
EERAID: Energy Efficient Redundant and Inexpensive Disk Array

Dong Li, Peng Gu, Hailong Cai, Jun Wang
Department of Computer Science and Engineering

University of Nebraska-Lincoln, Lincoln, NE 68588-0115�
li,pgu,hcai,wang � @cse.unl.edu

Abstract

Recent studies show that disk-based storage subsystems
account for a non-trivial portion of energy consumption
in both low-end and high-end servers. Current energy-
efficient solutions work either at a disk drive level or at a
storage system cache level without the knowledge of re-
dundant information inside RAID systems and thus have
certain limitations.

In this paper, we develop a novel energy-efficient
RAID system architecture called EERAID to signif-
icantly conserve energy by taking advantage of re-
dundant information. To give a proof-of-concept so-
lution, we develop new energy-efficient, redundancy-
aware I/O scheduling and controller-level cache manage-
ment schemes for EERAID 1 and EERAID 5 respec-
tively. EERAID 1 implements two new policies– Win-
dows Round-Robin (WRR) and Power and Redundancy-
Aware Flush (PRF), while EERAID 5 develops two
novel schemes–Transformable Read (TRA) and Power
and Redundancy-aware Destage (PRD).

Comprehensive trace-driven simulation experiments
have been conducted by replaying two real-world server
traces and a wide spectrum server-side synthetic traces.
Experimental results showed that, 1) for single-speed
(conventional) disks, EERAID 1 and EERAID 5 can
achieve up to 30% and 11% energy savings respectively,
and 2) For multi-speed disks, compared with DRPM,
EERAID 1 and EERAID 5 can achieve 22% and 11%
extra energy savings. There is little performance degra-
dation or even better performance in EERAID 1 and 5.

1 Introduction

Today energy has become a critical resource in mod-
ern computing while motivating an upsurge of activity
in industry and academia. Recent studies show that disk-
based storage subsystems account for a non-trivial por-
tion of energy consumption in both low-end and high-
end servers [2]. Depending on the storage system size,

the energy consumed by the storage system can easily
surpass that of the rest of the system [20].

There are two major research objects in the power-
efficient I/O study: a single disk in mobile devices and
laptops, and a multi-disk system such as RAID in server
systems and data centers. The focus of this paper is
on the latter one, the multi-disk system. For a sin-
gle disk, most power-efficient solutions spin up or spin
down the disk between the high-power mode and low-
power mode by dynamically adjusting a time thresh-
old [8, 9, 13, 14]. For a multi-disk system, some recent
studies [10, 28, 4] have found that the average idle pe-
riod is not long enough to spin up or spin down a disk,
because the I/O workloads are much more intensive in
the server environment. Gurumurthi et al. advocated the
use of non-existing multi-speed disks to save energy for
server workloads by a DRPM scheduling policy that ex-
ploits small-scale spin-up and spin-down periods [10].
The main idea of DRPM is to aggressively fine-tune disk
rotation speeds step-by-step for a disk, with the assump-
tion that the faster a disk rotates, the more energy is
consumed. Carrera et al. proposed some hybrid stor-
age organizations of laptop disks, server disks and multi-
speed disks to save energy [4], and got the conclusion
that only multi-speed disks can actually provide energy
savings for network servers. Recently Zhu et al. devel-
oped some power-aware storage cache management al-
gorithms called PA. Energy is saved by discriminatingly
caching the data of those disks with good workload char-
acteristics of power-efficiency in terms of the percentage
of cold misses and the cumulative distribution of inter-
val lengths [28]. However, their design is still based on
multi-speed disks.

There are some major problems with the above-
mentioned schemes. First, they work either at a disk
drive level or at a storage system cache level. We can-
not see the big picture of the entire multi-disk system at
the disk drive level. While working at a storage system
cache level, we cannot tell the associative relationship

1

among multiple disks, especially for RAIDs with redun-
dant information. At both levels, each disk is treated in-
dependently by mistake, and how disks work collabora-
tively with each other on redundancy maintenance and
load balance is missing. As a result, current solutions
cannot perform well and maximize energy savings. For
example, in RAID 5 (a typical organization in a multi-
disk system), data block is usually linked to more than
one disk. To write back a data stripe may involve access
to two disks–the data disk and another disk that saves the
parity stripe.

Secondly, current solutions choose the multi-speed
disk as a building-block of storage systems. Unfortu-
nately it is not clear that the multi-speed disk product
will be on the market soon because of its prohibitive
manufacturing cost. The reason why they make such a
strong assumption is that traditional power-efficient man-
agement schemes (TPM) [8, 9, 13, 14, 18] is not feasi-
ble for server systems because the average idle period
(typically in hundreds of milliseconds) of disks in server
systems is too short compared to the disk spin-down or
spin-up time (typically in tens of seconds) [10].

We found that current solutions for a single disk have
limited ability to stretch the disk idle periods (i.e., op-
timize the disk access distribution for energy conserva-
tion) especially for non-blocking reads. Current solu-
tions based on a multi-disk system have a better but still
limited ability to indirectly change the disk access dis-
tribution. The problems with the above two solutions
are in that they cannot or have a very limited freedom
to delay a non-blocking read request and a write request.
This motivates us to develop scheduling and cache man-
agement policies inside a RAID controller, such that we
can change the request intervals directly by transforming
requests among different disks. With the help of redun-
dancy, a non-blocking read of a disk can be equally trans-
formed to a read request of another disk without hurting
the overall system performance. For example, in a six-
disk RAID 5 system, we have 1) a parity group contain-
ing stripe 0, 1, 2, 3, 4 and P that are saved in disk 0,
1, 2, 3, 4 and 5 respectively, 2) stripe 2, 3, 4 and P are
cached in the RAID controller cache, and 3) there is a
read request for stripe 0. To serve such a read, we could
either read stripe 0, or read stripe 1 and then calculate
stripe 0 on the fly by a XOR calculation (more details are
given in Section 4.1). A non-volatile built-in-cache may
be used to electively delay writes. By applying such a
powerful scheduling and caching management scheme at
the RAID controller level, the disk access distribution in
a multi-disk system can be ultimately optimized so that
near-optimal energy conservation is obtained.

In both low-end and high-end servers, RAIDs have
contributed to a large portion of energy consumption of
I/O subsystems. We believe that this is a good opportu-

nity to develop new I/O request scheduling and caching
management strategies at the RAID controller level in or-
der to save maximum energy. In this paper, we build
Energy-Efficient RAIDs called EERAID (EERAID 1
for RAID 1 and EERAID 5 for RAID 5) by incorpo-
rating novel energy-efficient, redundancy-aware I/O re-
quest scheduling and RAID controller cache manage-
ment schemes for two representative RAID organiza-
tions, RAID 1 and RAID 5. We assume a non-volatile
write-back cache is employed by any RAID controller
without explicit explanation in the rest of this paper.
One of the most salient benefits of EERAID is to gen-
erate idle intervals ideally long enough to spin up/spin
down single-speed disks to conserve energy without too
much performance compromise. For single-speed disk
systems, spin down has the same meaning as shut down
in this paper without specification. Moreover, EERAID
is orthogonal to existing power-efficient solutions such
as DRPM and PA. Combining with DRPM and PA,
EERAID can achieve further energy savings based on
multi-speed disks.

To evaluate EERAID, a trace-driven and event-driven
simulator based on Disksim [3] is developed. A non-
power-aware RAID and a DRPM-based RAID [10] are
chosen as the baseline systems for the single-speed disk
and multi-speed disks system respectively. By replaying
both synthetic and real-life traces, we found that, 1) For
single-speed disks, EERAID 1 can achieve up to 30%
energy savings and 11% savings by EERAID 5, and 2)
For multi-speed disks, compared with DRPM, EERAID
1 can achieve more than 22% energy savings and 11%
extra for EERAID 5. In all experiments, there is no or
little performance degradation.

The remainder of this paper is organized as follows.
In Section 2 we describe the disk power model and intro-
duce our motivation. We describe the design of EERAID
1 and EERAID 5 in Sections 3 and 4 respectively. Our
experimental methodology is detailed in Section 5. In
Section 6, results and analysis are presented. We discuss
the related work in Section 7 and make our conclusions
in Section 8.

