
Energy-Aware Data Compression for
Multi-Level Cell (MLC) Flash Memory ∗

Yongsoo Joo, Youngjin Cho, Donghwa Shin and Naehyuck Chang
†

Seoul National University
naehyuck@snu.ac.kr

ABSTRACT
We discover significant value-dependent programming energy
variations in multi-level cell (MLC) flash memories, and introduce
an energy-aware data compression method that minimizes the flash
programming energy rather than the size of the compressed data.
We express energy-aware data compression as an entropy coding
with unequal bit-pattern costs. Deploying a probabilistic approach,
we derive the energy-optimal bit-pattern probabilities and the
expected values of the bit-pattern costs for the large amounts of
compressed data which are typical in multimedia applications.
Then we develop an energy-optimal prefix coding that uses integer
linear programming, and construct a prefix code table. From a
consideration of Pareto-optimal energy consumption, we make
tradeoffs between data size and programming energy, such as a
35% energy saving for a 50% area overhead.

Categories and Subject Descriptors: C.4 [Performance of sys-
tems]: Modeling techniques; C.4 [Performance of systems]:
Performance attributes
General Terms: Design, Measurement, Performance
Keywords: MLC, Compression, Flash memory

1. INTRODUCTION
High-capacity flash memory devices provide lightweight, reli-

able and high-performance non-volatile storage. Flash technology
has already achieved significant commercial success, and generates
more profit for the semiconductor vendors than SDRAMs. Thanks
to evolutionary progress in capacity, flash memories continue
to reach new application areas, especially those which involve
multimedia data. Nevertheless, capacity is still one of the most
important concerns for customers. That is why multi-level cell
(MLC) technology has been widely applied to both NOR and
NAND flash devices. Four-level MLC flash memories store two
bits in a memory cell by using the threshold voltage (VT ) dif-
ference between the erased state and the programmed state of
the single-level cell (SLC) flash to represent intermediate states.
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Table 1: Programming energy variation of MLC flash memo-
ries.

Memory type Operation Time (µs) Energy (µJ)
Program 00 110.00 2.37

Intel MLC NOR Program 01 644.23 14.77
28F256L18 Program 10 684.57 15.60

Program 11 24.93 0.38

Note: Program 00 (01, 10, 11) denotes a 32-word buffered programming
with a repeated 00 (01, 10, 11) bit-pattern.

Consequently, it offers double the capacity for the same underlying
semiconductor technology.

We made cycle-accurate energy measurements on an Intel
28F256L18 four-level MLC flash memory and confirmed that
significantly more programming time and energy are required for
particular bit-patterns than for others. As shown in Table 1, the
time and energy required to program 01 and 10 are at least six
times more than the requirements for programming 00 and 11.

Most existing data compression schemes focus on reducing the
size of the compressed data. This approach achieves an energy-
optimal data compression only if the programming energy is pro-
portional to the compressed data size. This is true for conventional
SDRAMs, which consume energy equally for all bit-patterns [9].
However, if each pattern consumes a different amount of energy, as
shown in Table 1, it might be that programming four bits of data,
‘0101’ would consume more energy than the eight bits ‘11110000’.
In this case, conventional data compression techniques will be far
from optimal in terms of energy consumption.

Previous authors [3] used energy consumption as the cost func-
tion instead of data size. But that work was primarily concerned
with the read energy required for repeated accesses to code pro-
grammed in NOR flash, whereas we focus on the energy used in
programming operations, which is orders of magnitude larger than
that required for read operations. Recently, Intel have introduced
an energy-efficient way of programming the MLC flash as though
it were an SLC flash memory [1]. This involves programming a
selected region of the MLC flash using only two out of the four
possible states, so as simply to avoid the high-cost bit-patterns.
However, this programming mode is not backed by any systematic
attempt at optimization. Intel suggest that this technique would
be suitable for storing data which is small and frequently updated,
such as the index to a file system.

In this paper, we introduce an energy-aware data compression
technique for MLC NOR flash that is aimed at reducing the pro-
gramming energy rather than the data size. If valid energy costs
can be assigned to each bit-pattern, an energy-optimal data com-
pression scheme can be achieved by adopting an optimal entropy
coding for unequal alphabet cost. Many previous authors have
addressed this problem, using approaches such as integer linear
programming (ILP) [6], dynamic programming [5], or polynomial-
time approximation schemes (PTAS) [4]. However, we cannot

716

39.5

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.



