implementation in-
cludes the core system functionality, including internal
redundancy, external redundancy, and a client interface
that allows for basic I/O interactions. In its current state
however, the implementation relies upon statically as-
signed redundancy groups and it does not include scrub-
bing or consistency checking.

For testing, all systems were located on the same giga-
bit Ethernet switch with little outside contention for com-
puting or network resources. Communication between
the Pergamum tome and the client used standard TCP/IP
sockets in Python. For maximum compatibility, we uti-
lized an MTU size of 1500 B.

Each Pergamum tome was equipped with an ARM 9

Test Client Server

Raw Data Transfer 20.02 20.96
Raw Data Write 9.33 9.98

Unsafe Pergamum Write 4.74 4.74
XOR Parity Pergamum Write 4.72 3.25

Reed Solomon Pergamum Write 4.25 1.67
Fully Protected Pergamum Write 3.66 0.75

Pergamum Read 5.77 5.78

Table 5: Read and write performance for a single Perga-
mum tome to client connection. XOR parity writes
used 63 data blocks to one parity block segments.
Reed Solomon writes used 62 data blocks to two par-
ity block segments. Fully protected writes utilize two
level of Reed Solomon encoding and the server through-
put reflects time to fully encode and commit internal and
external parity updates.

CPU running at 400 MHz, 128 MB of DDR2 SDRAM
and Linux version 2.6.12.6. The client was equipped
with an Intel Core Duo processor running at 2 GHz, 2 GB
of DDR2 SDRAM and OS X version 10.4.10. The pri-
mary storage on each Pergamum tome was provided by a
7200 RPM SATA drive formatted with XFS. For read and
write performance experiments, we utilized block sizes
of 1 MB and 64 blocks per segment. Persistent metadata
storage utilized a 1 GB USB flash drive and Berkeley DB
version 4.4. The workload consisted of randomly gener-
ated files, all several megabytes in size.

5.3.1 Read and Write Throughput

Our first experiment with the Pergamum implementation
was an evaluation of the device’s raw data transfer perfor-
mance. As Table 5 shows, the maximum throughput of a
single TCP/IP stream to a Pergamum tome is 20 MB/s at
the device. Further tests showed that, the device could
copy data from a network buffer to an on-disk file at
about 10 MB/s. Together, these values serve as an upper
limit for the write performance that could be expected
from a single client connection over TCP/IP.

Write throughput using the Pergamum software layer
was tested at varying levels of write safety. The first write
test was conducted with no internal or external parity up-
dates. As shown in Table 5, writes without data protec-
tion ran at 4.74 MB/s. While no redundancy encoding
was performed in the unsafe write, the system did incur
the overhead of updating segment metadata and dividing
the incoming data into fixed-size blocks.

Testing with internal parity updates enabled was per-
formed using both simple XOR-based parity and more
advanced Reed Solomon encoding. In these tests, the
client-side and server-side throughput differ, as Perga-
mum utilizes parity logging during writes. Thus, while

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association12

the client views throughput as the time taken to sim-
ply ingest the data, the Pergamum tome’s throughput in-
cludes the time to ingest the data and update the redun-
dancy information. The first test utilized simple XOR-
based parity in a 63+1 (63 data blocks and 1 parity block)
configuration. This arrangement achieved a client-side
write throughput of 4.72 MB/s and a Pergamum tome-
side throughput of 3.25 MB/s. As Table 5 shows, using
Reed Solomon in a 62+2 configuration results in simi-
lar client side throughput, 4.25 MB/s. However, the extra
processing and parity block updates results in a server
throughput of 1.67 MB/s.

The final write test, fully protected Pergamum tome
writes, utilizes both inter- and intra-disk redundancy.
Internal parity utilized Reed Solomon encoding in a
62+2 configuration. External redundancy utilized Reed
Solomon with 3 data regions to 2 parity regions. In this
configuration, client throughput is reduced to 3.66 MB/s
as the CPU is taxed with both internal and external par-
ity calculations. This is evident in the server through-
put which is reduced to 0.75 MB/s. However, this does
reflect the time required to update both internal and ex-
ternal parity and thus reflects the rate at which a single
Pergamum tome can protect data with full internal and
external parity.