2 Design Considerations

Modern disks work in several modes including active,
idle, standby. The disk is in an active mode when it is
servicing requests and rotating at a single full speed. In
an idle mode, the disk does not service any request, and
the disk arm stops moving while the disk platters keep
rotating. Both the platters and disk arm are static when
the disk is in a standby mode. In this mode, the disk
consumes much less energy than in both active and idle
modes because disks rotate at a full speed in active and
idle modes. Disks in a standby mode have to spin up to
a full speed before servicing a request. In effect, it takes

2

a long time (tens of seconds) to either spin down disks
from active to standby or spin up to active from standby.
As a result, a large amount of energy is consumed during
disk spin-up or spin-down.

There are two design features followed by EERAID.
The first consideration is that even small increases in
the request interval length of inactive disks can result
in significant energy savings. This guides EERAID to
preferably dispatch requests to disks in high-power state
(e.g., single-speed disks in active mode or multi-speed
disks high-speed mode), and discriminatingly transform
reads or delay writes for low-power state disks (e.g.,
single-speed disks in standby mode or multi-speed disks
in low speed mode). The idea is to keep disks in low-
power mode stay at low-power as long as possible so
that both the mode-switch frequency and the aggregate
energy consumption of RAID is reduced. For example,
in a single-speed disk system, assuming disk A is active
and disk B is standby. Disk A may service a request
immediately while disk B has to spend tens of seconds
in spinning up to a full speed before servicing any re-
quest. A typical spin-up period is much longer than a
request access time and thus consumes a large amount
of energy. If we can transform a read request of disk A
to another request of disk B but still reply the same data,
then disk B continues to service requests while A stays at
a low power mode. Consequently, the aggregate energy
consumption for both disk A and B is largely conserved
compared to a case without the request transform.

The second design consideration is to make sure the
performance is not compromised after applying new
EERAID schemes. For example, since TRA transforms
some requests to the disk in active mode, we must make
sure additional transformable requests do not force the
disk overloaded. We analyzed two real-world traces
Cello96 and Tpcc in server environments (more infor-
mation is detailed in Section 5.2) and found that the av-
erage idle ratio per disk on are 34% and 44% respec-
tively, which indicates server disks do have enough spare
service capacity to afford a few transformable requests.
Additional requests transformed by TRA would not com-
promise the performance at all.

3 EERAID 1

RAID 1, also called mirroring or shadowing, adopts
twice as many disks as a non-redundant disk array to
maintain 100% redundancy [5]. Many policies are pre-
sented on how to dispatch a read request to disks at
the RAID 1 controller to obtain high-performance [6].
Some commonly used policies [3] include sending all
read requests to a single primary replica, random selec-
tion, round-robin, shortest-seek first and shortest-queue
first by selecting the replica with the shortest request
queue on disk drive and having ties broken by random

selection. The shortest queue is adopted in EERAID 1
and EERAID 5 without explicit explanation in the rest of
this paper.

However, to the best of our knowledge, none of the
above-mentioned solutions takes energy consumption
into consideration. A naive scheme is to send all re-
quests to one group such as primary dispatch. This ap-
pears to be a good energy-efficient policy because the
other group should always be idle (assuming all writes
are absorbed in controller cache). However, this may not
always be the truth. For the intensive I/O workloads, be-
cause the aggregate access time for all requests is sub-
stantially stretched, much more energy is actually con-
sumed by this scheme. We develop a new dispatch policy
called Windows Round-Robin to maximize the energy
savings by best exploiting 100% redundancy. The main
idea of WRR is to alternatively dispatch every N succes-
sive requests (called N request window) to the primary
group and the mirror group. Traditional Round-Robin
policy can be considered as a special instance of Win-
dows Round-Robin with N equals one. In addition, write
requests are satisfied by the controller cache. In an N
request window, when the controller cache looks for vic-
tims to flush dirty cache lines, it discriminatingly selects
a cache line that belongs to the group to which RAID
controller is dispatching read requests. We call such a
policy Power and Redundancy-Aware Flush (PRF).

When N successive requests are sent all the way to
one group (called busy group), the idle period of disks of
the other group (called idle group) is largely stretched.
As a consequence, idle group get more chances to stay
in standby mode for single-speed disks, or spin down to
very lower power states for multi-speed disks. Although
the busy group consumes little more energy because of
more jobs, much more energy is saved from the idle
group. Therefore, EERAID 1 is able to drastically reduce
the energy consumption for the whole disk array. Next,
we describe specific EERAID 1 designs by employing
single-speed disk and multi-speed disk separately.

3.1 Single-speed Disk Based EERAID 1

First we investigate a naive Windows Round-Robin im-
plementation. Given an arbitrary number N (e.g. 500),
we dispatch N requests to two groups in RAID 1 alter-
natively without any performance control. The disk spin
down policy works like this: spinning down disks of the
idle group to standby at the beginning of a N-request
window and spinning up disks near the end of the N re-
quest window. The idle group will have already ramped
up when the N request window is over so that the idle
group is ready for servicing requests in advance. But
we find that the RAID system performance is severely
degraded in experiments. The reason is that in I/O in-
tensive workloads, passing N successive requests all the

3

way to one group may easily overload the busy group,
thus significantly stretching the average response time.

To prevent compromising too much performance, N
should be adjusted dynamically to adapt to the access
pattern change. We improve our WRR design by in-
creasing the value of N step by step based on the perfor-
mance degradation. First we give a maximum window
size ������� . Before running WRR, we calculate the av-
erage response time T by using the shortest-queue first
algorithm for ������� requests. Then we select a small
number as the initial window size. After the RAID con-
troller sends N requests to one disk group, it sends N
requests to the other group. These two N request win-
dows are called one window cycle. By comparing T with
the average response time of these 2N requests, the con-
troller decides whether or not to continue WRR with a
larger window size. If the performance degradation is
less than the predefined threshold p (e.g. 9%), the win-
dow size is enlarged by the step size �
	����� . Otherwise,
WRR is stopped. Even there is no big change of average
response time after many window cycles, we may still
stop using WRR and apply shortest-queue first policy for
������� requests to get the newest T to reflect the current
access pattern. Let ������� be the maximum window cy-
cles. Details of WRR are illustrated by Algorithm 1.

Algorithm 1: EERAID 1 (WRR+PRF)

(1) Get T by using shortest-queue first policy
for � ����� requests;

(2) ����� ;
(3) for (c = 0; ����� ����� ; c++)
(4) �
(5) if ������� ������� ��� �"!#��	$��%� ;
(6) dispatch N requests to the primary group;
(7) dispatch N requests to the mirror group;
(8) calculate the average response time &('

of these 2*N requests;
(9))�& � &*',+-& ;
(A) if()�&/.10) goto (1);
(B) 2
(C) goto (1);

How to choose good values for N and � 	����� is impor-
tant. Because the spin-down and spin-up time of single-
speed disk are fairly long compared to disk request ser-
vice time, energy savings may be possible only when the
lasting period of a N request window is long enough.
In other words, disks should be able to spin down only
when N is large enough. Usually it takes more than 10
seconds to spin up a single-speed disk from standby to
active mode; therefore energy savings can be achieved
only if the idle group have enough time to spin down and
then spin up before the end of the current N request win-
dow. Otherwise disks do not have any chance to stay idle

but simply perform spin-downs and spin-ups. In our im-
plementations, given an I/O workload with average re-
quest arrival time as 50 ms, WRR spins down the idle
group when N is larger than 1000 and ramps them up
when there are 300 requests left in the request window.
These parameters can be dynamically adjusted according
the the workload and disk power model.

Using WRR and PRF in EERAID 1 forms long idle
periods on some disks on purpose. To illustrate this, we
drew Figure 11 to show an accumulative percentage of
idle time of the idle group in one request window in
EERAID 1. As seen from the picture, in an N request
window, one disk group is idle in most of the time.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 10 100 1000 10000 20000 30000 40000

C
D

F

Inter-Arrival Time(ms)

CDF of the Idle Time

Non-WRR
WRR

Figure 1: Disk Idle Time CDF

3.2 Multi-speed Disks Based EERAID 1

For multi-speed disks, the time to spin down to a lower
speed or to spin up to a full speed from a low speed mode
is much shorter than the spin-down and spin-up period
between standby and active modes of single-speed disks.
For example, in reference [10], an arbitrary multi-speed
disk model has 15 different speeds ranging from 12000
RPM to 3600 RPM. It takes only hundreds of millisec-
onds for a multi-speed disk to spin down to a lower speed
and a little more than two seconds from the lowest speed
(3600 RPM) to spin up to the full speed (12000 RPM).
The DRPM scheduling algorithm is developed to work
specifically for multi-speed disks.

