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Abstract
Energy consumption has become an important issue in high-end
data centers, and disk arrays are one of the largest energy con-
sumers within them. Although several attempts have been made
to improve disk array energy management, the existing solutions
either provide little energy savings or significantly degrade perfor-
mance for data center workloads.
Our solution, Hibernator, is a disk array energy management

system that provides improved energy savings while meeting per-
formance goals. Hibernator combines a number of techniques to
achieve this: the use of disks that can spin at different speeds,
a coarse-grained approach for dynamically deciding which disks
should spin at which speeds, efficient ways to migrate the right
data to an appropriate-speed disk automatically, and automatic per-
formance boosts if there is a risk that performance goals might not
be met due to disk energy management.
In this paper, we describe the Hibernator design, and present

evaluations of it using both trace-driven simulations and a hybrid
system comprised of a real database server (IBM DB2) and an em-
ulated storage server with multi-speed disks. Our file-system and
on-line transaction processing (OLTP) simulation results show that
Hibernator can provide up to 65% energy savings while continu-
ing to satisfy performance goals (6.5–26 times better than previous
solutions). Our OLTP emulated system results show that Hiberna-
tor can save more energy (29%) than previous solutions, while still
providing an OLTP transaction rate comparable to a RAID5 array
with no energy management.
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1. Introduction
“What matters most to the computer designers at Google is not
speed but power – low power, because data centers can consume
as much electricity as a city.” – Eric Schmidt, CEO, Google

“One of the biggest consumers of power within the computer tech-
nology industry is storage, and the little magnetic disk drive is one
of the worst power hogs in the business. The magnetic disk drive is
very similar to a honeybee. One is no problem. You can even have
dozens, but when you reach hundreds or thousands then you have
a swarm.” – Chuck Larabie, Computer Technology Review

Data centers used to support modern enterprises and Internet ser-
vice providers are getting larger, and their energy consumption is
increasing, too, as power densities increase. Typical values for
service-provider data center power densities are 150-200 W/ft2 to-
day, and will be 200-300 W/ft2 in the near future [27]. Meanwhile,
some are already designing 500W/ft2 data centers [5]. With the lat-
ter figure, a medium-sized 30,000 ft2 data center requires 15 MW
to power, one third of which is spent on cooling [33]; this is $13
million per year of electricity. In aggregate, US data centers were
projected to cost $4 billion/year to power in 2005 [11].
Power represents about 19% of a data center’s Total Cost of

Ownership (TCO) [8], and disk drives are a major contributor to
that. For example, disk drives contribute 86% of the energy con-
sumption in a typical EMC Symmetrix 3000 storage system config-
uration [3]. In a larger system context, disks consumed 71% of the
power for the 2003 Dell PowerEdge6650 benchmark system that
set a price/performance record [4] – eighteen times as much as the
processors, and 13% of the TCO. In the much larger HP Integrity

Figure 1: The Hibernator design



RX5670 Cluster TPC-C system [6], disk power represents about
10% of the TCO.
Extrapolating for the medium-sized data center above, disk drives

would represent an electricity budget of $7–9 million per year. Re-
ducing this by 50% would save $4–4.5 million/year, or 5–6% of the
TCO. This paper describes a system capable of doing so.

1.1 Other observations
As research efforts on energy management for high-end proces-
sors, main memory, network interface cards and switches reduce
the energy consumption of high-end servers, storage system en-
ergy consumption will become even more important. This trend
is exacerbated by the projected annual growth rate of 60% [28]
in storage requirements, as well as the use of higher-performance,
faster-spinning disks, with their higher power requirements.
Reducing the speed at which a disk spins reduces its power con-

sumption; stopping it completely reduces it still further. Unfor-
tunately, both techniques reduce performance, so a good energy
conservation solution needs to balance energy savings against per-
formance degradation. This is particularly important for data cen-
ter applications, where service level agreement (SLA) performance
goals often need to be met. These typically include average or max-
imum response times for transactions [41]. There may be signifi-
cant penalties for failing to comply with an SLA, so energy conser-
vation cannot be bought at the expense of performance.
Although several attempts have been made to improve disk array

energy management, the existing solutions either provide little en-
ergy savings or significantly degrade performance for data center
workloads (Details are discussed in Section 2).

1.2 Our contributions
In this paper, we take a significant step towards practical disk ar-
ray energy management for performance-sensitive data center en-
vironments, by describing and evaluating the design of Hibernator
(Figure 1), a disk array that minimizes disk drive energy consump-
tion, while still meeting response-time performance requirements.
Hibernator achieves this goal by combining the following ideas:

1. Leveraging multi-speed disk drives, such as Sony’s [29, 42],
which can run at different speeds (and hence power levels),
but have to be shut down to transition between the different
speeds.

2. A disk-speed-setting algorithm that we call Coarse-grain
Response (CR), which uses the observed workload to deter-
mine optimal disk speed settings that minimize energy con-
sumption without violating the performance goals. (This al-
gorithm also works with previous data layouts such as RAID5.)

3. CR is used to size the tiers in a multi-tier data layout, where
each tier consists of a set of multi-speed disks operating at
the same speed. This layout requires no extra disks and does
not sacrifice reliability compared to RAID5.

4. An energy- and time-efficient data migration scheme, called
randomized shuffling, that performs reconfiguration quickly
and allows the data layout to adapt to workload changes.

5. An algorithm to meet response-time goals, by boosting disk
speed if the performance goal is at risk. This method also
works with previously proposed energy control algorithms.

It is important to use appropriate, realistic workloads in determin-
ing system performance. Most previous studies on disk array en-
ergy management used trace-driven simulations in their evalua-
tion, and many used synthetic workloads. As a result, it is unclear

whether their results are representative of real data center work-
loads. We address this by evaluating Hibernator using traces of
real systems and by constructing a hybrid system of a real database
server (IBM DB2) and an emulated storage server.
Our file-system and on-line transaction processing (OLTP) sim-

ulation results show that Hibernator can satisfy the specified per-
formance goals and still provide up to 65% energy savings, 6.5–26
times more than previous solutions. Our OLTP emulated system
results show that Hibernator has the highest energy savings (29%)
across five evaluated approaches, while still providing an OLTP
transaction rate comparable to RAID5 without any energy man-
agement. To the best of our knowledge, our study is the first to
evaluate the impact of disk energy management on data center ap-
plication performance (transaction rate) in a commercial database
server (IBM DB2).
This paper is organized as follows. Section 2 describes back-

ground material. Section 3 discusses our Hibernator solution. Sec-
tion 4 describes our simulation methodology and emulated system
evaluation. Section 5 presents simulation results, followed by hy-
brid system results in Section 6. Section 7 concludes the paper.

2. Background and related work
In this section, we first discuss disk power models and algorithms
to control disk energy adaptation based on the disk models. Then
we discuss disk layouts that also affect disk energy adaptation,
followed by previously proposed methods to provide performance
guarantees.