Profile data obtained from the test runs indicates the
system is CPU-bound. The performance penalty for the
Pergamum tome writes appears to be based largely on
two factors. First, as shown in the difference between a
raw write and an unsafe Pergamum tome write in Ta-
ble 5, Python’s buffer management imposes a perfor-
mance penalty, an issue that could be remedied with an
optimized, native implementation. Second, as seen in the
difference between the XOR Pergamum tome write and
the Reed Solomon write, data encoding imposes a sig-
nificant penalty for lower power processors. This is fur-
ther evident by the results of our read throughput tests.
Since a read operation to the Pergamum tome involves
less buffer management and parity operations, through-
put is correspondingly faster. We were able to achieve
sustained read rates of 5.78 MB/s.

While the performance numbers in Table 5 would be
inadequate for most high-performance workloads, even
our current, prototype implementation of Pergamum is
capable of supporting archival workloads. For example,
1000 Pergamum tomes and a spin-up rate of only 5% can
provide a system-level ingestion throughput in excess of
175 MB/s, ingesting a terabyte in 90 minutes and fully
protecting it in 8 hours. At this rate such an archive built
from 1 TB disks could be filled in a year.

Encode Operations ARM9 Core Duo
XOR parity 20.02 201.41

Reed Solomon; 5 data, 2 parity 3.13 33.68
Data signature (64-bit) 57.44 533.33

Table 6: Throughput, in MB/sec, to encode 50 MB of
data using the Pergamum tome’s 400 MHz ARM9 board
drawing 2-3 W and a desktop class 2 GHz Intel Core Duo
drawing 31 W.

5.3.2 Data Encoding

One of the primary functions of each Pergamum tome’s
processor is data encoding for redundancy and signature
generation. Thus, we wanted to confirm that the low-
power CPUs used by Pergamum to save energy are actu-
ally capable of meeting the encoding demands of archival
workloads.

In our first data encoding test, we measured the
throughput of the XOR operation by updating parity for
50 MB of data. We were able to achieve an average en-
coding rate of 20.79 MB/s on the tome’s CPU. For ref-
erence, a desktop class processor using the same library
was able to encode data at 201.41 MB/s. However, this
performance increase comes at the cost of power con-
sumption; the Intel Core Duo processor consumes 31 W
compared to the tome’s ARM-based processor which
consumes roughly 2.5 W for the entire board.

A similar result was achieved when updating parity
for 50 MB of data protected by a 5+2 Reed Solomon
configuration. As Table 6 summarizes, the processor on
the Pergamum tome was able to encode the new parity
blocks at a rate of 3.13 MB/s. For reference, the desktop
processor could encode at average rate of 33.68 MB/s.
Again, we notice an order of magnitude throughput in-
crease at the cost of over an order of magnitude power
consumption increase.

Our final encoding experiment involved the generation
of data signatures. Our current implementation of Perga-
mum generates data signatures using GF(232) arithmetic
in an optimized C-based library. Generating 64 bit signa-
tures over 32 bit symbols, we achieved an average signa-
ture generation throughput of 57.44 MB/s. For reference,
the same library on the desktop-class client achieved a
rate of 533.33 MB/s.

Our results indicate that the low-power processor on
the Pergamum tome is capable of encoding data at a
rate comparable to its power consumption. Addition-
ally, we believe that is capable of adequately encoding
data for an archival system’s write-once, read maybe us-
age model. While our current performance numbers are
reasonable, our experience in designing and implement-
ing the Pergamum prototype has shown that low-power
processors greatly benefit from carefully optimized code.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 13

Our early implementations provided more than adequate
performance on a desktop class computer but were some-
what slow on the Pergamum tome’s low-power CPU.

6 Future Work

While Pergamum demonstrates some of the features
needed in an archival storage system, work remains to
turn it into a fully effective, evolving, long-term storage
system. In addition to the engineering tasks associated
with optimizing the Pergamum implementation for low-
power CPUs, there are a number of important research
areas to examine.

Storage management in Pergamum, and archival stor-
age in general, is an open area with a number of interest-
ing problems. Management strategies play a large part
in cost efficiency; many believe that management costs
eclipse hardware costs [3]. As a long-term data repos-
itory, the effectiveness of archival storage is increased
as management overhead is decreased and, ideally, auto-
mated; the easier it is to store long-term data, the more
ubiquitous it will become. Thus, Pergamum must ad-
dress how extensibility can be handled in an automatic
way, without sacrificing its distributed nature, or the in-
dependence of its Pergamum tomes. This overall ques-
tion includes a number of facets. How are redundancy
groups populated? How does the system know if a Perga-
mum tome is nonfunctional as opposed to temporarily
off-line? How can the system’s capacity be expanded
while still providing adequate reliability?