Since WRR and PRF are two orthogonal approaches
to DRPM, employing WRR and PRF in a multi-speed
disk based EERAID 1 can save energy further beyond
DRPM (proved in Section 6.1). DRPM allows each disk
to spin its speed down at the end of each period (e.g. two
seconds) by checking whether the length of its request
queue is shorter than the threshold (e.g. zero). The disks
spin their speeds down step by step (e.g. 600 RPM for
one step). If the queue length is larger than the thresh-
old, the disk will not spin down in the next period. Be-
cause WRR and PRF can generate long idle intervals for
disks of the idle group, the disks may spin down to a very

1The experiment result is collected by feeding real trace 50-ms to
the simulator EERAID1-sp. The details of the trace and the simulator
are described in Section 5.

4

low speed in a short time if there is no request on these
disks for consecutive periods at all. DRPM ramps disks
up only when the performance (average response time)
degradation is larger than a high water mark. We make
an improvement for performance concern, ramping all
disks of the idle group up before the end of current N-
request window because the idle group disks will be in
the busy group in the next N-request window. In all, the
multi-speed disks in EERAID 1 can quickly spin down
to a very low speed and attain much longer intervals to
stay at this speed.

4 EERAID 5
RAID 5 is a block-interleaved distributed-parity disk ar-
ray. It provides comparable reliability and availability to
RAID 1 but introduces much less storage overhead for
redundancy maintenance. WRR is not applicable here
since it only works for RAIDs with 100% redundancy. A
new redundancy-aware I/O read scheduling policy needs
to be developed.

One of the typical disk accesses in RAID 5 is a write
update. Generally updating a data stripe needs four
disk accesses: reading old data stripe, reading old par-
ity stripe, writing new data stripe and writing new par-
ity stripe that is calculated by exclusive-ORing the first
three stripes. It is well-known that this update overhead
could degrade the system performance, especially in a
small-write intensive environment [16, 23]. Caching is a
commonly used solution to address the problem [15]. By
adding a non-volatile cache to the RAID controller, disk
writes can be satisfied by a write-back cache and then
flushed back as a background activity. Updating data an
d parity information is denoted as destage [24].

Most of the power aware cache management policies
focus on how to select which block to be destaged and
how to perform destage more power efficiently. Zhu
et.al [28] did not consider scheduling read and write
requests separately in their cache management method,
and aimed to reshape the interval distribution of disk ac-
cesses by assigning more cache space to high-priority
disks. As previously discussed, they assume that one
cache line is linked to only one disk, which is too simple
to reflect the fact in RAID systems.

Taking into account the power consumption effect on
both reads and writes, we develop novel energy-efficient,
redundancy-aware scheduling schemes in RAID 5 for
disk read and write requests respectively. One is called
Transformable Read (TRA), which can selectively re-
direct read requests to other disks to conserve energy
while providing the same data service to the user. The
other is a RAID controller cache destage algorithm
named Power and Redundancy Aware Destage (PRD)
that preferably destages the cache blocks of the disks
in high power modes. EERAID 5 combines TRA with

PRD in such a way that TRA is used to optimize the
distribution of disk read access intervals toward energy-
efficiency, while PRD is used for disk write access.

4.1 Transformable Read (TRA)
4.1.1 Background

From a storage system user’s point of view, the entire
RAID 5 system is considered as one big virtual disk.
The system I/O requests (with the information such as
LBN, request size, read or write) are mapped to block-
level requests of the corresponding disks according to the
stripe size and layout information. A single system I/O
request might be mapped to more than one stripe groups.
To develop TRA algorithm we introduce two new terms,
a system I/O request called a Logical Request and a
Stripe-Group Request representing a group of disk re-
quests in the same parity group generated by a logical re-
quest mapping. It may be noted that one Logical Request
may be mapped to more than one Stripe-Group Request.
The mapping relationship between Logical request and
Stripe-group request is shown in Figure 2, with case (a)
demonstrating an one-to-one mapping while case (b) an
one-to-two mapping. In case (b), one Logical Request
is mapped to two partial Stripe-Group Requests across
two different parity groups. To make our idea clear, here
we assume that there is no alignment problem. In our
experiments we remove this assumption.

...

3

9

P0

...
5P1

2

...
8

...

0

6

...

3

9

2

...
8

P0

...
5P1

...

0

6

1

...
7

...

4

...

41

...
7

Stripe−Group request one is stripe 4.

Stripe−Group request is stripe 6, 7 and 8.

Stripe−Group request two is stripe 5, 6 and 7.
(b) Logical request is stripe 4, 5, 6 and 7.

(a) Logical request is stripe 6, 7 and 8.

Figure 2: Logical Request and Stripe-Group Request

4.1.2 TRA Algorithm

Given a stripe-group request, TRA replaces one disk read
with M new reads of other disks in the same parity group
and the requested blocks are constructed by XOR oper-
ations on the fly based on redundant information. There
are three cases of M: (1) 0, all the stripes in the requested
parity group are either cached or requested; (2) 1, we
need only one new disk read to replace current read re-
quest in the same parity group; or (3) .�� , we need more
than one new request to replace current request in the
same parity group. Here the maximum value of M is G-1
with G as the parity group size.

5

In case (1) and (2), the total number of I/Os is un-
changed during the TRA process. To estimate how much
chances case (1) and (2) hold in practice, we conduct
both theoretical and experimental analysis, detailed in
the following two sections. In real system, the proba-
bility of case 1 and 2 are related to many factors such
as cache size and cache management policy, stripe size
and data layout, workload characteristics and so on. The
sensitivity of TRA without increasing disk access is an-
alyzed in Section 6.3. To simplify our analysis, we con-
sider two numbers–requested stripes and cached stripes
per stripe parity group. For example, if one stripe parity
group includes stripe 0, 1, 2, 3 and P, stripe 1 and P are
cached and stripe 2 is requested in a strip-group request,
the number of requested stripes and cached stripes are 1
and 2 respectively.

4.1.3 Theoretical Analysis

To generalize, given a RAID 5 consisting of � stripes in
each stripe group, among which � is the set of the stripes
currently presented in the cache (let � denote the size of
set � , namely ��� � � �), and the set of stripes in the
current Stripe-Group Request is � (similarly, define � as
� � � � �). Let � be the union of � and � (i.e. �/������� ,
and define � as � � � � �). Then the probability that the
request can be transformed without increasing the num-
ber of disk accesses is 	�
���"��	 ������� + � � . Our
analysis model is based on the following two different
assumptions:
1. The cached stripes are considered discrete, or inde-
pendent to each other. For example, we think that the
following probabilities are equal: 	 ��� ������������� 2 � �
	 ��� � ���������� 2 � �!	 �%�/� ��������0*2 � .
2. The requested stripes must be continuous in terms
of the stripe number. For example, 	 �"� � ��� � ��� � 2 � �
	 ��� � ��� � ��� 2 � �#	 �"� � ��� �$�&% 2 � . � while
	 ��� � ��� � �$� 2 � �'	 ��� � ��� � ���(% 2 � � � . For
example, after mapping the logical request to stripe-
group requests, requests with continuous stripes such as
� � � ��� � ��� � 2 possibly exist while the requests with dis-
crete stripes like � � � ��� � �$� 2 disappear.

To compute the probability 	 �)�*�+� + � � , we break
down the computation like this: 	 �)�,�'� + � � �-/.10 �2�3 � 	 ��� � 	 �)� � ���4� + � � where 	 �)� � is the proba-
bility that there are exactly � out of � + � stripes cur-
rently requested. Accordingly, 	 �)� � �/�5� +�� � means
the probability that � is transformable without increas-
ing disk access under this condition.