2.1 Disk power models
Most modern disks have two power modes: active, where the disk
spins at full speed and standby, where the disk stops spinning com-
pletely. Disks in standby mode use considerably less energy than
disks in active mode, but have to be spun up to full speed before
they can service any requests. This incurs a significant energy and
time penalty (e.g., 135 Joules and 10.9 seconds for IBM Ultra-
star 36Z15 disks [21]). To justify this penalty, the energy saved
by putting the disk in standby mode has to be greater than the en-
ergy needed to spin it up again – which will only be true if the next
request arrives after a break-even time. Unfortunately, this is rarely
the case in intense, enterprise workloads.
Gurumurthi et al. [19] and Carrera et al. [10] have proposed a

dynamic multi-speed disk model, which has the capability of dy-
namically changing the disk speed while spinning. Additionally,
such a disk could service requests at low speeds without transition-
ing to full speed. Unfortunately, such disks do not exist yet, and
it is also unclear whether such a disk is mechanically feasible to
build.
A more practical approach may be to use disk drives that are

designed to operate at a small set of different rotational speeds, but
can only change spin speed while they are in standby mode [29, 42].
Sony makes commercial versions of such disk drives that support
two speeds, although there appears to be no fundamental obstacle
to supporting more speeds. We assume this style of multi-speed
disk for our experiments.

2.2 Energy control algorithms
A commonly used energy control algorithm is to transition a disk
into a low power mode after the disk is idle for a while. When a
request arrives at a disk in a low power mode, the disk immediately
transitions to the active mode to service the request. This control
algorithm has been used in many previous studies on energy man-
agement for disk arrays [14, 37, 44] and disks in mobile devices
[15, 17, 18, 20, 30, 39]. We refer to it as Traditional Power Man-



agement (TPM). Since several previous studies [10, 19, 44] have
shown that this algorithm performs worse than other energy con-
trol algorithms in data-center-like workloads, we do not consider it
further here.
Carrera et al. [10] and Pinheiro et al. [32] proposed exploiting

dynamic multi-speed disks by switching speeds based on the ob-
served load. When the disk load becomes lighter than 80% of the
disk throughput of a low speed, the disk spins down to the low
speed mode; if the load is heavier than the same threshold, the disk
spins up to the high speed. We refer to this as Load Directed (LD).
Gurumurthi et al. [19] suggested using changes in the average

response time and the length of the disk request queue to drive dy-
namic disk-speed transitions. Periodically, each disk checks the
number of pending requests in its queue. If this number is less
than a threshold Nmin representing light load, the disk spins down
its speed by one level. Meanwhile, the controller tracks average
response times for fixed-sized windows of requests and calculates
the percentage change in average response time over the past two
windows. If the percentage change exceeds an upper tolerance, the
controller spins up all disks to full speed. If it is less than a lower
tolerance, a disk may spin down to a lower speed. We refer to this
scheme as Dynamic RPM (DRPM).
Even though the energy control algorithms listed above do con-

sider performance in various ways, they do not attempt to provide
performance guarantees, and in many cases they degrade perfor-
mance so much that they are unusable in many data center applica-
tions, as we shall see in Sections 5 and 6.
Disk energy management can be complemented by processor

and memory energy management techniques. Typical disk opera-
tions take milliseconds, while processors can scale their voltage in
a few tens of microseconds [25] and shutdown micro-architectural
resources such as functional units within a few CPU cycles [7].
This implies that any disk energy savings will result in whole-
system energy savings. Of course, the delays themselves may not
be acceptable.

2.3 Disk array layouts
We discuss both traditional performance-oriented disk layouts and
recently proposed energy-efficient disk layouts in this section.

2.3.1 Performance-oriented disk array layouts
RAID techniques are a long-standing solution for improving disk
array performance and reliability [31]. Many studies have been
conducted on disk array layouts, but almost all have been directed
toward improving performance in the absence of energy conserva-
tion considerations.
RAID5 is a common disk array data layout that interleaves data

blocks and distributes parity blocks evenly across all disks in the
array. It offers a good balance of storage efficiency and good per-
formance for reads and large writes, but suffers from poor perfor-
mance for small writes [12].
The HP AutoRAID [40] employs a dynamic, adaptive data lay-

out, mixing RAID5 and mirrored storage (RAID1), in order to
achieve space efficiencies comparable to RAID5 and performance
comparable to mirrored storage. Hibernator uses some of the same
ideas, but for the purpose of achieving the best tradeoff between
energy and performance.

2.3.2 Energy-efficient disk array layouts
Attempts to trade off availability against energy by powering down
“unnecessary” disk drives in disk arrays [22] result in little benefit:
if a disk array can survive p disk failures, these energy management
schemes can power down at most p disks on average. Since p in

modern disk arrays is usually small compared to the total number of
disks, the energy saved by such methods is also small (e.g., 2–7%).
Worse, when disks are powered down to save energy, the system’s
reliability is significantly reduced.
More success has been achieved with schemes that concentrate

disk array workloads onto a subset of their disks so that the other
disks can stay in low power modes. We discuss three here.
Son et al. [37] proposed a method to determine the striping pa-

rameters (the number of disks, the stripe block size, etc.) for a
RAID5 layout to minimize disk energy consumption for scientific
applications with regular data access patterns. Using the SPEC95
floating-point benchmarks as a test case, only limited energy sav-
ings resulted (19%), even with aggressive compiler cooperation
and access to the applications’ source code. Since this approach
is targeted at scientific applications and cannot adapt to workload
changes, we do not consider it further.
Massive Array of Idle Disks (MAID) [14] uses a few additional

always-on cache disks to hold recently accessed blocks to reduce
the number of accesses to other disks. Unfortunately, this layout,
which was designed for archiving workloads, is not energy-efficient
for data center workloads, because the extra cache disks consume
energy [32]. We verified this ourselves: for one of our test work-
loads (an OLTP trace collected from IBM DB2), we found that
3 additional cache disks increased the total energy usage by about
13% in a 25-diskMAID design over a straightforward RAID5 base-
line. Therefore, we do not consider MAID further here.
Popular Data Concentration (PDC) [32] concentrates loads by

taking advantage of heavily skewed file access frequencies. Peri-
odically, PDC migrates files based on their access frequencies: the
most popular files are migrated to the first disk until the disk is full
or the expected load on this disk approaches its maximum band-
width, and the next most popular files are migrated to the second
disk, and so on. However, as shown in Section 5, it can incur sub-
stantial performance degradation due to load concentration, even
when all disks stay in the active mode.

2.4 Performance guarantees
In a previous study [23], we proposed a technique to provide per-
formance guarantees for energy control algorithms inmain memory
and disks, with a focus on memory. A user would supply a limit
on the acceptable percentage execution time slowdown of the appli-
cation. By tracking the performance effects of energy adaptation,
the technique was able to decide when to disable the underlying
energy management and go to full speed (and full-power) mode to
avoid exceeding the slowdown limit. After the measured slowdown
had returned to sufficiently below the limit, the energy management
could be re-enabled. (A similar technique was used in the AFRAID
disk array to manage behavior to availability bounds [35].)
Unfortunately, although the goal is attractive, the technique may

be impractical: many applications issue multiple outstanding asyn-
chronous disk I/Os to hide I/O latency, and it is difficult to un-
derstand the effects of the energy adaptation scheme without the
application’s cooperation, which is rarely forthcoming.
We take a simple, practical approach here, and assume the exis-

tence of a storage-system level SLA, with an average I/O response
time (Rlimit ) for the storage system itself [41]. We also assume that
the SLA is practical, and that a RAID5 disk array is able to de-
liver an average response time within the specified limit. (How to
ensure this property is related to resource provisioning, which is
beyond the scope of this paper. See [9] for one approach.)
Other work [13], conducted in parallel with ours, also attempts

to dynamically optimize energy and operational costs while meet-
ing performance-based SLAs by using three techniques based on



steady state queuing analysis, feedback control theory and a hy-
brid between the two. However, it focuses on energy adaptation at
server (node) granularity in a cluster comprised of identical servers
and is evaluated using web server workloads, where a node can ac-
cess all data even when all other nodes are powered down. This is
usually not the case in storage systems.