In our current implementation, users interact with
Pergamum by submitting requests to specific Pergamum
tomes using a connection-oriented protocol. In future
versions, the use of a simple, standardized put and get
style protocol, such as that provided by HTTP, could
allow storage to be more evolvable and permit the use
of standard tools for storing and retrieving information.
Further, techniques such as distributed searching that
take into account data movement and migration could
greatly simplify how users interact with the system.

While the trade-off between redundancy and storage
usage is well acknowledged, there is still work to be
done in understanding the interplay of redundancy, stor-
age overhead and power consumption. We have chosen
a relatively small set of points in this space; future work
could explore this space more completely. This could
include an examination of which redundancy codes are
best suited to the unique demands and usage model of
archival storage.

Long-term storage systems must assume that no sin-
gle device will serve as the storage appliance for the
data’s entire lifetime. Thus, data migration in a secure
and power-efficient manner is another requirement for
Pergamum, and is a critical area for research. This re-

search direction also has implications for reliability; a
policy of device refreshment could be an integral part of
a long-term reliability strategy.

The optimality of the choice of one CPU and network
connection per disk is also an open question; our choice
is based on both quantitative and qualitative factors, but
other arrangements are certainly possible. Additionally,
it has always been assumed that client machines would
include modern desktop level CPUs that could be lever-
aged for pre-processing. Similarly, determining the best
network to use to connect thousands of (mostly idle) de-
vices is an interesting problem to consider.

7 Conclusions

We have developed Pergamum, a system designed to pro-
vide reliable, cost-effective archival storage using low-
power, network-attached disk appliances. Reliability is
provided through two levels of redundancy encoding:
intra-disk redundancy allows an individual device to au-
tomatically rebuild data in the event of small-scale data
corruption, while inter-disk redundancy provides protec-
tion from the loss of an entire device. Fixed costs are
kept low through the use of a standardized network in-
terface, and commodity hardware such as SATA drives;
since each Pergamum tome is essentially “disposable”,
a system operator can simply throw away faulty nodes.
Operational costs are controlled by utilizing ultra-low-
power CPUs, power-managed disks and new techniques
such as local NVRAM for caching metadata and redun-
dancy information to avoid disk spin-ups, intra-disk re-
dundancy, staggered data rebuilding, and hash trees of
algebraic signatures for distributed consistency check-
ing. Finally, Pergamum’s performance is acceptable for
archival storage: the use of many low-power CPUs in-
stead of a few server-class CPUs results in disks that can
transfer data at 3–5 MB/s, with faster performance possi-
ble through the use of optimized code.

At 2–3 W/TB and under $0.50/GB for a full system,
Pergamum is far cheaper and more reliable than existing
MAID systems, though the techniques we have devel-
oped may be applied to more conventional MAID de-
signs as well. Moreover, a Pergamum system is com-
parable in cost and energy consumption to a large-scale
tape archive, while providing much higher reliability,
faster random access performance and better manage-
ability. The combination of low power usage, low hard-
ware cost, very high reliability, simpler management,
and excellent long-term upgradability make Pergamum
a strong choice for storage in long-term data archives.

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association14

Acknowledgments

We would like to thank our colleagues in the Storage
Systems Research Center (SSRC) who provided valuable
feedback on the ideas in this paper, helping us to refine
them. We would also like to thank our shepherd Doug
Terry and the anonymous reviewers for their insightful
comments that helped us improve the paper.

This research was supported by the Petascale Data
Storage Institute under Department of Energy award DE-
FC02-06ER25768, and by the industrial sponsors of the
SSRC, including Los Alamos National Lab, Livermore
National Lab, Sandia National Lab, Agami Systems,
Data Domain, Digisense, Hewlett-Packard Laboratories,
IBM Research, LSI Logic, Network Appliance, Seagate,
Symantec, and Yahoo!.

References

[1] ADYA, A., BOLOSKY, W. J., CASTRO, M., CHAIKEN, R.,
CERMAK, G., DOUCEUR, J. R., HOWELL, J., LORCH, J. R.,
THEIMER, M., AND WATTENHOFER, R. FARSITE: Federated,
available, and reliable storage for an incompletely trusted envi-
ronment. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI) (Boston, MA, Dec.
2002), USENIX.