To further break it down, we have

	 �)� � �6�7� + � � �
.8

' 3 .10 � 0 2
	 ��� � 	 �)��� � � �6�9� + � �

�
.8

' 3 .10 � 0 2
	 ��� � 	 �)��� � � � �:� + � �

!
.8

' 3 .10 � 0 2
	 ��� � 	 ����� � � � �!� �

Here 	 ��� � means the probability that there is exactly �
out of � stripes being cached for the corresponding re-
quest � , it is irrelevant to the size of the current request
R. Accordingly, 	 ����� � � �;�<� + � � means that under this
condition — both the size of the requested set and the
size of the cached set are given — the probability that
� is transformable without increasing more disk access.
This explains why we start from � �*� + � +6� (if other-
wise, �,!=� �9� + � , there is no way for us to do any re-
quest transform without increasing disk access.). There-

fore we have 	 ����� � � � �4� + � � �?>A@�B&C�B�D@EB&C >GF B�HI@�B&C�B�D"JC> F@and

	 �)��� � � � �*� � � >A@EB&C@EB&C >�F B�HK@EB&CLJC> F@Finally, a general formula to estimate the chance of
TRA is as following.

(I) 	 �)�M�<� + � � � -:.10 �2$3 � ��	 � � � � �:� � �"N !7O � 2
with N/� -/.10 �' 3 .10 2 0 � 	 � � � � � � � > @EB&C�B�D@�B&C >GF B�HK@EB&CPB�D"JC> F@and O � - . ' 3 .�0 2 	 � � � � � � � >G@�B&C@�B&C >GF B�HK@�B&CLJC> F@

.

According to our assumption, when n = 5, for the
parity stripe group ��� � ��� � ��� ���(%&��0 2 , all the possi-
ble Stripe-group Requests are listed as ��� � 2 , ��� � 2 ,
��� 2 , ���&% 2 , ��� � ��� � 2 , ��� � �$� 2 , ��� ���(% 2 , ��� � ��� � ��� 2 ,
��� � �$� ���(% 2 , ��� � ��� � �$� ���(% 2 . Supposing each case
have the same probability to appear, formula (I) can be
simplified as following.
(II) �� @

.1QR.�0 �PS -
.10 �2$3 � - .�0 �' 3UT�V �)�,+W� � � �)�,+W� � � ' 0AQR.10

2 0 �XS2 !

� ' 0AQY.10 2 S2 �[Z
From formula (II), when n is 4, 5, 6 and 7, we can

calculate the probability of TRA without increasing disk
access as 35.42%, 33.75%, 30.31% and 26.34% respec-
tively.

4.2 Power and Redundancy Aware Destage
(PRD)

In RAID 5 system with a built-in-cache in the RAID con-
troller, disk write access is generated only by destag-
ing blocks out of the controller cache. We develop a
cache management scheme called Power and Redun-
dancy Aware Destage (PRD) to collaborate with TRA to
optimize the disk access distribution to a further step.

Mishra et al. [17] found that considerable performance
improvement can be achieved by caching both data stripe
and parity stripe in RAID 5. There are several factors
to be considered in developing a destage algorithm, in-
cluding how to 1) capture most of the rewrites by ex-

6

ploiting the temporal locality in the workload, 2) re-
duce destage number by aggregating physically close
blocks, 3) conduct idleness prediction to reduce the in-
terference between host reads and destage accesses, and
4) reduce destage average time by ordering requests to
the disk [24].

Whether the parity stripes are cached in RAID 5, the
disk update operation usually involves more than one
disk because the parity information is distributed across
multiple disks. If the controller cache does not cache the
parity stripe, every time when a block is written back,
two disks will be accessed, one disk saving this block
and the other hosting the block’s parity information. If
the parity stripe is cached, we can have the following
cases during the block destaging (examples of case 3 and
4 are shown in Figure 3):

P’0’ 1’ 2’

P’0 10’ 1’

P0

5
...

P1
...

4

...

3

9

2

...
8

...
7

1

...

0

6

...

0 1

...

2

...

P0

......

3 4

596 7 8

3

P1
...

4

Case 4:

Case 3:

Figure 3: In the example of case 3, stripe 0, 1 and 2
are dirty in the cache, fetch stripe 3 and 4 from disks to
generate new parity 	�� , then flush 	�� and dirty stripe 0,
1 and 2 to disks. In the example of case 4, stripe 0 and 1
are dirty in the cache, fetch old stripe 0 and 1 from disks
to generate new parity strip 	�� , then flush 	�� and dirty
stripe 0 and 1 to disks.

1. The block is a data block. The old data stripe and old
parity stripe have to be fetched from disks to generate the
new parity information. Thus two disks are involved.
2. The block is a data block. The parity stripe is cached
and clean and sees a full hit. The old data stripe needs
to be fetched from disks to generate the new parity infor-
mation. Only one disk is involved.
3. The block is a data block and more than half of all the
data stripes of the same parity group are dirty in cache.
The other data stripes in the same parity are fetched from
disks to construct new parity information. More than one
disk is involved.
4. The block is a data block and less than half of all the
data stripes of the same parity group are dirty in cache.
All the old data stripes and the parity stripe are fetched
from disks. More than one disk is involved.
5. The block is a data block and all the data stripes of

the same parity group are in cache. The parity informa-
tion are generated immediately, and thus no disk access
is needed.
6. The block is a parity block and flushed back to the
disk. Only one disk is involved.

We may see other possible cases based on various im-
plementation methods of RAID 5. Previous research on
destage algorithms aims to improve performance only,
such as least-cost scheduling, high/low mark, linear
threshold scheduling [24] and etc. Few of them con-
sidered energy consumption as an important trade-off.
Although some cache management policies [28, 25] do
exist and take the energy consumption as a major con-
cern, none of them works at the RAID controller. Thus
none of them see a complete relationship between cached
blocks and disks and lead to certain limitation of energy
conservation.

The main idea of PRD is to destage blocks in which
involved disks are in the low priority group. The low
priority group is defined differently in single-speed disk
based systems and multi-speed disk based systems (We
will discuss them in the following two sections later).
PRD works together with existing performance-oriented
cache replacement algorithms by considering power as
an additional resource trade-off. In our experiments we
combine PRD with LRU as the only cache replacement
policy.

4.3 Single-speed Disks Based EERAID 5

Our goal is to force the disk access distribution to form
long idle intervals on purpose just like what we do in
EERAID 1. The basic operation flow of EERAID 5 is to
select one disk that is least frequently visited as a high-
priority group (high-priority means having good poten-
tials to save energy in near future) and all other disks
as a low-priority group (low-priority means having little
possibility to save energy in near future), redirect all the
requests of high-priority disk to the low-priority group
for some request windows through TRA and PRD. Here
the request window has the same definition as that in
EERAID 1. If the performance has not been degraded
too much, repeat the above procedure. It may be noted
that the least frequently visited disk is selected accord-
ing to the original logical request, that is, without con-
sidering the requests generated by TRA. Otherwise, the
low-priority disk is always the least frequently visited
disk. To redirect all read requests of the high-priority
disk to other disks, we need to allow M (discussed in
Section 4.1) to be any value ranging from 0 to G-1 (G is
the parity group size). The worst case is M equals to G-1.
Fortunately, the worst case does not have a dominant ra-
tio among all cases especially when the average request
size is large. Figure 4 shows the percentage of all cases
of Transformable Read that increases the number of disk

7

accesses in the 6-disk RAID 5 and the 8-disk RAID 5 2.
From Figure 4, we get the average increased disk ac-
cesses are 2.56, 1.86 and 1.67 for six disk’s workload
Small, Half and Full respectively. For 8 disks’ Small,
Half and Full workloads the numbers are respectively
4.37,2.94 and 2.56. With the consideration of spare ser-
vice capacity in server disks, TRA will not be likely to
hurt the overall system performance at all.