3. Hibernator
Our goals for Hibernator were to design a system that could provide
a controllable balance between energy savings and performance
impacts for a RAID5-like disk array. The first component of the
Hibernator design is the use of multi-speed disks. The remaining
components are the subject of this section.

3.1 Disk-speed setting
Since multi-speed disks take a significant amount of time to tran-
sition from one speed to another (12.4s for the SONY drive [29,
42], and 6.9s for the dynamic multi-speed disk [19]), requests that
arrive during this period can be significantly delayed. Therefore,
from performance perspective, it is desirable to make such speed
changes infrequently – i.e., at a coarse time granularity.
Moreover, frequently starting and stopping disks is suspected to

affect disk drive longevity. Even though drive reliability has been
significantly improved by using load/unload technology to prevent
head-to-disk interaction and start-up wear, the number of start/stop
cycles a disk can tolerate during its service life time is still limited,
and many disk specifications provide an expected lifetime value
(e.g., the IBM Ultrastar 36Z15 can handle a minimum of 50,000
start/stop cycles [21]). Making disk speed changes infrequently
reduces the risk of running into this limit. For example, if the disk
speed changes only 25 times a day, it would take 6 years to reach
the minimum number, slightly longer than the maximum service
life time for which most disks are designed (typically 5 years or
20,000 operating hours [2]).
As a result, the main idea of the Hibernator disk-speed setting al-

gorithm is to adapt the disk speed infrequently, and keep it constant
during a relatively long epoch. We call the algorithm coarse-grain
response (CR), to emphasize that it makes large-granularity deci-
sions based on predicted I/O response times. CR chooses a disk
speed configuration at the beginning of each epoch that minimizes
energy consumption, while still satisfying response-time goals; it
works with any underlying disk layout, including RAID5, PDC,
and the new Hibernator disk layout described in Section 3.2.
At the beginning of an epoch, CR determines the best speed

configuration for each disk, using the predicted workload for each
disk and the specified average response time limit Rlimit . Each
disk stays at the assigned speed throughout the entire epoch unless
the observed average response time exceeds the specified limit due
to unpredicted workload changes, in which case the performance
guarantee method described in Section 3.3 takes over. During each
epoch, the CR algorithm monitors the load on each disk to provide
the workload statistics needed for the next epoch.
The epoch length, Tepoch, should be long enough to amortize the

disk transition cost and short enough to be responsive to workload
changes. In practice, our sensitivity analysis results in Section 5
show that Hibernator is insensitive to a broad range (one to four
hours) of epoch lengths.

3.1.1 Problem formalization
The goal of the CR algorithm is to choose, at the start of each
epoch, for each disk i, a speed j that minimizes the total predicted
energy consumption subject to a constraint that the average re-
sponse time be no greater than Rlimit . More formally, CR needs
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Figure 2: Observed inter-arrival time distributions of OLTP
and Cello99 workloads, fitted against exponential distributions.

to solve for j in the following optimization problem:

minimize ∑n−1i=0 Ei j

subject to ∑n−1i=0 (Ni×Ri j)/N ≤ Rlimit

where Ei j is a prediction of the energy that would be consumed by
disk i if spinning at speed j in the epoch, Ri j is a prediction of the
average response time in the epoch, n is the total number of disks,
Ni is the number of requests at disk i and N is the total number of
requests.

3.1.2 Solving for response time Ri j
Clearly, the estimation of Ri j depends on the workload on disk i in
the epoch. Since most data center workloads are relatively stable,
we use the last epoch’s workload characteristics as a predictor for
the next epoch’s. In most cases, the prediction is correct; when it is
not, the performance guarantee method described in Section 3.3 is
invoked. Our results (in Section 5) validate these claims.
We use a M/G/1 queuing model to estimate the average response

time for each disk, and extend this with a model for the delay
caused by any disk transition at the beginning of the epoch.
The M/G/1 queuing model, which represents Poisson arrivals

and a general service time distribution, has been widely used in
modeling the performance of disk systems [26, 36]. Figure 2 dis-
plays the reasonable match achieved between the observed I/O re-
quest inter-arrival time for the OLTP and Cello99 traces used in
our experiments and exponential distributions that were fitted to
them using maximum likelihood estimation. (The Cello99 trace is
slightly less good a match, perhaps because of the variety of per-
formance behaviors seen in Cello’s storage system.) Importantly,
an exact match is not necessary: we are only using the performance
model to determine a “good enough” disk speed level; errors only
result in slightly higher energy usage than the ideal.
Let us assume that the most recent observed average request ar-

rival rate at disk i is αi. The service time for a request at a disk
spinning at speed j is ti j , which can be measured at run time. Let
Exp(ti j) and Var(ti j) be the mean and variance of the service time.
The disk utilization ρi j can be calculated as ρi j = αiExp(ti j).
Suppose disk i needs to change its speed in the new epoch. While

it is changing its spin speed, the disk cannot service requests. Let
us denote length of the transition period as Ti; if disk i does not



Figure 3: The measured and modeled average disk response
time as a function of the number of low-speed disks. The work-
load used is the OLTP trace (see Section 4.1).

need to change its speed, Ti = 0. During this period, the number of
requests that will arrive is αi×Ti. Since Ti is large compared to ti j,
it dominates those requests’ response time, and the average delay
for those requests is Ti/2, for an arrival process with a Poisson
distribution. The average response time of the requests affected
by a disk speed transition is thus

R′i j =
Ti
2

+
αiTiExp(ti j)

2
=
Ti
2

(1+ρi j)

where the second term in the formula represents the average queu-
ing and service delay of those requests held up during Ti. (In prac-
tice, it will be slightly less, as the longer queue will likely be ser-
viced more efficiently by the disk.)
For requests that arrive after the disk transition finishes, the disk

is in a stable state. Therefore, according to the M/G/1 queuing
model, these requests’ average response time is

R′′i j = αiExp(ti j)+
α2i (Exp

2(ti j)+Var(ti j))
2(1−αiExp(ti j))

Combining the two formulas, the average response time during the
entire epoch is

Ri j =
αiTiR′i j +αi(Tepoch−Ti)R′′i j

αiTepoch
Requests that arrive immediately after a speed-transition ends

(i.e., just after Ti) will see a queue of the requests held up during
Ti, and will themselves experience an additional delay. However,
since Tepoch (one or multiple hours) is several orders of magnitude
larger than Ti (5–10 seconds), the effects of such delays should be
negligible, and we do not consider them in our Ri j calculation.
If the disk does not need to change its speed in the new epoch, the

average response time for this disk Ri j is just R′′i j. Figure 3 shows
that our analytical model matches the measured average response
time reasonably well.

