PARAID: A Gear-Shifting Power-Aware RAID

Charles Weddle, Mathew Oldham, Jin Qian, An-I Andy Wang – Florida St. University Peter Reiher – University of California, Los Angeles Geoff Kuenning – Harvey Mudd College

Motivation

Energy costs are rising An increasing concern for servers No longer limited to laptops Energy consumption of disk drives 24% of the power usage in web servers 27% of electricity cost for data centers • More energy \rightarrow more heat \rightarrow more cooling \rightarrow lower computational density \rightarrow more space \rightarrow more costs Is it possible to reduce energy consumption without degrading performance while maintaining reliability?

Challenges

Energy Not enough opportunities to spin down RAIDs Performance Essential for peak loads Reliability Server-class drives are not designed for frequent power switching

Existing Work

Most trade performance for energy savings directly
 e.g. vary speed of disks
 Most are simulated results

Observations

- RAID is configured for peak performance
 RAID keeps all drives spinning for light loads
- Unused storage capacity
 Over-provision of storage capacity
 Unused storage can be traded for energy savings
- Fluctuating load
 - Cyclic fluctuation of loads
 - Infrequent on-off power transitions can be effective

Performance vs. Energy Optimizations

Performance benefits
 Realized under heavy loads
 Energy benefits
 Realized instantaneously

Power-Aware RAID

Skewed striping for energy savings Preserving peak performance Maintaining reliability Evaluation Conclusion Questions

Use over-provisioned spare storage Organized into hierarchical overlapping subsets

Each set analogous to gears in automobiles

Soft states can be reclaimed for space

Persist across reboots

Operate in gear 1Disks 4 and 5 are powered off

Approximate the workload

- Gear shift into most appropriate gear
 - Minimize the opportunity lost to save power

Adapt to cyclic fluctuating workload
 Gear shift when gear utilization threshold is met

Preserving Peak Performance

Operate in the highest gear When the system demands peak performance Uses the same disk layout Maximize parallelism within each gear Load is balanced Uniform striping pattern Delay block replication until gear shifts

Capture block writes

Maintaining Reliability

- Reuse existing RAID levels (RAID-5)
 Also used in various gears
- Drives have a limited number of power cycles
 - Ration number of power cycles

Maintaining Reliability

Busy disk stay powered on, idle disks stay powered off
 Outside disks are role exchanged with middle disks

Logical Component Design

Data Layout

Resembles the data flow of RAID 1+0

Parity for 5 disks does not work for 4 disks

For example, replicated block 12 on disk 3

	Disk 1	Disk 2	Disk 3	Disk 4	Disk 5
Gear 1 RAID-5	(1-4)	8	12	((1-4),8,12)	
	16	20	(16,20,_)	_	
Gear 2 RAID-5	1	2	3	4	(1-4)
	5	6	7	(5-8)	8
	9	10	(9-12)	11	12
	13	(13-16)	14	15	16
	(17-20)	17	18	19	20

Data Layout

Cascading parity updates

• For example, updating block 8 on disk 5

	Disk 1	Disk 2	Disk 3	Disk 4	Disk 5
Gear 1 RAID-5	(1-4)	8	12	((1-4),8,12)	
	16	20	(16,20,_)	_	
Gear 2 RAID-5	1	2	3	4	(1-4)
	5	6	7	(5-8)	8
	9	10	(9-12)	11	12
	13	(13-16)	14	15	16
	(17-20)	17	18	19	20

Update Propagation

Up-shift propagation (e.g. shifting from 3 to 5 disks)
 Full synchronization
 On-demand synchronization

 Need to respect block dependency

 Downshift propagation

 Full synchronization

Asymmetric Gear-Shifting Policies

Up-shift (aggressive)

Moving utilization average + moving standard deviation > utilization threshold

Downshift (conservative)

- Modified utilization moving average + moving standard deviation < utilization threshold</p>
- Moving average modified to account for fewer drives and extra parity updates

Implementation

Prototyped in Linux 2.6.5 Open source, software RAID Implemented block I/O handler, monitor, disk manager Implemented user admin tool to configure device Updated Raid Tools to recognize PARAID level

Evaluation

Challenges Prototyping PARAID Commercial machines Conceptual barriers Benchmarks designed to measure peak performance Trace replay Time consuming

Evaluation

Measurement framework

Evaluation

Three different workloads using two different RAID settings

- Web trace RAID level 0 (2-disk gear 1, 5-disk gear 2)
 Mostly read activity
- Cello99 RAID level 5 (3-disk gear 1, 5-disk gear 2)
 - I/O-intensive workload with writes
- PostMark RAID level 5
 - Measure peak performance and gear shifting overhead

Speed up trace playback

- To match hardware
- Explore range of speed up factors and power savings

Web Trace

- UCLA CS Dept Web Servers (8/11/2006 8/14/2006)
- File system: ~32 GB (~500k files)
- Trace replay: ~95k requests with ~4 GB data (~260 MB unique)

Web Trace Power Savings

64x – 60 requests/sec

128x – 120 requests/sec

256x - 240 requests/sec

Web Trace Latency

Web Trace Bandwidth

256x

Cello99 Trace

Cello99 Workload

- HP Storage Research Labs
- 50 hours beginning on 9/12/1999
- 1.5 million requests (12 GB) to 440MB of unique blocks

I/O-intensive with 42% writes

Cello99 Power Savings

32x – 270 requests/sec

64x – 550 requests/sec

128x - 1000 requests/sec

Cello99 Completion Time

Cello99 Bandwidth

128x

Overhead

< 1% degradation during peak hours

PARAID: A Gear-Shifting Power-Aware RAID

RAID-5

PARAID

PostMark Benchmark

Popular synthetic benchmark
Generates ISP-style workloads
Stresses peak read/write performance of storage device

Postmark Performance

Postmark Power Savings

Related Work

Pergamum EERAID Hibernator MAID PDC BlueFS

Future Work

Try more workloads
Optimize PARAID gear configuration
Explore asynchronous update propagation
Speed up recovery
Live testing

Lessons Learned

- Third version of design, early design too complicated
- Data alignment problems
- Difficult to measure system under normal load
- Hard to predict workload transformations due to complex system optimizations
- Challenging to match trace environments

Conclusion

- PARAID reuses standard RAID-levels without special hardware while decreasing their energy use by 34%.
 - Optimized version can save even more energy
- Empirical evaluation important

Research Theme

Data flow management Storage MANETs Current state Reminiscent of plumbing industry 200 years ago Limited interchangeable parts Poorly understood interactions

Research Areas

- Power-Aware RAID
- Electric-field-based routing for MANETs
- Conquest disk-persistent-RAM hybrid file system
- Optimistic replication
- Real-time systems

Questions

PARAID: A *Gear-Shifting* Power-Aware RAID

Contact
 Andy Wang – <u>awang@cs.fsu.edu</u>
 http://www.cs.fsu.edu/~awang/conquest-2

PARAID Recovery

2.7 times slower than conventional raid
 For example, 2 gear PARAID device
 First, the soft state must recover
 Second, data must be propagated
 Third, conventional raid must recover

Recovery not as bad for read intensive workloads

PARAID Gear-Shifting

Web Trace Gear-Shifting Stats

	256x	128x	64x
Number of gear switches	15.2	8.0	2.0
% time spent in low gear	52%	88%	98%
% extra I/Os for update propagations	0.63%	0.37%	0.21%

Cello99 Gear-Shifting Stats

	128x	64x	32x
Number of gear switches	6.0	5.6	5.4
% time spent in low gear	47%	74%	88%
% extra I/Os for update propagations	8.0%	15%	21%