0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0 50 100 150 200 250
Number of high-cost cells

En
er

gy
 (n

J)

00
01
10

δ01

c01

µ

Figure 1: Programming energy variation versus the number of
high-cost cells.

assign predefined energy costs to individual bit-patterns because
the NOR flash memory programs many bit-patterns at the same
time. The costs of bit-patterns become inter-related when those
patterns are located in the same data unit, such as a word or a 32-
word block in the case of the Intel NOR MLC flash. We therefore
propose a new entropy coding that determines the expected energy
cost of each bit-pattern by probabilistic estimation of energy and
size requirements.

The contributions of this paper are as follows. First, we have
performed cycle-accurate programming energy measurement of an
MLC NOR flash memory, constructed its analytical energy model,
and verified its accuracy to within 1% of average absolute error.
Second, we have formulated a new model of entropy coding with
unequal bit-pattern costs, i.e., programming energy costs. To use
this model, we deploy a new probabilistic approach to energy-
optimal entropy encoding. We start by introducing probabilistic
energy and size estimation using, respectively, a joint probability
mass function and results from information theory. Then we
perform a heuristic search and obtain energy-optimal bit-pattern
probabilities and the expected energy cost of each pattern. Finally,
we deploy integer linear programming (ILP) to achieve an energy-
optimal prefix coding for JPEG images. Third, we go on to show
that our coding can be further extended to an energy tradeoff in
programming MLC NOR flash. We demonstrate a 35% energy
saving with a 50% size overhead.

2. MLC NOR FLASH ENERGY CHARAC-
TERIZATION

We measured the programming energy of the Intel 28F256L18
four-level MLC flash memory using an automated cycle-accurate
energy measurement tool [9]. We focus on 32-word buffered pro-
gramming from among the available modes, because it is the most
efficient programming method for large amounts of data.

A symbol 11 corresponds to the erased state (like 1 in SLC flash)
and programming 11 requires the least amount of energy. If a data
unit consists entirely of 11, MLC flash requires the least possible
amount of energy to program the data, and therefore we use this
as the reference case. First, we measured the change in energy
consumption caused by varying the number of 00. We gradually
increased the number of 00, filling the remainder with 11. We then
repeated this experiment for 01 and 10. We also confirmed that the
position of the high-cost 00, 01 and 10, does not change the energy
consumption.

As shown in Figure 1, the energy required to program a data unit
is approximately proportional to the number of high-cost symbols,
and each high-cost symbol has a different energy cost. Amongst
the high-cost symbols, 00 requires less energy than 01 or 10. The
largest amount of energy is required to program 10, but it is not
significantly different from the requirement of 01.

Table 2: Coefficients of Equation (1) for the Intel 28F256L18
MLC NOR flash.

Coefficients Energy (nJ) Coefficients Energy (nJ)
δ00 13.37 c00 1299.60
δ01 72.64 c01 11494.00
δ10 79.01 c10 11850.20
δ11 0.00 c11 752.02

Table 3: Measured and estimated energy for the eight bench-
marking sets. (energy unit: µJ)

Type cpp jpg doc zip htm wav mp3 bin
Measured 3.72 3.59 2.45 3.59 3.51 3.19 3.39 3.20
Estimated 3.68 3.59 2.52 3.57 3.48 3.19 3.34 3.18
Error (%) 1.0 0.0 3.2 0.6 0.8 0.2 1.4 0.5

Figure 1 enables us to define the incremental cost of a symbol,
δi, and also the common-mode cost of a symbol, ci where i is one of
the symbols 00, 01, 10 or 11. This incremental cost is the energy
overhead determined by the number of high-cost symbols, while
the common-mode cost is the energy overhead caused by presence
of a high-cost symbol.

Many repeated energy measurements contributed to the values
of δi and ci in Table 2. It turns out that the contribution of each
incremental cost is independent, and thus the incremental costs
can be summed to determine the unit programming energy. It also
happens that the common-mode cost is determined by the largest
common-mode cost from among the high-cost symbols, when a
data unit contains more than one high-cost symbol. For example,
if a data unit contains both 00 and 01, the common-mode energy
is determined by 01, i.e. by c01, because c01 > c00.