3.1.3 Solving for energy Ei j
Next, we estimate the energy consumption of keeping disk i at
speed j in the next epoch. Suppose the active power, idle power
at speed j and transition power are P′i j, P′′i j and P′′′i j , respectively.
The transition time Ti is defined as above. The active time during
which disk i is servicing requests is Tepoch×ρi j because the request
arrival rate is independent of the disk speed transition. The remain-
ing time is idle time when disk i is spinning at speed j, but does not

service requests. Therefore, the total energy for disk i is

Ei j = P′i j×Tepoch×ρi j

+P′′i j× (Tepoch−Tepoch×ρi j−Ti)

+P′′′i j ×Ti

3.1.4 Finding a solution
Now we have materialized every term in the disk-speed selection
problem, and it can be easily converted into an integer program-
ming problem and be solved using the CPLEX solver [1]. The
computational cost is small, especially for the two-speed SONY
disk [29, 42] used in our experiments.

3.2 Adaptive layout
While the CR algorithm can determine a good disk-speed configu-
ration from the workload, the amount of energy that can be con-
served is still related to the underlying disk layout because the
layout directly affects the loads to each disk. As we discussed
in Section 2, RAID5 layouts provide good performance but are
not energy-efficient, whereas previously proposed energy-efficient
layouts such as PDC save energy but provide less performance
than RAID5, even when all disks are in active mode. To maxi-
mize energy conservation while still meeting the performance goal,
ideally we need a “polymorphic” disk array that provides perfor-
mance similar to traditional performance-oriented layouts such as
RAID5 and can save the same or more energy than previous energy-
efficient layouts such as PDC.
One naive layout might be using two set of disks, one being orga-

nized as the RAID5 and the other as PDC, and dynamically switch
between them based on the load characteristics. But this layout
has several limitations. First, it requires doubling the number of
disks without doubling the performance. Second, the switch gran-
ularity is too big. Basically, it is either RAID5 or PDC. There is
no intermediate point to gradually increase the performance as the
load increases. As such, it loses opportunities to conserve energy
at those intermediate points.
Therefore, we designed a self-adaptive, performance-directed and

energy-efficient disk layout. There are three goals in our layout de-
sign: (1) energy goal: minimizing disk energy consumption under
any load: light, heavy, or intermediate; (2) performance goal: satis-
fying the average response time constraint; and (3) self-adaptiveness
goal: dynamically adapting to workload changes. In addition, our
layout should not require any extra disks or sacrifice reliability.
To achieve the above goals, Hibernator:

• uses the CR algorithm to determine a layout that will mini-
mize disk energy consumption while still satisfying the pre-
dicted performance requirement;

• uses two levels of reorganizations to adapt to workload changes
with little effect on foreground requests; and

• extends the performance model in the CR algorithm to con-
sider the delay due to reorganizations.

3.2.1 Choosing the disk configuration
Hibernator uses a multi-tier organization, as shown in Figure 1. All
disks in a tier spin at the same speed; different tiers run at differ-
ent speeds. Each tier uses a data-protection organization similar
to RAID5, with one parity block per data stripe, and so achieves a
similar level of availability. The tiers are exclusive: data lives in
only one tier, unlike a typical multi-level storage hierarchy. Thus,
Hibernator needs no more disks than RAID5.



By convention, Tier 1 disks store the most active data and so are
set to run at full speed to maximize performance. Conversely, the
highest-numbered tier stores the least active data and is set to spin at
the lowest speed to save energy. Within each tier, Hibernator strives
to achieve uniform load-balancing to maximize performance.
The number of disks in each tier is obtained simply by running

the CR algorithm described in Section 3.1 at the beginning of each
epoch. This results in a speed for each disk, and we simply label
the set of disks with the same spin speeds a tier.
Note that this scheme adapts dynamically to workload changes.

If the load becomes heavier, CR will put more disks into high speed
tiers to satisfy performance requirements, and if the load becomes
lighter, CR will put more disks into low speed tiers to conserve
energy.

3.2.2 Efficient small-scale reorganization
The granularity of movement between tiers is whole disks, but
many workloads have smaller-granularity hot spots, or there may
be portions of the workload that become more (in)active than they
were before. Although the performance-bounding algorithm of
Section 3.3 ensures that the performance goals will be met if this
happens, it is desirable to trigger it as infrequently as possible in or-
der to save energy, and so Hibernator provides a temperature-based
algorithm to migrate such data between tiers.
Similarly to HP’s AutoRAID [40], we organize data into fixed-

sized relocation blocks (RBs) that represent the minimal unit of
migration in the system. Within a tier, the number of RBs that a
RAID stripe contains on a single disk is defined as a stripe unit.
Hibernator translates SCSI logical block numbers (LBNs) into

the corresponding RB address via an RB-map that stores the phys-
ical location of every RB. The map is stored at fixed, redundant
locations on disk so that it can easily be referenced, and cached in
memory in its entirety for speed. The map is small: in a 10 TB disk
array with 256 KB RBs, the RB-map occupies 320 MB, or only
0.0032% of the total storage, which is small compared to a typical
disk array cache. A small portion of the disk array’s non-volatile
memory (NVRAM), normally used to provide fast write commits,
is used to preserve RB-map updates, from where they are periodi-
cally written to disk.
Hibernator places an RB in a tier based on the RB’s “tempera-

ture”, which can be calculated in a number of ways. For example:
recency (how recently it is accessed), popularity (the number of
times it is accessed), or a combination of these metrics. In our ex-
periments, we used an aged-weighted frequency metric that com-
bines both recency and popularity. Formally speaking, after every
k accesses (typically k = 10) to an RB, the RB’s temperature is
adjusted as follows:

Tempnew = (1−ξ)×Tempold +ξ×k/Tlast

where Tempold is the previous temperature, Tlast is the time pe-
riod of the last k accesses, and k/Tlast is the average access fre-
quency (the number of accesses per time unit) during the last k ac-
cesses. The history factor ξ specifies how strongly the most recent
measurement contributes to the temperature estimation. We used
ξ= 0.8 in our experiments.
Hibernator monitors the temperature of each RB in the RB-map

and compares it to the temperature of RBs in other tiers to deter-
mine if rearranging data is beneficial. RBs that are accessed fre-
quently and recently can be promoted if their temperature values
become larger than those of RBs in higher speed tiers. Conversely,
seldom accessed RBs may be demoted if their values fall below
those of RBs in lower speed tiers. This algorithm runs continu-
ously: it is not bound to epoch boundaries.

Figure 4: Large-scale reorganization solutions: PS and SS.
Blocks are shaded and numbered by their temperature (lighter
= smaller = hotter). Migrated blocks are surrounded by a thick
border. In the column headings, Di means disk i, and thick
bars represent tier boundaries. The figure shows the migration
of two disks (D3 andD4) from a low-speed tier into a high-speed
tier with three disks (D0, D1 and D2).