6 Disks

0

5

10

15

20

25

30

35

1 2 3 4
Increased Disk Access

P
e
rc

e
n

ta
g

e

Small

Half

Full

8 Disks

0

5

10

15

20

25

30

35

1 2 3 4 5 6

Increased Disk Access

P
e
rc

e
n
ta

g
e

Small

Half

Full

Figure 4: TRA with increasing disk accesses

To develop the TRA algorithm, we investigate the pre-
vious research about disk access patterns in server com-
puting. By studying real traces of cello92 and cello99
collected by HP, David A. Pease [19] found that I/O re-
quests were highly unevenly distributed in a multi-disk
storage system. Cello was a timesharing system used for
simulation, compilation, editing and mail, which had 8
disks in 1992 (cello92) and 20 disks in 1999 (cello99).
In cello92, 3 disk drives account for almost 90% of the
I/Os while 8 drives for about 86% I/Os in cello99. In both
traces, some disks account for less than 1% of the I/Os.
Because of the highly skewed access pattern, it is safe
to employ TRA to convert some requests of high-priority
disks to other data-comparable requests of low-priority
disks even the total number of I/Os may increase after
the transform.

For the performance concern, the request window size
N needs to be dynamically adjusted the same as we do in
EERAID 1. How the TRA and PRD work in EERAID 5
is detailed in Algorithm 2, as shown in Table 4.3 where
the parameters N, ������� , � 	����� and p follow the same
definitions in Algorithm 1. We apply the same policy to
spin-down disks as that in EERAID 1 employing single-
speed disks, spinning down the high-priority disk when
N is large enough and ramping it up near the end of the
request window.

2Figure 4 is drawn by feeding synthetic traces into our storage sim-
ulator employing TRA. Small, Half and Full mean the average request
size are one stripe, half of the parity group and a whole parity group
respectively. The synthetic workload generator is configured with 60%
read request ratio and 20% sequential requests according to the typical
UNIX workload [22]. The RAID controller cache size is 10 MB.

Algorithm 2: EERAID 5 (TRA + PRD)

(1) Get T without using TRA and PRD
for � ����� requests;

(2) � ��� ;
(3) for (c = 0; ��� � ����� ; c++)
(4) �
(5) if ��� ��� ������� � � �"!#��	$��%� ;
(6) chose the least frequently visited disk as the

high-priority group;
(7) set all other disks as the low-priority group

apply TRA and PRD for N requests;
(8) calculate the average response time &('

of the above N requests;
(9))�& � &*',+-& ;
(A) if()�& . 0) goto (1);
(B) 2
(C) goto (1);

4.4 Multi-speed Disks based EERAID 5

As we discussed before, multi-speed disks are proposed
to save energy even the idle interval period is not as long
as tens of seconds. A small idle interval (e.g. hundreds
of milliseconds) can still be utilized well by multi-speed
disks. Consequently, we do not have to spin down a disk
to standby to save energy, since scaling the disk down to
a low speed can conserve energy anyway. Based on this
principle, we develop a new scheduling scheme by ex-
tending the policy used in EERAID 5 employing single-
speed disks. In more detail, the definition of a group pri-
ority is decided by current power mode of the disk and
TRA will not generate extra disk I/Os during the trans-
form, namely M is set as either zero or one. Figure 5
shows an example of how the multi-speed disks take ad-
vantage of short idle intervals and how TRA and PRD
introduce longer idle intervals in EERAID 5. The X axis
shows the system time in seconds while the Y axis shows
power state of the disk.

In this example, a multi-speed disk checks its request
queue every two seconds. If the request queue length is
zero, it will spin down its speed by one step. The multi-
speed disk has to ramp up to a full speed before it ser-
vices any request. At second 0, disk 1 is in a high power
mode (high RPM speed) and servicing requests from sec-
ond 0 to second 6. Disk 4 is in a low power mode (lower
RPM speed). In scenario (a), TRA and PRD are not em-
ployed. Assuming a disk read request (r4) of disk 4 ar-
rives near second 2 while a destage request (d4) of disk
4 comes near second 4. Even the disk 4 request queue is
empty, it cannot be spun down because it is servicing the
request r4. It still can not be spun down at second 4 be-
cause of another request d4 arrival. In scenario (b), TRA
is employed. Let TRA convert r4 to r1, a read request

8

Disk 4

(b)

(a)

(c)

d4r4
2 4 60

0 2 4 6
r4−>r1 d4

420 6
r4−>r1

p

Disk 1
Disk 4

Disk 4
Disk 1

p

Disk 1

p

t(s)

t(s)

t(s)

Figure 5: Short Idle Intervals Generated by TRA and
PRD

of disk 1, then disk 4 can spin down one step at second
2. But it has to ramp up again to service d4. In sce-
nario (c), both TRA and RPD are employed, ideally, r4
is converted to r1 and d4 is replaced by another destage
request of other disks because disk 4 is in a lower power
mode compared to other disks (at least lower than that of
disk 1). Comparing three scenarios, in an EERAID 5 em-
ploying both TRA and PRD, we may possibly spin down
disks step by step, keep them to stay at a lower speed
for a longer time, reduce the ramp-up overhead and thus
save maximum energy.

5 Experimental Methodology

To test the EERAID design, we develop a set of com-
prehensive trace-driven, disk array simulators based on
Disksim [3] incorporating validated power models [1,
10] Two real-world traces and several synthetic traces
well emulating server environment are carefully chosen
to drive the simulation experiments.

5.1 Disk Power Model

We choose a power model of IBM Ultrastar 36Z15 [1]
for the single-speed disk array specification while us-
ing the multi-speed power model in reference [10] to set
up multi-speed disk array. The detailed parameters are
shown in Table 1.
5.2 Traces
Different servers have various I/O workloads with di-
verse characteristics, such as average request arrival in-
terval, request size, request burstness, etc. In order to
evaluate real effects of EERAID, we chose to feed dif-
ferent kinds of synthetic workloads into EERAID 1 and
EERAID 5 under a wide spectrum of conditions. Based
on the server disk trace study of reference [22], in this pa-
per, all workloads consist of 60% read requests and 20%

Table 1: Disk Power Model
Parameters Value

Common Disk Parameters
Individual Disk Capacity 18.4 GB

Max. Disk Rotation Speed 15000 RPM
Idle Power at 15000 RPM 10.2 W

Active Power at 15000 RPM 13.5 W
Seek Power at 15000 RPM 13.5 W

Standby Power 2.5 W
Spin-up Power 13.5 W
Spin-up Time 10.9secs.

Spin-down Time 1.5 secs.
Disk-Arm Scheduling Elevator

Multi-speed Disk Parameters

Power Model Type Quadratic
The number of Power Modes 15

Minimum Disk Rotation Speed 1000 RPM
RPM Step-Size 1000 RPM

of all requests are sequential without explanation. We set
8 KB as the average request size. According to their aver-
age interval-arrive time, these synthetic traces are named
5-ms, 10-ms, 50-ms, 100-ms and 200-ms respectively.
In addition, we selected two real-world server-side disk
traces to perform further tests. One is from the cello96
trace suite 3 that is collected from the “cello” server over
the period from 9 September to 29 November 1996. Dur-
ing that collection time, cello was a K410 class machine
(2 CPUs) running HP-UX 10.10, with about 0.5 GB of
main memory. The other trace is TPC-C20 4 running
TPC-C database benchmarks with 20 warehouses. In this
paper without specification, we configure a six-disk pri-
mary group and a six-disk mirror group in RAID 1 and
a six-disk RAID 5. However, there are 20 disks and 2
disks in Cello96 and Tpcc traces respectively. When we
use Cello96 trace, we select requests out of six busiest
disks. For Tpcc trace, we compressed a three-hour pe-
riod trace into one-hour using round-robin and then pro-
duced a six-disk RAID trace. The characteristics of both
real traces are listed in Table 2.

Table 2: Trace Characteristics
Trace Cello96 Tpcc

Average Request Size 4.16 KB 45.96 KB
Average Inter-arrival Time 9.71 ms 25.50 ms

Reads 65.51% 75.07%

3http://tesla.hpl.hp.com/public software
4http://tds.cs.byu.edu/tds/index.jsp

9

5.2.1 Simulators and RAID Configuration

To evaluate different levels of EERAID, we develop four
simulators: EERAID1-sp, EERAID5-sp (for EERAID
1 and EERAID 5 employing single-speed disks),
EERAID1-mp and EERAID5-mp (for EERAID 1 and
EERAID 5 employing multi-speed disks). EERAID1-sp
and EERAID5-sp are developed based on Disksim simu-
lators [3] with a single-speed-disk power model and sep-
arate EERAID scheduling policies additionally imple-
mented. The conventional RAID deploying single-speed
disks is chosen as the baseline for single-speed based
EERAID. To test the multi-speed-disk based EERAID,
we chose DRPM as a baseline system developed by
Gurumurthi et al. [10], which is called PureDRPM in
this paper. Similarly, we developed EERAID1-mp and
EERAID5-mp based on Disksim [3] and incorporated
the multi-speed-disk power model in reference [10],
along with separate scheduling policies.