We can now characterize the energy required to program one data
unit in a four-level MLC NOR flash as fε (n00,n01,n10,n11), such
that

fε (n00,n01,n10,n11) =
11

∑
i=00

niδi +max(o00c00, · · · ,o11c11) , (1)

where ni is the number of symbol i’s in data unit, and oi is defined
by

oi =
{

0 if ni = 0
1 if ni > 0.

We have verified the energy model of Equation (1) by measuring
the NOR flash programming energy using data from various real
applications. Table 3 shows the comparison between the mea-
sured and derived energy that is expressed by Equation (1). We
programmed 5,120 words (10 KB) of data and only had a 1.0%
average absolute error.

3. ENERGY-AWARE ENTROPY CODING

3.1 Problem statement
Typical data compression schemes use the size of the com-

pressed data as the cost function, since most semiconductor memo-
ries have the same cost of bit-patterns if their lengths are the same.
In this paper, we consider the MLC flash programming energy
rather than the size of the compressed data, because the costs of the
bit-patterns are unequal, even if the resulting bit-patterns have the
same length, as shown in the previous section. To produce a data
compression that minimizes the MLC flash programming energy,
we need to obtain an optimal entropy coding for unequal alphabet
cost. To formulate an entropy coding with unequal symbol costs,
the cost of each symbol (bit-pattern) in the alphabet (a set of
symbols) should be given as a constant. For four-level MLC flash
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memories, the symbols are defined by the bit-patterns 00, 01, 10,
and 11, which are values that can be stored in one MLC flash cell.
Thus, if we can measure the energy required to program these four
symbols, we can formulate an energy-aware entropy coding for the
MLC flash.

However, a typical NOR flash memory programs multiple bit-
patterns at the same time, and there exist common-mode costs in
the programming energy model of the NOR flash, as shown in
Table 2. It means that the bit-pattern costs are correlated to each
other, and thus we cannot assign predefined energy costs to the
bit-patterns. These difficulties motivate a probabilistic approach to
dealing with the unequal costs of MLC flash programming. Instead
of trying to assign fixed costs to each symbol, we determine the
expected cost of each symbol, which enable us to achieve an
energy-optimal entropy coding.

3.2 Probabilistic energy estimation
We estimate the expected energy required to program a data unit

when the probabilities of each symbol occurring are given. Let S be
the number of symbols. A sequence of symbols to be programmed
can be modeled as a sequence of independent throws of a dice with
S faces, where the probability of the occurrence of i-th face is pi.

Suppose we have a random vector variable X = (X1, · · ·,XS) with

the outcome ξ ∈ (x1, · · ·,xS), where xi ≥ 0 and
S

∑
i=1

xi = L, and L is

the number of symbols in a data unit. X denotes the number of oc-
currences of the symbols in a data unit. The joint probability mass
function (PMF) of X that specifies the probabilities of a product-
form events such as {X1 = x1}∩ · · ·∩{XS = xS} is given by

pX1,··· ,XS(x1, · · · ,xS) = P[X1 = x1, · · · ,XS = xS]. (2)

A family of conditional PMFs can be obtained from the joint PMF
by conditioning on different subsets of the random variables as fol-
lows [7]:

pX1,··· ,XS(x1, · · · ,xS) = pXS(xS|x1, · · · ,xS−1)
×pXS−1(xS−1|x1, · · ·,xS−2)
×·· ·× pX2(x2|x1)× pX1(x1).

(3)

We derive a generalized conditional PMF for MLC NOR flash
memories using Equation (3).

pX1,··· ,XS(x1, · · · ,xS) =
(L−

S−1

∑
i=1

xi

xS

)
pS

xS(1− pS)L−∑
S
i=1 xi

×
(L−

S−2

∑
i=1

xi

xS−1

)
pS−1

xS−1(1− pS−1)L−∑
S−1
i=1 xi

...

×
(

L− x1

x2

)
p2

x2(1− p2)L−x1−x2

×
(

L
x1

)
p1

x1(1− p1)L−x1 .