To reduce interference with client (foreground) requests, Hiber-
nator only performs migration when there are no foreground re-
quests to service, and makes use of the disk array’s NVRAM to
enable recovery from a power failure during a migration. Parity
and the RB-map are updated as part of an RB migration. In the
future, techniques such as free block scheduling [24] could be used
to reduce the impact of RB migrations on foreground work further.

3.2.3 Efficient large-scale reorganization
At the beginning of each epoch, Hibernator uses the CR algorithm
to determine the best disk tier configuration for this epoch. If the
configuration is different from the last epoch, disk reconfiguration
is needed to achieve a balanced load inside each tier, and whole
disks must be migrated from one tier to another.
Because disk migration may need to move a large amount of

data quickly, block-at-a-time solutions (e.g., disk cooling [38]) are
undesirable, and we need to develop efficient algorithms that ap-
proach near-sequential disk access rates. We developed three such
algorithms:

• Permutational shuffling (PS) scans the stripes in a tier se-
quentially, as shown in Figure 4(b). It exchanges data blocks
to achieve an even balance of RB temperatures on each disk
but it only considers exchanges of RBs from the newly-added
disks to other disks in a permutational fashion. This means
that the maximum number of migrated blocks per stripe is
small: 2m per stripe, for m migrated disks, and it is indepen-
dent of the stripe size. However, the load and parity blocks
are not always balanced uniformly. For example, in Fig-
ure 4(b), disk D3 has no parity blocks and disk D4 has no
100-numbered blocks.

• Sorted shuffling (SS), is like PS but provides better load bal-
ance by uniformly distributing parity blocks and data blocks
of different temperature among all disks in the tier. It does
this by first sorting the blocks in a stripe based on their tem-
peratures and then rotationally shifting all blocks in a stripe
by one more position than the previous stripe (Figure 4(c)).
However, SS incurs greater overhead than PS, because most
blocks are relocated.



Figure 5: Randomized Shuffling. The graphics have the same
meanings as in Figure 4. The transition from (a) to (b) shows
the addition of disks D3 and D4 to a fast (hot) tier. The transi-
tion from (b) to (c) shows the result of moving those same disks
into a slower (cooler) tier.

• Randomized shuffling (RS) fixes both problems, by distribut-
ing load and parity blocks in a statistically uniform fash-
ion, while relocating fewer blocks than SS (Figure 5(b)).
In each stripe, RS exchanges each block in the new disks
with a randomly-chosen block from the stripe, regardless of
whether they are data or parity blocks; if the target disk is
the same as the one it came from, no move occurs, and only
the parity needs to be updated. The randomization ensures a
balanced block-temperature and parity distribution, since the
number of stripes on a disk is large. The number of migrated
blocks per stripe is essentially the same as with PS (a bit less
than 2m), but the result is a better layout. For a large stripe
size, disk reorganization costs less than disk reconstruction
upon failure in a traditional RAID5 array.

Hibernator uses RS, as it is an improvement over both PS and
SS.

Since all the disks in a tier are in a parity group, all the parity
blocks in the tier need to be updated whenever a disk is moved
in or out of a tier. This is done at the same time as the blocks
are being reorganized. If a tier gets too large, it can be divided
into smaller parity groups, although our experiments never did it.
For exchanges within a tier, the large-write optimization, which
calculates the parity from the data block values rather than using
the old parity value, is only useful if all the data blocks are involved
in the exchange. In this case, it saves one read – that of the parity
block.
Since a block-exchange causes two blocks to move, a straightfor-

ward implementation that performs the data reorganization at the
block granularity would require six I/O operations per stripe (read-
ing and writing the exchanged blocks and the parity). To improve
the reconfiguration efficiency, a simple optimization is to combine
multiple small I/O operations on a migrated disk into a large one
to take advantage of disks’ high sequential access bandwidth. This
method can leverage the large storage cache of modern storage sys-
tems(e.g., up-to 128GB for EMC Symmetrix Systems [3]) to batch
multiple blocks that are either read sequentially from the migrated
disk, or are read from other disks but will be placed sequentially
into the migrated disk. Obviously, we cannot batch as many blocks
as possible into one large sequential I/O because doing so could
introduce significant delays to foreground requests.
Additionally, Hibernator performs two further optimizations in

disk migration. Before migrating a disk into a higher-speed (hot-
ter) tier, Hibernator first migrates the hottest data blocks in each
stripe of the old tier onto the disk being moved; if the new tier
is colder, then the coldest blocks are moved to the disk being mi-
grated. By doing this, Hibernator attempts to move active data to
high-speed tiers and inactive data to low-speed tiers. For exam-
ple, in the transition from Figures 5(b) to 5(c), all 100-numbered
and 200-numbered blocks are moved to disks D3 and D4 respec-
tively before those disks are removed from the hot tier. It also has
one other important benefit: the migrating disk will contain no par-
ity blocks, so disk migrations do not change the number of parity
blocks in a stripe.
To further reduce the reconfiguration cost, we coalesce the mi-

grations generated by the pre-migration temperature concentration
step and the actual migration, so that no block needs to be moved
twice. For example, suppose a block had to first move to a disk
to be migrated, but was then going to be exchanged with another
block in its new tier. This optimization ensures that it is moved
directly to its new position in a single operation.
As with single-RB migration, Hibernator only executes reconfig-

uration operations if there is no foreground work to perform. Thus
foreground requests are delayed by at most one reconfiguration re-
quest. Experimental results in Section 5 confirm that a disk re-
configuration only slightly increases the average response time of
foreground requests, and the reorganization can be done almost as
quickly as sequentially scanning the disk twice.

3.2.4 The performance model revisited
Since disk reconfiguration may impact performance, we need to
incorporate it into the response time estimation of Section 3.1. To
do this, we need to calculate what performance penalty it imposes
on the foreground requests and how long the reconfiguration period
is. Unfortunately, building a precise model is complicated because
there are two simultaneous access streams that may have different
access patterns. For example, with the OLTP workload, there exist
random foreground I/Os and sequential background I/Os – and the
priority scheduling further adds to the complexity. We thus develop
a simple, but practical, method to estimate the performance penalty
and the length of the disk reorganization phase.
Let us first consider disk i in tier j. From the foreground re-

quest’s point of view, besides the normal queuing and service de-
lay, in the worst case each request has a delay caused by servicing
one background request. Since a foreground request arrives ran-
domly according to a Poisson distribution, the average additional
delay in the worse case is Exp(ti j)/2. Therefore, conservatively,
the average response time during this period for accesses to disk i
is calculated as below:

R′′′i j = αiExp(ti j)+
α2i (Exp

2(ti j)+Var(ti j))
2(1−αiExp(ti j))

+
Exp(ti j)
2

Let TR represent the length of this reconfiguration phase. The ex-
pected number of idle periods isαiTR(1−ρi j), where ρi j =αiExp(ti j)
is the disk utilization. A seek and rotational delay occurs for the
background requests during each idle period. Because all the back-
ground traffic occurs when the disk is idle, we have the following
equation,

αiTR(1−ρi j)(Seek+Rotation)+2Scan = TR(1−ρi j)

where Scan is the disk sequential scan time when there is no fore-
ground requests. As Seek+Rotation≈ Exp(ti j), the disk reconfig-
uration time with foreground requests is

TR ≈
2Scan

(1−ρi j)2



Table 3 in Section 5 shows that our estimates of average response
time and phase length are fairly accurate, compared to the experi-
mental measurements.
The performance model described in Section 3.1 can be easily

modified to take this phase into account, in a similar way to how
the disk transition phase was handled.
To make Hibernator work, we also need to address other com-

mon but important issues such as disk failures during data reor-
ganization, online storage capacity expansion and controller fail-
over. These problems have similar solutions to those used by HP
AutoRAID [40].

