PARAID: A Gear-Shifting Power-Aware RAID

Charles Weddle, Mathew Oldham, Jin Qian, An-I Andy Wang – Florida St. University
Peter Reiher – University of California, Los Angeles
Geoff Kuenning – Harvey Mudd College
Motivation

- Energy costs are rising
 - An increasing concern for servers
 - No longer limited to laptops

- Energy consumption of disk drives
 - 24% of the power usage in web servers
 - 27% of electricity cost for data centers
 - More energy → more heat → more cooling → lower computational density → more space → more costs

- Is it possible to reduce energy consumption without degrading performance while maintaining reliability?
Challenges

- **Energy**
 - Not enough opportunities to spin down RAID

- **Performance**
 - Essential for peak loads

- **Reliability**
 - Server-class drives are not designed for frequent power switching
Existing Work

- Most trade performance for energy savings directly
 - e.g. vary speed of disks
- Most are simulated results
Observations

- RAID is configured for peak performance
 - RAID keeps all drives spinning for light loads

- Unused storage capacity
 - Over-provision of storage capacity
 - Unused storage can be traded for energy savings

- Fluctuating load
 - Cyclic fluctuation of loads
 - Infrequent on-off power transitions can be effective
Performance vs. Energy Optimizations

- **Performance benefits**
 - Realized under heavy loads

- **Energy benefits**
 - Realized instantaneously
Power-Aware RAID

- Skewed striping for energy savings
- Preserving peak performance
- Maintaining reliability

- Evaluation
- Conclusion
- Questions

PARAID: A Gear-Shifting Power-Aware RAID
Skewed Striping for Energy Saving

- Use over-provisioned spare storage
 - Organized into hierarchical overlapping subsets

PARAID: A Gear-Shifting Power-Aware RAID
Skewed Striping for Energy Saving

- Each set analogous to gears in automobiles
Skewed Striping for Energy Saving

- Soft states can be reclaimed for space
- Persist across reboots
Skewed Striping for Energy Saving

- Operate in gear 1
- Disks 4 and 5 are powered off
Skewed Striping for Energy Saving

- Approximate the workload
- Gear shift into most appropriate gear
 - Minimize the opportunity lost to save power

PARAID: A Gear-Shifting Power-Aware RAID
Skewed Striping for Energy Saving

- Adapt to cyclic fluctuating workload
- Gear shift when gear utilization threshold is met
Preserving Peak Performance

- Operate in the highest gear
 - When the system demands peak performance
 - Uses the same disk layout

- Maximize parallelism within each gear
 - Load is balanced
 - Uniform striping pattern

- Delay block replication until gear shifts
 - Capture block writes
Maintaining Reliability

- Reuse existing RAID levels (RAID-5)
 - Also used in various gears
- Drives have a limited number of power cycles
 - Ration number of power cycles
Maintaining Reliability

- Busy disk stay powered on, idle disks stay powered off
- Outside disks are role exchanged with middle disks

PARAID: A Gear-Shifting Power-Aware RAID
PARAID: A Gear-Shifting Power-Aware RAID
Data Layout

- Resembles the data flow of RAID 1+0
- Parity for 5 disks does not work for 4 disks
 - For example, replicated block 12 on disk 3

<table>
<thead>
<tr>
<th>Gear 1 RAID-5</th>
<th>Disk 1</th>
<th>Disk 2</th>
<th>Disk 3</th>
<th>Disk 4</th>
<th>Disk 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1-4)</td>
<td>8</td>
<td>12</td>
<td>((1-4),8,12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>(16,20,_)</td>
<td>_</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gear 2 RAID-5</th>
<th>Disk 1</th>
<th>Disk 2</th>
<th>Disk 3</th>
<th>Disk 4</th>
<th>Disk 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>(1-4)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>(5-8)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>(9-12)</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>(13-16)</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>(17-20)</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Data Layout

- **Cascading parity updates**
 - For example, updating block 8 on disk 5

<table>
<thead>
<tr>
<th>Gear 1 RAID-5</th>
<th>Disk 1</th>
<th>Disk 2</th>
<th>Disk 3</th>
<th>Disk 4</th>
<th>Disk 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1-4)</td>
<td>8</td>
<td>12</td>
<td>((1-4),8,12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>(16,20,_)</td>
<td>_</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gear 2 RAID-5</th>
<th>Disk 1</th>
<th>Disk 2</th>
<th>Disk 3</th>
<th>Disk 4</th>
<th>Disk 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>(1-4)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>(5-8)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>(9-12)</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>(13-16)</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>(17-20)</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Update Propagation

- **Up-shift propagation (e.g. shifting from 3 to 5 disks)**
 - Full synchronization
 - On-demand synchronization
 - Need to respect block dependency

- **Downshift propagation**
 - Full synchronization
Asymmetric Gear-Shifting Policies

- **Up-shift (aggressive)**
 - Moving utilization average + moving standard deviation > utilization threshold

- **Downshift (conservative)**
 - Modified utilization moving average + moving standard deviation < utilization threshold
 - Moving average modified to account for fewer drives and extra parity updates
Implementation

- Prototyped in Linux 2.6.5
 - Open source, software RAID
- Implemented block I/O handler, monitor, disk manager
- Implemented user admin tool to configure device
- Updated Raid Tools to recognize PARAID level

PARAID: A Gear-Shifting Power-Aware RAID
Evaluation

- Challenges
 - Prototyping PARAID
 - Commercial machines
 - Conceptual barriers
 - Benchmarks designed to measure peak performance
 - Trace replay
 - Time consuming
Evaluation