(4)
We define the programming energy cost of a data unit as fε (x1, · · · ,
xS). The expected value of the programming energy of a data unit
can then be expressed as:

E [ fε (X1, · · · ,XS)] =
L

∑
x1=0

· · ·
L−∑

S−2
i=1 xi

∑
xS−1=0

(
fε (x1, · · · ,xS−1,L−

S−1

∑
i=1

xi)

× pX1,··· ,XS(x1, · · · ,xS−1,L−
S−1

∑
i=1

xi)

)
.

(5)

3.3 Size estimation using information theory
With a given set of symbol costs, (c1, · · ·,cS), the entropy coding

results in a probability for each symbol pi, such that

pi = Z−ci , (6)

where Z is the largest real solution of the following equation [8]:

S

∑
i=1

Z−ci = 1. (7)

In general, the following condition holds for semiconductor mem-
ories:

ci = c j, for all i, j where 1 ≤ i, j ≤ S. (8)

Therefore, the size-optimal entropy coding is achieved when pi =
S−1,1 ≤ i ≤ S.

Let us define the information quantity as the amount of informa-
tion that can be programmed in a data unit I, and this can be ex-
pressed in the following terms:

I = L ·HS(p1, · · ·, pS) =−L
S

∑
i=1

pi log2 pi, (9)

where HS(p1, · · ·, pS) is the entropy of the symbol whose prob-
abilities of occurrence are p1, · · ·, pS [8]. Suppose we perform
an entropy coding with particular symbol costs, i.e., energy costs
(ĉ1, · · · , ĉS), and consequently generate the symbol probabilities,
(p̂1, · · · , p̂S). The information quantity of this particular entropy
coding, Î, is always less than or equal to I, which is the size-optimal
entropy coding such that pi = S−1. The normalized information
quantity, Ĩ, is defined by

Ĩ(p̂1, · · · , p̂S) =
HS(p̂1, · · · , p̂S)

HS(S−1, · · · ,S−1)
. (10)

The inverse of the normalized information quantity 1/Ĩ(p̂1, · · · , p̂S)
specifies the normalized size of that particular entropy coding with
(p̂1, · · · , p̂S).

3.4 Energy-optimal symbol probabilities
Based on the energy and size estimation from the occurrence

probabilities of the symbols in the alphabet, we explore the Pareto-
optimal points through heuristic search. We can derive two func-
tions of the symbol occurrence probabilities from the results in
Sections 3.2 and 3.3. One is the energy consumption per data unit,
E [ fε (X1, · · · ,XS)], and the other is the normalized size, 1/Ĩ(p̂1, · · · ,

p̂S). The cost function defined by
E [ fε (X1, · · · ,XS)]

Ĩ(p̂1, · · · , p̂S)
is the pro-

gramming energy consumption with particular symbol occurrence
probabilities. The problem statement for the energy-optimal sym-
bol occurrence probabilities can then be described as follows:

Find (p̂1, · · · , p̂S) that minimizes
E [ fε (X1, · · · ,XS)]

Ĩ(p̂1, · · · , p̂S)
. (11)

Additionally, we can make a problem statement for the energy-
optimal symbol occurrence probabilities with a normalized size
constraint sc, by adding the inequality:

1
Î(p̂1, · · · , p̂S)

< sc. (12)

We need to employ a heuristic approach to solve this problem,
because this is a non-convex optimization with a non-linear con-
straint. However, by exploring the solution space we have found
that this problem has few local optima, allowing us to use direct
search to obtain a solution.
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Figure 2: Pareto-optimal prefix coding solutions for JPEG im-
ages that minimize the Intel MLC flash programming energy.