3.3 Response time performance guarantees
Even though our CR algorithm strives to determine disk speed set-
tings based on the specified response-time requirement, an average
response time higher than the specified limit is still possible, be-
cause of workload mispredictions from one epoch to the next. We
thus designed a simple algorithm to ensure that performance goals
would continue to be met even if the misprediction occurs. Note
that we only provide soft guarantees on response-time averages,
rather than hard guarantees for each request.
Our performance guarantee algorithm is a straightforward mod-

ification of our previous work [23]. Instead of keeping track of
application execution time slowdown, the Hibernator disk array
controller dynamically measures the average response time. If the
observed average response time is larger than RLimit , the energy
management scheme is disabled and all disks spun up to full speed
until the observed average response time is less than the specified
limit RLimit . Then the energy management scheme is re-enabled to
conserve energy.
Our experimental results show that this method works well for

almost all cases, including previous algorithms that are not perfor-
mance-aware, as long as it is possible for the layout’s maximum
performance (without any energy management constraints) to meet
the specified performance requirement.

4. Evaluation methodology
We evaluated Hibernator using trace-driven simulations with traces
of real file system and OLTP workloads, and using a hybrid system
comprised of a real database server (IBMDB2) and a storage server
with emulated multi-speed disks driven by a live OLTP workload.
In our experiments, we compare Hibernator’s energy savings

over a baseline case (RAID5 without energy management) to pre-
vious layouts, such as RAID5 and PDC. In addition, since our per-
formance guarantee method and CR algorithm are general, we also
apply them to previous solutions. The baseline results give us the
upper bound for energy consumption and the lower bound for av-
erage response time. The energy savings for each scheme is com-
puted relative to this baseline case. All the evaluated schemes are
listed in Table 1.

Scheme name Constituents
Baseline RAID layout without power management

RAIDDRPM RAID layout + DRPM algorithm [19]
PDCLD PDC layout + LD algorithm [10, 32]

RAID+
DRPM RAID layout + DRPM algorithm +PG

PDC+
LD PDC layout + LD algorithm + PG

RAID+
CR RAID layout + CR algorithm + PG

Hibernator adaptive layout + CR algorithm + PG

Table 1: The evaluated schemes. The parameters for previous
energy control algorithms were taken from the original papers
that proposed these algorithms. PG = performance guarantee.

4.1 Trace-driven simulation
We enhanced the widely used DiskSim simulator [16] and aug-
mented it with a multi-speed disk power model. The specifications
for the disk used in our study are similar to that of the IBM Ul-
trastar 36Z15, which, although now a little old, has the benefit of
having been used in many previous studies [10, 14, 19, 32, 44]. The
parameters are taken from the disk’s data sheet [21]; some of the
important ones are shown in Table 2. We modeled a two-speed disk
(3000 and 15000 RPM) in our experiments. To calculate the param-
eters for each mode, we use the quadratic model [19]. Since we use
a static multi-speed disk model, the disk speed transitioning cost is
the sum of the costs for powering down and subsequently powering
up the disk. The simulated storage system uses 2GB NVRAM as
the storage cache in all cases. The number of disks is the same as
specified by the corresponding trace.

Attribute Value
Individual disk capacity 18 GB

Transitioning time 12.4 s
Transitioning energy 152 J

Attribute at 3000 RPM at 15000 RPM
Average seek time 3.4 ms 3.4 ms

Average rotational delay 10 ms 2 ms
Transfer rate 16 MB/s 80 MB/s

Active power (R/W) 6.1 W 13.5 W
Seek power 13.5 W 13.5 W
Idle power 2.8 W 10.2 W

Table 2: Disk simulation parameters

Our simulation evaluation used two traces. The first one is a
two-week subset of the HP Cello99 trace, which is a more recent
trace of the successor system to Cello92 system [34]. Cello99 was
collected on a timesharing and file server at HP Labs; it was an
HP 9000 K570 class machine (4 PA-RISC CPUs) running HP-UX
10.20 with 2GB of main memory and (roughly) the equivalent of
25 high-end SCSI disks. The trace was collected at the SCSI device
driver level after filtering from the file system cache.
The other trace, OLTP, was collected on a storage server con-

nected to an IBM DB2 database server via a storage area network
(SAN) driven by queries from a TPC-C-like benchmark, as shown
in Figure 6.1 The detailed setup is similar to the one described in
Section 4.2. The storage system had 24 IBMUltra SCSI 15000 RPM
disks. This one-day trace includes all I/O accesses from the IBM
DB2 database server to the storage system.
In the experiments, we used the first half of the traces to warm

up the storage system’s cache and adaptive layout. For the CR
algorithm, we set the epoch length to be 1 hour by default.
We use both stableworkloads and dynamicworkloads to demon-

strate the performance and energy effects of these schemes. These
workloads are defined by how Hibernator’s CR algorithm responds:
for stable workloads, CR produces the same disk tier membership
result for each of the epochs in the trace; for dynamic workloads,
the disk tier membership varies between epochs. To get stable
workloads, we selected particular 4-hour segments from the second
half of each trace that had the desired property. The mean loads of
the two selected 4-hour segments from OLTP and Cello99 are 140
and 50 req/s, respectively. To evaluate Hibernator and previous
schemes under different loads, we replayed the 4-hour segments at
various speeds.

1Because our experiments are not audited, the Transaction Process-
ing Performance Council does not let us refer to our workload as
“TPC-C”.



The dynamic Cello99 workload is simply the second half of the
two-week Cello99 trace, while the dynamic OLTP workload is as-
sembled by sequentially replaying three different traces collected
from the real system, generated by running 10, 55 and 100 clients.
Figure 9(a) and 9(b) show how the load characteristics of the dy-
namic Cello99 and OLTP workloads change with time.

4.2 Emulated system evaluation

Figure 6: The emulated system.