Shortest Queue is deployed in RAID 1 systems. In
RAID 5 systems, the stripe size is 8 KB and the data
layout is left-symmetric. The RAID controller cache
size is 64 MB and both the data stripe and parity stripe
are allowed to be cached. The cache replacement algo-
rithm is LRU in PureDRPM while PRD combined with
LRU is adopted in EERAID 5. To dynamically adjust
the request-window size, we set six to be the maximum
window cycle. The maximum window size and step size
are 1000 and 200 for traces 50-ms, 100-ms and 200-ms.
While for traces 5-ms, 10-ms, Cello96 and Tpcc, the
maximum window size and step size are 10000 (2000),
5000 (1000), 5000 (1000), 2000 (500) because they are
more I/O intensive. We want to guarantee that EERAID
can form idle intervals long enough to shut down and
ramp up single-speed disks. The performance degrada-
tion threshold is set to be 9%.

6 Experimental Results and Analysis

6.1 Energy Savings

Table 3 shows the results of energy savings of
five systems (PureDRPM, EERAID1-sp, EERAID1-mp,
EERAID5-sp and EERAID5-mp) compared to the cor-
responding RAID system without any energy-efficient
policy. Here PD, 1-sp, 1-mp, 5-sp and 5-mp represent
PureDRPM, EERAID1-sp, EERAID1-mp, EERAID5-sp
and EERAID5-mp respectively. The number within a
parentheses in columns 1-sp, 1-mp, 5-sp and 5-mp rep-
resents the performance (in terms of average request re-
sponse time) impact calculated by comparing the per-
formance of single-speed disk based EERAID to that
of conventional RAID, or comparing multi-speed disks
based EERAID to PureDRPM. We will discuss the per-
formance impact in the next section.

From Table 3 we can see that, for single-speed based
RAID 1 system, EERAID1-sp can save more energy with
the increasing average request inter-arrival time. More
than 30% energy is saved in the workload 200-ms while
6% energy can still be conserved in the I/O intensive 5-
ms trace though there are not much opportunities to shut
down a whole group. For the same reason, EERAID1-
sp obtains more energy savings from the real trace Tpcc
than it does from Cello96. For multi-speed based RAID
1 system, 50% is no longer to be the upper bound. By ap-
plying WRR and PDF, EERAID1-mp can generate much
longer idle intervals than PureDRPM since PureDRPM
cannot change the request inter-arrival time on purpose.
This proves the WRR and PDF in EERAID 1 works ex-
tremely well. In all the traces, EERAID1-mp consis-
tently achieves better energy savings than PureDRPM.
The extra energy savings is up to 22% with the best gain
in the trace 100-ms, compared to PureDRPM. The best
energy savings is around 74% in the least I/O intensive
trace 200-ms.

Compared with RAID 1, less energy is saved in the
single-speed disk based RAID 5 system. Because of
the intensive I/O pattern and TRA chance limitation,
EERAID5-sp can save at most 11% energy in the light-
est workload 200-ms. However, EERAID5-sp can still
save energy by 3.6% even for the heaviest workload 5-
ms. This indicates the TRA and PRD performs well for
EERAID 5. EERAID5-mp is designated to form long
idle intervals for current low-power-state disks, but in
most cases the average idle interval is not as long as that
generated by EERAID1-mp. The reason is that RAID
1 includes a 100% redundancy, which provides a larger
scheduling space than that of RAID 5 exhibiting a 1/G
redundancy for the redundancy-aware, power-efficient
scheduling schemes. Thus, EERAID5-mp achieves less
extra energy savings than that of EERAID1-mp. The
most extra energy savings obtained by EERAID5-mp is
9%, compared to PureDRPM.

6.2 Performance Impact

EERAID deploys new request scheduling policy (WRR
and TRA), cache management policy (PRF and PRD)
and disk spin-down scheme (for the single-speed disk).
The read request scheduling policies of EERAID always
try to direct read requests to some disks (busy group) and
let other disks (idle group) have more or longer idle inter-
vals in a request-window. By this way, the workload of
the busy group is increased and the response time might
be stretched. This is why we want to control the request-
window size and adjust it step by step. Like the read
request scheduling policies, the cache management poli-
cies aim to kick out cache lines linked with busy disks
in order to grant the idle group (or low power state)
disks longer idle interval. It is possible that this kind

10

Table 3: Energy Savings and Performance Impact
Trace RAID 1 RAID 5

Single-Speed Disk Multi-speed Disk Single-speed Disk Multi-speed Disk
1-sp PD 1-mp 5-sp PD 5-mp

5-ms 6.50% (-8.65%) 9.11% 9.13% (-7.14%) 3.61% (-6.26%) 10.06% 10.50% (-3.93%)
10-ms 12.55% (-10.09%) 16.17% 16.24% (-3.30%) 7.93% (-5.64%) 16.27% 16.87% (-1.46%)
50-ms 24.51% (-5.29%) 21.99% 37.85% (-0.38%) 8.81% (-4.13%) 21.45% 37.02% (-0.44%)

100-ms 28.46% (-3.71%) 31.95% 54.47% (+1.27%) 10.31% (-2.94%) 41.54% 44.91% (+2.21%)
200-ms 30.43% (-3.36%) 55.02% 74.63% (+5.11%) 11.04% (-2.32%) 55.03% 64.09% (+4.25%)
Cello96 7.12% (-9.63%) 10.18% 10.51% (+1.18%) 3.06% (-5.69%) 3.77% 4.24% (-3.60%)

Tpcc 20.14% (-4.45%) 15.43% 24.68% (+5.33%) 7.70% (-3.10%) 24.10% 25.79% (+2.87%)

of power-aware replacement policies break the locality
of the cached data. Some blocks, which would other-
wise seldom be accessed, may have a chance to stay in
the cache for a long time because their disks are in idle
group (or low power state). These blocks may pollute the
cache and thus the system performance may be degraded.
Our disk shut-down policies are simple. The disk is shut
down to standby when we detect that EERAID will in-
cur a long idle time. We will ramp the disk up when we
predict it will not be in the idle group in the near future.
However, we cannot guarantee that there is no request
coming for the standby disk before we ramp it up. The
RAID controller cannot have an infinite cache, so some-
times it has to look for a cache line of the standby disk
as victim because the controller cannot find other cache
lines of busy disks to evict. We will study the impact of
the cache size in Section 6.3. When a standby disk has
to ramp up to serve a request, the response time of this
request is significantly stretched.

From Table 3, we can see that the performance degra-
dation is controlled well by EERAID 1-sp under light I/O
workloads. For example, in a 10-ms workload, the degra-
dation is 10% while with 8% in the trace 5-ms. This is
because EERAID 1 has less chances to run WRR in a
5-ms trace period. EERAID1-sp has less performance
degradation in Tpcc than Cello96 because Cello96 is a
much more intensive workload than Tpcc, with around
two times more new requests arrival per second. Be-
cause multi-speed disks have much shorter spin-up time
than single-speed disks, in I?o intensive workloads 5-
ms and 10-ms, EERAID1-mp has less degradation than
EERAID1-sp. But for light workloads 50-ms, 100-ms
and 200-ms, EERAID1-mp achieves better performance
than PureDRPM because the switch frequency between
different disk speeds are reduced by WRR. WRR is
meant to increase the request burstness and optimize the
disk request distribution. The performance degradation
of EERAID5-mp is not as much as EERAID5-sp because
EERAID5-mp shuts down one disk each time. For both

EERAID5-sp and EERAID5-mp, they obtain less perfor-
mance degradation in Tpcc than that in Cello96 while
EERAID5-mp even improves the performance by 3%.
The reason is that Tpcc has a longer inter-arrival request
time. In addition, Tpcc has a larger average request size
and better locality than those of Cello96, which can help
facilitate the TRA job.