[2] AGARWALA, S., PAULY, A., RAMACHANDRAN, U., AND

SCHWAN, K. e-SAFE: An extensible, secure and fault tolerant
storage system. In Proceedings of the First International Confer-
ence on Self-Adaptive and Self-Organizing Systems (SASO 2007)
(2007), pp. 257–268.

[3] ANDERSON, E., HOBBS, M., KEETON, K., SPENCE, S.,
UYSAL, M., AND VEITCH, A. Hippodrome: running circles
around storage administration. In Proceedings of the 2002 Con-
ference on File and Storage Technologies (FAST) (Monterey, CA,
Jan. 2002).

[4] ARCOM, INC. http://www.arcom.com/, Aug. 2007.

[5] ATA SMART feature set commands. Small Form Factors Com-
mittee SFF-8035. http://www.t13.org.

[6] BAIRAVASUNDARAM, L. N., GOODSON, G. R., PASUPATHY,
S., AND SCHINDLER, J. An analysis of latent sector errors in
disk drives. In Proceedings of the 2007 SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Systems (June
2007).

[7] BAKER, M., SHAH, M., ROSENTHAL, D. S. H., ROUSSOPOU-
LOS, M., MANIATIS, P., GIULI, T., AND BUNGALE, P. A fresh
look at the reliability of long-term digital storage. In Proceedings
of EuroSys 2006 (Apr. 2006), pp. 221–234.

[8] CAO, P., LIN, S. B., VENKATARAMAN, S., AND WILKES, J.
The TickerTAIP parallel RAID architecture. ACM Transactions
on Computer Systems 12, 3 (1994), 236–269.

[9] CHEN, Y. C., RETTNER, C. T., RAOUX, S., BURR, G. W.,
CHEN, S. H., SHELBY, R. M., SALINGA, M., RISK, W. P.,
HAPP, T. D., MCCLELLAND, G. M., BREITWISCH, M.,
SCHROTT, A., PHILIPP, J. B., LEE, M. H., CHEEK, R.,
NIRSCHL, T., LAMOREY, M., CHEN, C. F., JOSEPH, E., ZAIDI,
S., YEE, B., LUNG, H. L., BERGMANN, R., AND LAM, C.
Ultra-thin phase-change bridge memory device using GeSb. In
International Electron Devices Meeting (IEDM ’06) (Dec. 2006),
pp. 1–4.

[10] COLARELLI, D., AND GRUNWALD, D. Massive arrays of idle
disks for storage archives. In Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing (SC ’02) (Nov. 2002).

[11] DHOLAKIA, A., ELEFTHERIOU, E., HU, X.-Y., ILIADIS, I.,
MENON, J., AND RAO, K. Analysis of a new intra-disk re-
dundancy scheme for high-reliability RAID storage systems in
the presence of unrecoverable errors. In Proceedings of the
2006 SIGMETRICS Conference on Measurement and Modeling
of Computer Systems (2006), pp. 373–374.

[12] DHOLAKIA, A., ELEFTHERIOU, E., HU, X.-Y., ILIADIS, I.,
MENON, J., AND RAO, K. Analysis of a new intra-disk redun-
dancy scheme for high-reliability RAID storage systems in the
presence of unrecoverable errors. Tech. Rep. RZ 3652, IBM Re-
search, Mar. 2006.

[13] DRAPEAU, A. L., AND KATZ, R. H. Striped tape arrays. Tech.
Rep. CSD-93-730, Computer Science Division, University of
California, Berkeley, 1993.

[14] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google
file system. In Proceedings of the 19th ACM Symposium on Oper-
ating Systems Principles (SOSP ’03) (Bolton Landing, NY, Oct.
2003), ACM.

[15] GIBSON, G. A., NAGLE, D. F., AMIRI, K., BUTLER, J.,
CHANG, F. W., GOBIOFF, H., HARDIN, C., RIEDEL, E.,
ROCHBERG, D., AND ZELENKA, J. A cost-effective, high-
bandwidth storage architecture. In Proceedings of the 8th In-
ternational Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS) (San Jose,
CA, Oct. 1998), pp. 92–103.

[16] GIBSON, G. A., AND VAN METER, R. Network attached storage
architecture. Communications of the ACM 43, 11 (2000), 37–45.

[17] GREEN GRID CONSORTIUM. The green grid opportunity,
decreasing datacenter and other IT energy usage patterns.
http://www.thegreengrid.org, Feb 2007.