To evaluate Hibernator in actual use, we implemented the Hiberna-
tor algorithms in our previously built storage server [43], and used
15000 RPM disks to emulate multi-speed disk drives. As shown
on Figure 6, the resulting storage system emulator was connected
to, and driven by, an IBM DB2 database server via a high speed
SAN with a peak bandwidth of 113 MB/s and a one-way latency of
5.5 µs for a short message. Each server had dual 2.4 GHz Pentium
IV processors with 512 KB L2 caches and 2.5 GB of main mem-
ory, and ran Windows 2000 Advanced Server. Due to the limited
number of disks available, each layout (RAID5, PDC, Hibernator)
used ten 15000 RPM IBM Ultra SCSI disks.
We emulated the 15000 RPM mode of the two-speed disk by

simply passing requests through to the real one. We emulated the
3000 RPM mode by introducing an average delay of 8.4 ms before
issuing a request to the real disk. We emulated disk speed transi-
tions by delaying one request by the transition time. The active,
idle and transitioning energy were charged on a per-request basis,
using the parameters listed in Table 2.
We use a TPC-C-like benchmark as the OLTP workload in all

experiments. The benchmark generates mixed transactions based
on the TPC-C specification, and we set the think time to zero.
Each run starts from the same database content, so different runs
do not interfere with each other. Each experiment runs the bench-
mark for one hour, which is long enough for the system to yield
at least 30 minutes of stable performance. To examine the end per-
formance impact by various disk energy management solutions and
layouts, we compare the transaction rate (transaction per minute).
For the energy consumption, we compare the energy consumption
per transaction, which is the total energy consumption divided by
the total number of transactions committed within one hour. We
also compare the average power (i.e., energy consumption per time
unit) at each small time interval.

5. Simulation results
Since different layouts and energy control algorithms have differ-
ent performance degradations, directly comparing them is difficult.
Thus, we first evaluate the performance of all schemes, and then
compare energy only among those schemes that can provide per-
formance guarantees. Finally, we evaluate the cost of data shuffling
to adapt to workload changes and the effects of epoch length and
response time limit.

5.1 Performance guarantees
Figure 7 shows the average response time for the two traces with
the seven schemes under various stable loads. In all experiments,
the user-specified average response time limit is set to be 10 ms
unless mentioned specifically. Here, we show only the results with
stable workloads. The high-level results with dynamic workloads
are similar.
As shown in Figure 7, previous schemes, such as PDCLD and

RAIDDRPM, do not provide average response times within the spec-
ified limit; in many cases, they can significantly increase the aver-
age response time. For example, with the default load of 140 req/s
in OLTP, both PDCLD and RAIDDRPM have an average response
time of 120 ms, 12 times larger than the specified limit. Com-
paring RAIDDRPM with PDCLD, the performance degradation by
PDCLD increases with increasing loads because PDCLD distributes
the data in an extremely uneven fashion, so that a small subset of
disks become hot spots. Even if all disks spin at full speed, PDCLD
cannot provide the same level of performance as the baseline. With
RAIDDRPM, the average response time increases gradually with in-
creasing loads because of the increased number of disk transitions.
But if the load is heavy, all disks in RAIDDRPM will stay at full
speed and thus provide the same performance as the baseline.
The results also show that our performance guarantee method

works well for all cases except PDC+
LD. For example, with OLTP,

RAID+
DRPM, RAID

+
CR and Hibernator have average response times

smaller than the specified limit. Therefore, our performance guar-
antee method is an effective way to control performance degrada-
tion by energy control algorithms, as long as the underlying disk
layout is good enough to deliver a peak performance comparable to
the baseline.
The performance guarantee method does not work with PDCLD

under heavy loads, because the PDC layout is unable to provide
an average response time comparable to the baseline, even with
all disks at full speed. For this reason, we do not compare with
PDC schemes in our other simulation results. However, we do com-
pare Hibernator with the PDC and RAID schemes in our emulated-
system evaluation.

5.2 Energy consumption
We begin with a study of what happens with steady-state work-
loads, and then look at the more realistic situation of dynamically-
varying workloads.

5.2.1 Stable workloads
Figure 8 shows the energy savings of the three performance-guar-
anteed schemes, namely RAID+

DRPM, RAID
+
CR and Hibernator, for

the stable workloads. The energy savings are computed over the
baseline case.
First, the energy savings from RAID+

DRPM are small: less than
10% for OLTP and almost zero for Cello99. DRPM changes the
disk speeds frequently and so can significantly degrade performance,
due to the long disk speed transition time. As a result, RAID+

DRPM
is frequently disabled by the performance guarantee method and
all disks are forced to full speed to meet performance requirement,
leading to poor energy savings.
The two CR schemes, RAID+

CR and Hibernator, provide signif-
icantly more energy savings than RAID+

DRPM. For example, for
OLTP with 14 req/s, these two schemes can save 48% and 63% en-
ergy, respectively, over the baseline. This savings is because the CR
algorithm adapts energy at coarse granularity, and considers work-
load characteristics and performance requirements to determine the
best disk speed settings to minimize energy consumption.
Among all schemes, Hibernator provides the most energy sav-



(a) OLTP (b) Cello99
Figure 7: Average response time for different schemes under various stable loads. (Note the x-axis scale in (a) is not linear.)

(a) OLTP (b) Cello99
Figure 8: Energy savings for different schemes with performance guarantee under various stable loads. (Note the x-axis scale in (a)
is not linear.)

ings. For example, for OLTP with 7 req/s, Hibernator can save
65% energy, whereas RAID+

CR and RAID
+
DRPM provide only 50%

and 10% energy savings, respectively. Hibernator saves more en-
ergy than RAID+

CR because Hibernator uses a multi-tier layout with
active data evenly distributed across first-tier full speed disks to
provide good performance. Such a layout allows more disks to
stay in low speed tiers without significantly affecting the perfor-
mance. As RAID+

CR’s energy savings is always between Hibernator
and RAID+

DRPM, we do not present its results in subsequent sec-
tions, in order to make our figure presentation clearer.

5.2.2 Dynamic workloads
Figure 9 shows how Hibernator and RAID+

DRPM adapt to workload
changes. For both OLTP and Cello99, Hibernator has lower aver-
age power than RAID+

DRPM. For example, in the time period 1–4
hours in the OLTP workload, Hibernator has an average power of
50–75% of the baseline, whereas RAID+

DRPM’s average power is
more than 90% of the baseline. Thus, Hibernator provides a 15%
energy savings for OLTP, and a 48% energy savings for Cello99,
whereas RAID+

DRPM’s energy savings are only 3% and 16%, re-
spectively. RAID+

DRPM cannot save as much energy as Hibernator,
since all disks are often forced to full speed to meet the performance
requirement, whereas this does not happen often with Hibernator.
Figure 9(c) shows that when the workload becomes heavy, Hi-

bernator can quickly adapt its speed setting and layout to meet the
performance goal, while achieving maximal energy conservation.
At a few points in Cello99 when the load prediction is inaccurate,
the CR algorithm alone cannot deliver the expected performance.
In this case, the performance guarantee mechanism immediately
forces all disks to full speed to satisfy the performance require-
ment, resulting in the high sharp spikes in Figure 9(c).
The energy savings for OLTP are smaller than that for Cello99

because OLTP’s loads are much heavier than Cello99. Under heavy
loads (e.g., the time period 4–10 hours), all disks need to stay at full
speed in order to meet the performance goal. Therefore, there are
no energy savings at all during this period, and since this is 50% of
the entire workload, the overall energy savings are small, too.