In summary, the performance of EERAID will not be
compromised much under heavy I/O workloads because
of our dynamic performance control policy and will be
improved by up to 5% under light server workloads.

6.3 Sensitivity study

6.3.1 RAID Size

Since RAID size may be varied by diverse applications, it
is important to study how well EERAID1 and EERAID
5 work for different sized RAID. We study the impact
of RAID size on the energy savings and performance
of EERAID based on single-speed disks. To conduct
experiments, we set the RAID size as 4, 6, 8 and 10
disks and choose the synthetic trace 50-ms as workloads.
Figure 6 shows the sensitivity results of the RAID size.
As we can tell, EERAID1-sp achieves more energy sav-
ings and less performance degradation with the increas-
ing RAID size. The reason is that, the average request
inter-arrival time of each disk becomes longer in RAIDs
with more disks (suppose requests are evenly distributed)
and thus EERAID1-sp has more chances to shut down a
disk group. While the energy savings is consistently re-
duced for EERAID5-sp due to the augmented RAID size.
In EERAID5-sp, at any point, at most one disk can be
shut down. Therefore, the bigger the RAID size, the less
energy can be saved. However, the performance degra-
dation is not as sensitive to the RAID size as energy sav-
ings. We already know that given a specific workload,
the cost of TRA will be more expensive in the larger-
sized RAID system. But at the same time, the idle ratio
of the disk will also be increased. As a result, the impact
of the increasing TRA cost is mitigated.

11

0

5

10

15

20

25

30

35
P

e
rc

e
n
ta

g
e

4 6 8 10

Disk Number

EERAID1-sp

Energy Saving

Performance Degradation

0

2

4

6

8

10

12

14

P
er

ce
n

ta
g

e

4 6 8 10

Disk Number

EERAID5-sp

Energy Saving

Performance Degradation

Figure 6: Sensitivity of RAID Size

6.3.2 Cache Size

As discussed in the above section, if the controller has
an infinite cache, the effect of cache pollution can be
removed. We conducted experiments in conventional
RAID 1 systems and found the cache hit rates of Cello96
and Tpcc were 12.95% and 61.17% respectively. By run-
ning both traces in EERAID 1, we found the hit rate de-
creased by 2 5%. By applying an infinite cache to the
RAID controller, the cache hit rate of Cello96 and Tpcc
are improved to 39.78% and 74.23% respectively. The
energy savings of both traces are increased by a factor of
2 to 4. For each disk, the average request interval-arrival
time is decreased by the factor of 7.84 for Cello96 and
3.08 for Tpcc. As a result, we can draw the conclusion
that, increasing the cache size will result in the stretched
average request inter-arrival time.

4
6

8
12

Small

Half

Full

0
5

10
15
20

25

30

35

40

45

50

P
e
rc

e
n
ta

g
e

Parity Group Size

10 MB Cache

4
6

8
12

Small

Half

Full

0
5

10
15

20

25

30

35

40

45

50

P
e
rc

e
n
ta

g
e

Parity Group Size

Infinite Cache

Figure 7: Sensitivity of TRA Chances

In addition, we study whether the cache size has sig-
nificant impact on the chances of TRA without increas-
ing disk access. We configure a RAID 5 systems with 4,
6 and 8 disks respectively. We select 50-ms as the work-
load and vary its average request size as Small, Half and
Full. All RAID 5 systems have two configuration stud-
ies with a 10 MB cache and an infinite cache. We col-
lected results of the chances of TRA (without increasing
disk access) under there different cache size, disk num-

bers and average request sizes in Figure 7. As seen from
Figure 7, there is little difference (� ���

) of the results
between a RAID 5 with 10 MB cache and the one with
an infinite cache. The chance of TRA without increasing
disk access is more sensitive to the average request size
and parity group size (here it equals the number of disks)
instead of the cache size.

6.3.3 Workloads

Other factors that affect the energy savings of EERAID
include the read ratio and average request size of the
workload. We did the experiment using trace 50-ms and
varied the read ratio as 0.2, 0.6 and 1.0 to examine the
changes of energy savings. The results are normalized to
the result of 50-ms with 0.2 read ratio. In addition, we
fix the read ratio as 0.6 and vary the average request size
to be Small (8 KB), Half (24 KB) and Full (48 KB). The
energy savings results are normalized to that of Small.
All the tested RAID systems have the same configura-
tion as that described in Section 5.2.1. Figure 8 gives
the changes of energy savings. As seen from the left part

Sensitivity to the Read Ratio

0

1

2

3

4

5

6

7

8

EERAID1-sp EERAID1-mp EERAID5-sp EERAID5-mp

P
e
rc

e
n

ta
g

e

Read Ratio 1.0

Read Ratio 0.6

Sensitivity to the Average Request Size

0

0.5

1

1.5

2

2.5

3

3.5

EERAID1-sp EERAID1-mp EERAID5-sp EERAID5-mp

P
e
rc

e
n
ta

g
e

Average Request Size: Half

Average Request Size: Full

Figure 8: Sensitivity of Read Ratio and Ave. Req. Size

of Figure 8, EERAID 1 is more sensitive to the read ra-
tio than EERAID 5. Because of the limited cache size,
the smaller the read ratio, the less disk write operations.
When the workload has a higher write ratio, there are
more dirty cache lines in the controller cache. The prob-
ability of flushing back the cache lines that belong to the
idle disk becomes higher and the idle interval period of
the idle disk is shorten correspondingly. For the same
workload, the probability in EERAID 5 is not as high as
that in EERAID 1. The reason is that in EERAID5-sp,
there is only one disk in the high priority group and it is
possible to find dirty cache lines that belong to the low
priority disks. Compared to EERAID 1, the idle inter-
vals in EERAID5-mp are much shorter. The right part
of Figure 8 tells us that EERAID 5 is more sensitive to
the average request size than EERAID 1. More energy
can be conserved as we increase the average request size
and thus increasing the chance of TRA without increas-
ing disk access in EERAID 5.

12

7 Related work

Dynamic disk power management research has been ex-
tensively conducted in recent years. A lot of work have
been done on investigating how to select thresholds to
switch the disk between different power modes [8, 9,
13, 14]. Usually good power-efficient scheduling poli-
cies for a single disk are not suitable for the server stor-
age system because the idleness period is too short for
the disk to spin down and spin up [4, 11]. Some re-
searchers have studied how to save energy for server disk
storage system. Colarelli et al. [7] used “cache disks”
to cache active files/blocks, allowing other disks to spin
down. How to conserve energy on network servers has
also been studied in references [12, 21]. Pinheiro and
Bianchini presented a Popular Data Concentration (PDC)
scheme to save energy for network servers. PDC aims to
skew the load toward a few of all the disks, so that oth-
ers can be transitioned to low-power modes by migrating
frequently accessed data to a subset of the disks [20].
All of the above-mentioned techniques do not work at
the RAID system level and thus ignore the details among
various disk array organizations. As a result, their ap-
proaches either do not work well for making wrong as-
sumptions or could not achieve the best energy-saving.
EERAID is able to exploit redundant information to di-
rectly optimize the disk access distribution by converting
requests from one low-power state disk to other high-
power state disk(s). Thus, much more energy savings is
attained without compromising system performance.

There are other research works done in disk power
modeling. Greenawalt presents a purely analytical model
assuming requests arrive according to a Poisson distribu-
tion [9]. Zedlewski et al. [26] developed Dempsey, a disk
simulation framework used to conduct accurate model-
ing on disk power consumption, including the power
consumption estimation on every disk stage. Some re-
searchers studied how to realize I/O power-efficiency at
the operating system level. Zeng et al. developed an
ECOSystem in Linux host OS [27], which unified en-
ergy accounting over diverse hardware components and
enabled fair allocation of available energy among appli-
cations. Their focus is on the entire OS level rather than
specific I/O devices. Lu et al. [14] presented a design
that allowed the applications to be involved in energy
management. Several new system calls were introduced
to enable applications to inform OS about future hard
disk requests. The Coop-I/O approach [25] is presented
to reduce the power consumption of devices encompass-
ing all levels in the computer system, from the hardware
and OS to a new API used by energy-aware applications.
Their design is not compatible to current UNIX-like file
systems. EERAID design is orthogonal to the above ap-
proaches. With the combination of the above schemes,

EERAID can make the storage system more power effi-
cient.