3.5 Expected values of symbol costs
Now we find the expected energy costs of each symbol from the

optimal symbol probabilities found in Section 3.4 using Equations
(6) and (7). Let the optimal symbol probabilities be (p̂1, · · ·, p̂S),
which is a result from Section 3.4. We can now obtain the optimal
costs, (ĉ1, · · ·, ĉS), such that

E
[

fε (X̂1, · · ·, X̂S)
]
= L

S

∑
i=1

p̂iĉi. (13)

From Equation (6), the expected energy value, ĉi, is given by

ĉi =− log2 p̂i

log2 Z
. (14)

And from Equations (9), (13) and (14), we derive

log2 Z =

−
S

∑
i=1

p̂i log2 p̂i

E
[

fε (X̂1, · · ·, X̂S)
] =

L ·HS(p̂1, · · ·, p̂S)
E
[

fε (X̂1, · · ·, X̂S)
] . (15)

Therefore,

ĉi =−
E
[

fε (X̂1, · · ·, X̂S)
]

L ·HS(p̂1, · · ·, p̂S)
· log2 p̂i. (16)

4. ENERGY-OPTIMAL PREFIX CODING
4.1 Pareto-optimal prefix coding solutions

We will now explore the theoretical bound on the energy gain
that can be achieved by the result in Section 3.4. Figure 2 shows the
Pareto-optimal points of the Intel 28F256L18 four-level MLC flash.
With a symbol probability set of (p00, · · · , p11) = (0.302,0.185,
0.176,0.337), we achieved a 9% programming energy reduction
with a 3% size overhead (Point (a)), and a 12% energy reduction
with a 10% size overhead (Point (b)) with a symbol probability set
of (p00, · · · , p11) = (0.333,0.135,0.123,0.408).

We performed optimal prefix coding of real JPEG images using
the unequal alphabet programming energy costs of the Intel four-
level MLC flash by the result in Section 3.5. We borrow the source
symbols and their probabilities from the Huffman table for the lu-
minance AC coefficients in the JPEG standard [2]. The expected
values of the symbol costs are derived from Equation (16). We use
Karp’s ILP model [6] and the CPLEX ILP solver.

Figure 2 shows the Pareto-optimal solutions of the prefix code
sets, which are very close to the theoretical Pareto-optimal points.
The reasons that the actual energy-optimal JPEG encodings are
not exactly identical to the theoretical optimal solutions, are mis-
matches between the alphabet energy costs and the probabilities

of the source symbols, quantization error of the alphabet costs for
Karp’s ILP, and the limitation of ILP itself.

The Intel four-level MLC flash has quite high common-mode
costs, allowing us only a small degree of freedom in choosing
a Pareto-optimal solution. The group of solutions represented
by Curve (c) in Figure 2 has an overhead of less than 10% and
an energy saving of around 5% to 12%. On the other hand, the
solution group of Curve (d) shows almost 80% energy saving, but
the size has nearly doubled, reducing the storage efficiency to near
that of an SLC flash.

4.2 Energy-size tradeoff
To achieve further energy reductions while making a reasonable

compromise on data size, we propose the energy-size tradeoff rep-
resented by Line (e) in Figure 2, which is a coarse-grain mixture
of the Pareto-optimal solutions of Curves (c) and (d) (i.e. some of
the data is encoded using Curve (c), and the rest using Curve (d)).
Adjusting the proportion of the two encoding groups achieves dif-
ferent energy-size tradeoffs. For instance, we can save more than
35% programming energy if we accept a 50% size overhead.

Suppose we have a digital camera. The maximum number of
pictures that can be taken is determined either by out of battery or
out of memory, whatever comes first. By tracking the remaining
battery budget and flash memory capacity, an on-line tradeoff
between energy and data volumes can maximize the number of
pictures that can be taken with the remaining resources.

5. CONCLUSION
MLC flash memories are rapidly expanding their market share

due to their strong cost-effectiveness. This paper reports a pio-
neering energy-aware data compression for MLC flash memories
that minimizes the programming energy rather than the size of the
compressed data. This is specifically applicable to new paradigm
low-power memory systems, and achieves significant energy sav-
ing with no additional hardware cost. We provide a generalized
problem formulation and a solution method that reflect practical
operating conditions such as the simultaneous programming of
multiple cells. Our solution is applicable to any multi-level cell
memory devices that have unequal read or write (programming)
energy costs, and achieves the optimal programming energy con-
sumption in the case of NOR flash. We have further extended the
applicability of the proposed method by quantifying the relation-
ship between programming energy and compressed data size. The
resulting tradeoffs, such as a 35% programming energy saving for
a 50% size overhead, can help to maximize the operational lifetime
of mobile devices that use MLC flash memories.
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