[18] GREENAN, K. M., AND MILLER, E. L. Reliability mechanisms
for file systems using non-volatile memory as a metadata store. In
6th ACM & IEEE Conference on Embedded Software (EMSOFT
’06) (Seoul, Korea, Oct. 2006), ACM.

[19] GUHA, A. Solving the energy crisis in the data center using CO-
PAN Systems’ enhanced MAID storage platform. Copan Systems
white paper, Dec. 2006.

[20] GUNAWI, H. S., AGRAWAL, N., ARPACI-DUSSEAU, A. C.,
ARPACI-DUSSEAU, R. H., AND SCHINDLER, J. Deconstruct-
ing commodity storage clusters. In Proceedings of the 32nd Int’l
Symposium on Computer Architecture (June 2005), pp. 60–71.

[21] HAEBERLEN, A., MISLOVE, A., AND DRUSCHEL, P. Glacier:
Highly durable, decentralized storage despite massive correlated
failures. In Proceedings of the 2nd Symposium on Networked
Systems Design and Implementation (NSDI) (Boston, MA, May
2005), USENIX.

[22] HENDRICKS, J., GANGER, G. R., AND REITER, M. K. Veri-
fying distributed erasure-coded data. In Proceedings of the 26th
ACM Symposium on Principles of Distributed Computing (PODC
2007) (Aug. 2007).

[23] Health Information Portability and Accountability Act, Oct.
1996.

[24] HUGHES, J., MILLIGAN, C., AND DEBIEZ, J. High perfor-
mance RAIT. In Proceedings of the 19th IEEE Symposium on
Mass Storage Systems and Technologies (Apr. 2002), pp. 65–73.

[25] KALLAHALLA, M., RIEDEL, E., SWAMINATHAN, R., WANG,
Q., AND FU, K. Plutus: scalable secure file sharing on untrusted
storage. In Proceedings of the Second USENIX Conference on
File and Storage Technologies (FAST) (San Francisco, CA, Mar.
2003), USENIX, pp. 29–42.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 15

[26] KOTLA, R., ALVISI, L., AND DAHLIN, M. SafeStore: a durable
and practical storage system. In Proceedings of the 2007 USENIX
Annual Technical Conference (June 2007), pp. 129–142.

[27] LI, J., KROHN, M., MAZIÈRES, D., AND SHASHA, D. Se-
cure untrusted data repository (SUNDR). In Proceedings of the
6th Symposium on Operating Systems Design and Implementa-
tion (OSDI) (San Francisco, CA, Dec. 2004).

[28] MANIATIS, P., ROUSSOPOULOS, M., GIULI, T. J., ROSEN-
THAL, D. S. H., AND BAKER, M. The LOCKSS peer-to-peer
digital preservation system. ACM Transactions on Computer Sys-
tems 23, 1 (2005), 2–50.

[29] MERKLE, R. C. A digital signature based on a conventional
encryption function. In Advances in Cryptology - Crypto ’87
(Berlin, 1987), Springer-Verlag, pp. 369–378.

[30] OXLEY, M. G. (H.R.3763) Sarbanes-Oxley Act of 2002, Feb.
2002.

[31] PINHEIRO, E., AND BIANCHINI, R. Energy conservation tech-
niques for disk array-based servers. In Proceedings of the 18th
International Conference on Supercomputing (June 2004).

[32] PINHEIRO, E., BIANCHINI, R., AND DUBNICKI, C. Exploiting
redundancy to conserve energy in storage systems. In Proceed-
ings of the 2006 SIGMETRICS Conference on Measurement and
Modeling of Computer Systems (Saint Malo, France, June 2006).

[33] PRESTON, W. C., AND DIDIO, G. Disk at the price of tape? an
in-depth examination. Copan Systems white paper, 2004.

[34] QUINLAN, S., AND DORWARD, S. Venti: A new approach to
archival storage. In Proceedings of the 2002 Conference on File
and Storage Technologies (FAST) (Monterey, California, USA,
2002), USENIX, pp. 89–101.

[35] RHEA, S., EATON, P., GEELS, D., WEATHERSPOON, H.,
ZHAO, B., AND KUBIATOWICZ, J. Pond: the OceanStore proto-
type. In Proceedings of the Second USENIX Conference on File
and Storage Technologies (FAST) (Mar. 2003), pp. 1–14.

[36] SAITO, Y., FRØLUND, S., VEITCH, A., MERCHANT, A., AND

SPENCE, S. FAB: Building distributed enterprise disk arrays
from commodity components. In Proceedings of the 11th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2004), pp. 48–58.