Different levels of RAID performance have been ex-
tensively researched [6]. RAID 1 and RAID 5 are two
widely used RAID organizations. Chen et al. [6] stud-
ied the design issues, the development of mathematical
models and examined the performance of different disk
array architectures. The performance of several dispatch-
ing policies were compared [6]. Write-back caching is a
commonly adopted solution to improve the performance
RAID 5. Mishra et al. [17] showed a considerable perfor-
mance improvement can be gained by caching both data
stripe and parity stripe in RAID 5 system. Many destage
algorithms meant to achieve high-performance have been
proposed such as least-cost scheduling, high/low mark
and linear threshold scheduling [24]. However, none of
them took the energy consumption as a separate trade-off
resource.

8 Conclusions

In this paper, we develop novel energy-efficient RAID
system architecture called EERAID to significantly save
energy by taking advantage of RAID redundant informa-
tion. To give a proof-of-concept solution, we develop
new I/O scheduling and controller-level cache manage-
ment schemes for EERAID 1 and EERAID 5 respec-
tively. EERAID 1 employs two new policies–Windows
Round-Robin (WRR) and Power and Redundancy-
Aware Flush (PRF) while EERAID 5 employs another
two novel schemes–Transformable Read (TRA) and
Power and Redundancy-aware Destage (PRD).

A set of comprehensive trace-driven simulation ex-
periments have been conducted by replaying two real-
world server disk traces and wide spectrum server-side
synthetic traces. Experimental results showed that 1)
For single-speed disks, EERAID 1 can achieve up to
30% energy savings and 11% by EERAID 5, and 2) For
multi-speed disks, compared with DRPM, EERAID 1
can achieve 22% extra energy savings and 11% more for
EERAID 5. In all experiments, there is either better per-
formance gain or little performance degradation.

References

[1] IBM Hard Disk Drive - Ultrastar 36Z15.
http://www.hitachigst.com/hdd/ultra/ul36z15.htm.

[2] Power, heat, and sledgehammer. White paper, maxi-
mum Institution Inc., http://www.max-t.com/downloads/
whitepapers/SledgehammerPowerHeat20411.pdf, 2002.

[3] J. S. Bucy and G. R. Ganger. The disksim simulation envi-
ronment version 3.0 reference manual. Technical Report
CMU-CS-03-102, Carnegie Mellon University, School of
Computer Science, Jan. 2003.

13

[4] E. V. Carrera, E. Pinheiro, and R. Bianchini. Conserving
disk energy in network servers. In Proceedings of the
2003 International Conference on Supercomputing (ICS-
03), pages 86–97, New York, June 23–26 2003. ACM
Press.

[5] P. M. Chen, E. L. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson. RAID : High-performance, reliable secondary
storage. ACM Computing Surveys, 26(2):145–185, June
1994.

[6] S. Chen and D. Towsley. A performance evaluation of
RAID architectures. Technical Report UM-CS-1992-067,
Departement of Computer Science, University of Mass-
chusetts, Amherst, MA 01003 USA, 1992.

[7] D. Colarelli and D. Grunwald. Massive arrays of idle
disks for storage archives. In SC’2002 Conference
CD, Baltimore, MD, Nov. 2002. IEEE/ACM SIGARCH.
pap312.

[8] F. Douglis, P. Krishnan, and B. Bershad. Adaptive disk
spin-down policies for mobile computers. In Proceed-
ings of the 2nd Symposium on Mobile and Location-
Independent Computing (MLICS’94), pages 121–137,
Berkeley, CA, USA, Apr. 1995. USENIX Association.

[9] P. Greenawalt. Modeling power management for hard
disks. In Proceedings of the Symposium on Modeling
and Simulation of Computer and Telecommunication Sys-
tems(MASCOTS 1994), pages 62–66, Jan. 1994.

[10] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. DRPM: dynamic speed control for power
management in server class disks. In D. DeGroot, edi-
tor, Proceedings of the 30th Annual International Sym-
posium on Computer Architecture (ISCA-03), volume 31,
2 of Computer Architecture News, pages 169–181, New
York, June 9–11 2003. ACM Press.

[11] S. Gurumurthi, J. Zhang, A. Sivasubramaniam, M. Kan-
demir, H. Franke, N. Vijaykrishnan, and M. J. Irwin. In-
terplay of energy and performance for disk arrays running
transaction processing workloads. In Performance Anal-
ysis of Systems and Software (ISPASS), pages 123–132,
Mar. 2003.

[12] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and R. Bian-
chini. Self-configuring heterogeneous server clusters. In
Proceedings of the Workshop on Compilers and Operat-
ing Systems for Low Power (COLP), Sept. 2003.

[13] D. P. Helmbold, D. D. E. Long, and B. Sherrod. A dy-
namic disk spin-down technique for mobile computing.
In Mobile Computing and Networking, pages 130–142,
1996.

[14] Y.-H. Lu and G. D. Micheli. Adaptive hard disk power
management on personal computers. In Proceedings of
the IEEE Great Lakes Symposium, pages 50–53, Mar.
1999.

[15] J. Menon and J. Cortney. The architecture of a fault-
tolerant cached RAID controller. In Proceedings of the
20th Annual International Symposium on Computer Ar-
chitecture, pages 76–86, San Diego, California, May 17–
19, 1993. ACM SIGARCH and IEEE Computer Society
TCCA.

[16] J. Menon and D. Mattson. Performance of disk arrays
in transaction processing environments. In 12th Inter-
national Conference on Distributed Computing Systems
(ICDCS ’92), pages 302–309, Washington, D.C., USA,
June 1992. IEEE Computer Society Press.

[17] S. K. Mishra and P. Mohapatra. Performance study of
RAID-5 disk arrays with data and parity cache. In Pro-
ceedings of the 25th International Conference on Paral-
lel Processing, volume I, Architecture, pages I:222–229,
Boca Raton, FL, Aug. 1996. CRC Press. Iowa State.

[18] A. E. Papathanasiou and M. L. Scott. Energy efficient
prefetching and caching. In Proceedings of USENIX An-
nual Technical Conference, 2004.

[19] D. A. Pease. Unix disk access patterns revisited. Techni-
cal report, Department of Computer Science, Unviersity
of California Santa Cruz.

[20] E. Pinheiro and R. Bianchini. Energy conservation tech-
niques for disk array-based servers. In Proceedings of the
18th International Conference on Supercomputing, June
2004.

[21] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath.
Load balancing and unbalancing for power and perfor-
mance in cluster-based systems. In Proceedings of the
Workshop on Compilers and Operating Systems for Low
Power COLP’01, Sept. 2001.

[22] C. Ruemmler and J. Wilkes. UNIX disk access patterns.
In Usenix Conference, pages 405–420, Winter 1993.

[23] D. Stodolsky, G. Gibson, and M. Holland. Parity log-
ging: Overcoming the small write problem in redundant
disk arrays. In Proceedings of the 20th Annual Interna-
tional Symposium on Computer Architecture, pages 64–
75. IEEE Computer Society Press, May 1993.

[24] A. Varma and Q. Jacobson. Destage algorithms for disk
arrays with non-volatile caches. In H. Jin, T. Cortes, and
R. Buyya, editors, High Performance Mass Storage and
Parallel I/O: Technologies and Applications. IEEE/Wiley
Press, New York, 2001. chap. 10.

[25] A. Weiel, B. Beutel, and F. Bellosa. Cooperative io - a
novel io semantics for energy-aware applications. In Pro-
ceedings of the Fifth Symposium on Operating Systems
Design and Implementation (OSDI ’02), Boston, MA,
Dec. 2002.

[26] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishna-
murthy, and R. Wang. Modeling hard-disk power con-
sumption. In Proceedings of the Second Conference on
File and Storage Technologies FAST’03, pages 217–230,
Mar. 2003.

[27] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat.
ECOSystem: managing energy as a first class operating
system resource. ACM SIGPLAN Notices, 37(10):123–
132, Oct. 2002.

[28] Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou, and
P. Cao. Reducing energy consumption of disk storage
using power-aware cache management. In Tenth Interna-
tional Symposium on High Performance Computer Archi-
tecture (HPCA-10), Madrid, Spain, Feb. 14–18, 2004.

14