- Measurement framework

- PARAIL: A Gear-Shifting Power-Aware RAID

- Xeon 2.8 Ghz, 512 MB RAM
 36.7 GB 15k RPM SCSI

- P4 2.8 Ghz, 1 GB RAM
 160 GB 7200 RPM SATA

- USB cable
 - power measurement probes
 - 12v & 5v power lines

- power supply
 - measurement probes

- multimeter
Evaluation

- Three different workloads using two different RAID settings
 - Web trace - RAID level 0 (2-disk gear 1, 5-disk gear 2)
 - Mostly read activity
 - Cello99 - RAID level 5 (3-disk gear 1, 5-disk gear 2)
 - I/O-intensive workload with writes
 - PostMark - RAID level 5
 - Measure peak performance and gear shifting overhead

- Speed up trace playback
 - To match hardware
 - Explore range of speed up factors and power savings
Web Trace

- File system: ~32 GB (~500k files)
- Trace replay: ~95k requests with ~4 GB data (~260 MB unique)
Web Trace Power Savings

64x – 60 requests/sec

Energy Savings
64x - 34%
128x - 28%
256x - 10%

PARAID: A Gear-Shifting Power-Aware RAID
Web Trace Latency

PARAID: A Gear-Shifting Power-Aware RAID

Overhead
256x - within 2.7%
64x - 240%
80ms vs. 33ms
Web Trace Bandwidth

256x

Overhead
256x - within 1.3% in high gear

PARAID: A Gear-Shifting Power-Aware RAID
Cello99 Trace

- **Cello99 Workload**
 - HP Storage Research Labs
 - 50 hours beginning on 9/12/1999
 - 1.5 million requests (12 GB) to 440MB of unique blocks
 - I/O-intensive with 42% writes

PARAID: A Gear-Shifting Power-Aware RAID
Cello99 Power Savings

32x – 270 requests/sec

Energy Savings
32x - 13%
64x - 8.2%
128x - 3.5%

PARAID: A Gear-Shifting Power-Aware RAID
Cello99 Completion Time

Overhead

32x - 1.8ms, 26% slower due to time spent in low gear

PARAID: A Gear-Shifting Power-Aware RAID
Cello99 Bandwidth

Overhead

< 1% degradation during peak hours

PARAID: A Gear-Shifting Power-Aware RAID
PostMark Benchmark

- Popular synthetic benchmark
- Generates ISP-style workloads
- Stresses peak read/write performance of storage device
Postmark Performance

1K files, 50K trans 20K files, 50K trans 20K files, 100K trans

seconds

RAID-5 PARAID-5 high gear PARAID-5 low-gear
Postmark Power Savings

PARAID: A Gear-Shifting Power-Aware RAID
Related Work

- Pergamum
- EERAID
- RIMAC
- Hibernator
- MAID
- PDC
- BlueFS
Future Work

- Try more workloads
- Optimize PARAID gear configuration
- Explore asynchronous update propagation
- Speed up recovery
- Live testing
Lessons Learned

- Third version of design, early design too complicated
- Data alignment problems
- Difficult to measure system under normal load
- Hard to predict workload transformations due to complex system optimizations
- Challenging to match trace environments

PARAID: A Gear-Shifting Power-Aware RAID
Conclusion

- PARAILD reuses standard RAID-levels without special hardware while decreasing their energy use by 34%.
 - Optimized version can save even more energy
- Empirical evaluation important
Research Theme

- Data flow management
 - Storage
 - MANETs

- Current state
 - Reminiscent of plumbing industry 200 years ago
 - Limited interchangeable parts
 - Poorly understood interactions
Research Areas

- Power-Aware RAID
- Electric-field-based routing for MANETs
- Conquest disk-persistent-RAM hybrid file system
- Optimistic replication
- Real-time systems
Questions

PARAID: A Gear-Shifting Power-Aware RAID

- **Contact**
 - Andy Wang – awang@cs.fsu.edu
PARAID Recovery

- 2.7 times slower than conventional raid
 - For example, 2 gear PARAID device
 - First, the soft state must recover
 - Second, data must be propagated
 - Third, conventional raid must recover

- Recovery not as bad for read intensive workloads
PARAID Gear-Shifting

Web Trace Gear-Shifting Stats

<table>
<thead>
<tr>
<th></th>
<th>256x</th>
<th>128x</th>
<th>64x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of gear switches</td>
<td>15.2</td>
<td>8.0</td>
<td>2.0</td>
</tr>
<tr>
<td>% time spent in low gear</td>
<td>52%</td>
<td>88%</td>
<td>98%</td>
</tr>
<tr>
<td>% extra I/Os for update propagations</td>
<td>0.63%</td>
<td>0.37%</td>
<td>0.21%</td>
</tr>
</tbody>
</table>

Cello99 Gear-Shifting Stats

<table>
<thead>
<tr>
<th></th>
<th>128x</th>
<th>64x</th>
<th>32x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of gear switches</td>
<td>6.0</td>
<td>5.6</td>
<td>5.4</td>
</tr>
<tr>
<td>% time spent in low gear</td>
<td>47%</td>
<td>74%</td>
<td>88%</td>
</tr>
<tr>
<td>% extra I/Os for update propagations</td>
<td>8.0%</td>
<td>15%</td>
<td>21%</td>
</tr>
</tbody>
</table>