[37] SCHROEDER, B., AND GIBSON, G. A. Disk failures in the real
world: What does an MTTF of 1,000,000 hours mean to you? In
Proceedings of the 5th USENIX Conference on File and Storage
Technologies (FAST) (Feb. 2007), pp. 1–16.

[38] SCHWARZ, T. J. E., XIN, Q., MILLER, E. L., LONG, D. D. E.,
HOSPODOR, A., AND NG, S. Disk scrubbing in large archival
storage systems. In Proceedings of the 12th International Sym-
posium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS ’04) (Oct. 2004), IEEE,
pp. 409–418.

[39] SCHWARZ, S. J., T., AND MILLER, E. L. Store, forget, and
check: Using algebraic signatures to check remotely adminis-
tered storage. In Proceedings of the 26th International Confer-
ence on Distributed Computing Systems (ICDCS ’06) (Lisboa,
Portugal, July 2006), IEEE.

[40] SEAGATE TECHNOLOGY LLC. Momentus 5400 psd.
http://www.seagate.com/docs/pdf/marketing/
ds_momentus_5400_psd.pdf, Aug 2007.

[41] SUN MICROSYSTEMS. Sun StorageTek SL8500 modular
library system. http://www.sun.com/storagetek/
tape_storage/tape_libraries/sl8500/.

[42] SUN MICROSYSTEMS. Solaris ZFS and Red Hat
Enterprise Linux EXT3 file system performance.
http://www.sun.com/software/whitepapers/
solaris10/zfs_linux.pdf, June 2007.

[43] TANABE, T., TAKAYANAGI, M., TATEMITI, H., URA, T., AND

YAMAMOTO, M. Redundant optical storage system using DVD-
RAM library. In Proceedings of the 16th IEEE Symposium on
Mass Storage Systems and Technologies (Mar. 1999), pp. 80–87.

[44] TEHRANI, S., SLAUGHTER, J. M., CHEN, E., DURLAM, M.,
SHI, J., AND DEHERRERA, M. Progress and outlook for MRAM
technology. IEEE Transactions on Magnetics 35, 5 (Sept. 1999),
2814–2819.

[45] WEDDLE, C., OLDHAM, M., QIAN, J., WANG, A.-I. A., REI-
HER, P., AND KUENNING, G. PARAID : A gear-shifting power-
aware RAID. In Proceedings of the 5th USENIX Conference on
File and Storage Technologies (FAST) (Feb. 2007).

[46] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D. D. E.,
AND MALTZAHN, C. Ceph: A scalable, high-performance dis-
tributed file system. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation (OSDI) (Seattle,
WA, Nov. 2006), USENIX.

[47] WESTERN DIGITAL. WD Caviar GP 1 TB SATA hard drives.
http://www.westerndigital.com/en/library/
sata/2879-701229.pdf, Aug. 2007.

[48] WILCKE, W. W., GARNER, R. B., FLEINER, C., FREITAS,
R. F., GOLDING, R. A., GLIDER, J. S., KENCHAMMANA-
HOSEKOTE, D. R., HAFNER, J. L., MOHIUDDIN, K. M., RAO,
K., BECKER-SZENDY, R. A., WONG, T. M., ZAKI, O. A.,
HERNANDEZ, M., FERNANDEZ, K. R., HUELS, H., LENK, H.,
SMOLIN, K., RIES, M., GOETTERT, C., PICUNKO, T., RUBIN,
B. J., KAHN, H., AND LOO, T. IBM Intelligent Bricks project—
petabytes and beyond. IBM Journal of Research and Develop-
ment 50, 2/3 (2006), 181–197.

[49] YAO, X., AND WANG, J. RIMAC: a novel redundancy-based
hierarchical cache architecture for energy efficient, high perfor-
mance storage systems. In Proceedings of EuroSys 2006 (Oct.
2006), pp. 249–262.

[50] YOU, L. L., POLLACK, K. T., AND LONG, D. D. E. Deep
Store: An archival storage system architecture. In Proceedings
of the 21st International Conference on Data Engineering (ICDE
’05) (Tokyo, Japan, Apr. 2005), IEEE.

[51] ZHU, Q., CHEN, Z., TAN, L., ZHOU, Y., KEETON, K., AND

WILKES, J. Hibernator: Helping disk arrays sleep through the
winter. In Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP ’05) (Brighton, UK, Oct. 2005), ACM.

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association16