5.3 The cost of data shuffling

Foreground Phase length Mean response time
traffi c measured model no shuffling measured model
none 22.1 min 22.1 min – – –

1400 req/s 27.8 min 30.0 min 6.35 ms 8.82 ms 9.1 ms

Table 3: The cost of data shuffling with and without foreground
OLTP workloads. The “no shuffling” column represents the
average response time during this period if there is no back-
ground shuffling.



(a) Cello99 (b) OLTP

(c) Cello99 (d) OLTP
Figure 9: Top: trace workload characteristics. Bottom: energy adaptation for dynamic OLTP and Cello99 workloads for a perfor-
mance goal of 10ms. Energy savings achieved for OLTP were: RAID+

DRPM: 3%, Hibernator: 15%; and for Cello99: RAID
+
DRPM:

16%, Hibernator: 48%.

To evaluate the effects of our data shuffling approach for workload
adaptation on the response time of foreground requests, we conduct
an experiment that moves a disk from a low-speed tier to a 22-
disk full-speed tier. The random shuffling algorithm was used to
ensure that future loads could be evenly distributed across the 23
full-speed disks.
Table 3 shows that the average response time of foreground re-

quests only increases by 2.5 ms (from 6.35 ms to 8.82 ms) due to
background shuffling traffic. It also shows that data shuffling for
an entire 18 GB disk can be done almost as quickly as sequentially
scanning the disk twice. With foreground requests, the shuffling
duration is increased slightly from 22.1 minutes to 27.8 minutes. In
summary, random shuffling takes advantage of disks’ high sequen-
tial bandwidth and can be done quickly with only a small overhead
on the average response time of foreground requests.

5.4 The effect of a response time goal
Figure 10 shows the effects of the response time limit on energy
savings by Hibernator. In one extreme, the response time limit is
small so that all disks need to spin at full speed. In this case, no
energy savings are possible. At the other extreme, when perfor-
mance is not critical (the response time limit is large), all the disks
can be spun down, reaching the maximum energy savings of 70%.
In between, Hibernator saves energy by putting more disks into the

Figure 10: The energy effects of response time limit under
OLTP workload of 700 req/s.

low-speed tiers as the performance restrictions are eased. The ef-
fects of the response time limit under the Cello99 are similar.

5.5 The effect of epoch length
Figure 11 shows the energy effects of epoch length on Hibernator
under the dynamic Cello99 workload. Once the epoch length is
large enough to accommodate the disk speed transition and reorga-
nization period, the energy savings are insensitive to epoch length
across a broad range. This is because most of time the Cello99



Figure 11: The energy effects of epoch length on Hibernator
under the dynamic Cello99 workload.

workload is relatively steady and at a few points where the load
prediction is inaccurate, regardless of the epoch length, the per-
formance guarantee method forces all disks up to meet the perfor-
mance requirement. The energy effects of epoch length on Hiber-
nator under the OLTP workload are similar.

6. Emulated system results
Figure 12 shows the results from an emulated storage system that
is connected to IBM DB2 running the TPCC-like benchmark. Be-
sides validating our simulation results, we used this environment to
evaluate the impact of energy management on the transaction rate
of our database application.
The emulated-system results demonstrate that only Hibernator

can save significant energy, while providing performance compa-
rable to the baseline (energy-unaware RAID5). For example, Hi-
bernator provides an average response time of 6.8 ms, only 3%
higher than the baseline (6.6 ms) and thereby has an OLTP trans-
action rate similar to the baseline. Moreover, Hibernator saves the
highest percentage (29%) of energy among all five energy-aware
schemes. This suggests that Hibernator is a practical and energy-
efficient scheme to be used in data center disk arrays.
The two RAID schemes, RAIDDRPM and RAID+

DRPM, produce
little energy savings. RAIDDRPM does not have a performance
guarantee and degrades the database transaction rate by 30%. Even
though it allows disks to stay at lower speeds more often than Hi-
bernator (as shown on the left figure of Figure 12(b)), RAIDDRPM
still consumes almost the same energy as the baseline, due to the
increased execution time to finish the transactions (energy = power
× time). In contrast, RAID+

DRPM does not degrade performance sig-
nificantly, but it saves little energy over the baseline because disks
are often forced to full speed.
PDCLD performs as expected: it is able to put many disks into

low speeds as shown in Figure 12(b), because the load distribu-
tion across disks is extremely uneven – but this also means that it
significantly degrades the database transaction rate by 47%. Com-
bining both effects, it has the same amount of energy consumption
per transaction as Hibernator, but it fails the performance require-
ment. (As in the simulation results, PDC cannot always meet the
performance goal even if all disks spin at full speeds, and the same
happens to PDC+

LD.)
Our emulated-system results for RAID+

DRPM and Hibernator ac-
curately match those in simulation. Both the average I/O response
time and the energy savings by both Hibernator and RAID+

DRPM
measured from emulated systems are very similar to the corre-
sponding simulation results for OLTPwith the default load (140 req/s)
shown in Figure 7 and Figure 8.

However, the performance degradation of RAIDDRPM in the em-
ulated system is less than the corresponding result in simulation
because of the inter-request dependency seen from the database.
When requests are delayed in the emulated system, subsequent re-
quests are also delayed – an effect not seen in the open-loop trace
replay we used in the simulations. This tends to lower the of-
fered I/O load in a system suffering slower performance due to
energy management. The discrepancies for performance guaran-
tee schemes such as RAID+

DRPM and Hibernator are much less pro-
nounced because those schemes do not add much delay, so the
inter-request arrival rate does not change significantly in the em-
ulated system.

7. Conclusions
Current disk array energy management schemes are impractical for
use in real data centers because they do not balance performance
and energy conservation well. Our solution to this problem is the
Hibernator disk array design, which combines several new ideas
for disk array energy management: (1) a coarse-grain disk-speed
selection algorithm (CR) that supports multiple data layouts; (2)
an energy-efficient data layout that requires no extra disks and sac-
rifices no reliability; (3) efficient, dynamic data reorganization al-
gorithms for both macro- and micro-level adjustments; and (4) a
response-time performance guarantee method that can be coupled
with many energy control algorithms.
Using both simulations with real system traces and a multi-speed

disk emulation with a commercial database engine (IBMDB2), our
results show that Hibernator is effective in overcoming the current
limitations in disk array energy management, thereby making it
practical in real systems. Specifically, Hibernator saves the most
amount of energy when compared to previous solutions, while pro-
viding OLTP transaction rate comparable to traditional performance-
oriented layouts such as RAID5 without any energy management.
There are many potential areas where our results could be ex-

tended. For example: performing real system energy measure-
ment and performance evaluation by using SONY’s multi-speed
disks; broadening the workloads used, to include decision sup-
port systems (DSS), mixed workload types, and larger-scale ones;
extending CR to consider response-time variance as well as its
mean; leveraging intelligent disk scheduling algorithms, such as
free block scheduling [24], to improve the efficiency of disk re-
organization and data migration; and coupling Hibernator’s algo-
rithms with other disk array redundancy schemes and other opti-
mized techniques, such as parity declustering and parity logging.
In summary, we believe that Hibernator is an attractive disk ar-

ray energy management design: one that offers significant energy
savings, while meeting performance guarantees, using simple, ef-
fective algorithms that themselves have wider applicability.
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