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ABSTRACT 

 
 
 
 

The rising cost of energy is becoming a concern beyond mobile computing platforms.  

Server-class computers cannot simply consume more power, since increased energy 

consumption translates into more heat dissipations, more cooling requirements, reduced 

computational density, and higher operating costs. 

For a typical data center, storage alone accounts for 27% of the energy consumption, 

making storage an important target for energy reduction.  Unfortunately, conventional server-

class RAIDs are not designed for saving power, because loads are balanced in such a fashion that 

they require the use of all disks in the array for even light system loads. 

This work introduces the Gear-Shifting Power-Aware RAID (PARAID), which reduces 

energy in server-class computing while retaining performance and reliability.  The design of 

PARAID uses a skewed striping pattern to adapt to the system load by varying the number of 

powered disks.  By powering off disks during periods of light load, PARAID can reduce the 

power consumed by a comparable conventional RAID device by 23%.  By matching the number 

of powered disks to the system load, PARAID can also demonstrate request completion time and 

latency comparable to conventional RAID. 
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CHAPTER 1 

1INTRODUCTION 

 
 
 
 

1.1 Motivation 

 
Energy consumption is an issue for many types of technology.  The increasing cost of oil is 

making the consumption of gasoline by automobiles a concern.  The energy consumed by 

computer technology has become just as much of a concern as the amount of gas burned in 

automobiles because the cost per MIPS is declining according to Moore’s law, but the cost of 

electricity is increasing.  Therefore, as computing becomes more affordable and ubiquitous, 

energy cost is poised to become a dominating fraction of owning and operating a computer.  

The disk remains a significant source of power usage.  In web servers, the disk typically 

accounts for 24% of the power usage; in proxy servers, 77% [2, 12].  Storage devices can 

account for as much as 27% of the operating cost in a typical data center [27].  The energy spent 

to operate servers in a data center has a cascading effect on other operating costs.  Greater energy 

consumption leads to more heat dissipations, which in turn leads to greater cooling requirements 

[16].  The combined effects of energy consumption and heat also limit the density of computer 

racks.  The lower density of computers leads to more space requirements, thus higher operating 

costs.  The total cost of ownership in server-class computing can be significantly decreased by 

improving energy efficiency in server-class storage devices. 

Approaches to reducing the energy consumption in disks have been explored, but most 

are achieved at the expense of degrading performance.  Popular approaches involve trading off 

performance directly, such as reducing the rotational speed of the disk, causing read/write 
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requests to be slower [1, 2, 12, 19].  Not until recently have new approaches started to emerge to 

achieve both goals [4, 17].   

Introducing power-saving techniques on server-class disks is challenging, because the 

performance and reliability introduced by conventional RAIDs must be maintained in order for a 

solution to be practical for commercial use.  Conventional RAIDs balance the load across all 

disks in the array for maximized disk parallelism and performance [19].  To reduce power, a 

RAID device cannot simply power off disks and use caching.  The load balancing in RAIDs 

keeps all disks spinning even when the server load is light.  To be able to reduce power 

consumption, the individual disks in the array must be able to be powered on and off.   

Frequent power cycles reduce the life expectancy of a disk due to their wear and tear on 

mechanical disks.  When the life expectancy of the disk is reduced, the RAID device becomes 

significantly less reliable.   

This thesis introduces the Gear-Shifting Power-Aware RAID (PARAID), which 

overcomes power, performance, and reliability challenges in server-class RAID devices.  

PARAID introduces a skewed striping pattern, which allows RAID devices to use just enough 

disks to meet the system load.  PARAID can vary the number of powered disks by gear shifting 

sets of disks, giving PARAID the opportunity to reduce power consumption.  PARAID has 

shown that power can be saved with limited degradations in performance and reliability.  In 

respect to a comparable conventional RAID, PARAID can reduce the amount of power 

consumption on average by 23%, while maintaining comparable performance numbers. 

 

1.2 Observations 

 
Three fundamental observations drive the design of the PARAID:  

Over-provisioned resources:  When a system is not under peak load, disk load balancing 

over-provisions resources.  A RAID device consists of an array of disks.  To reduce the power 

consumption in a RAID effectively, all or some of its disks must be powered off.  Conventional 

RAIDs use a uniform striping pattern that balances load on the array of disks. The balanced load 

allows a RAID device to maximize disk parallelism and performance.  This uniformity makes 

data management simple and allows all disks to be accessed in the same way.  Its built-in load 

balancing also ensures that no disk becomes a bottleneck.   
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However, load balancing created by a uniform striping pattern provides significantly 

fewer opportunities to power off disks because it requires all disks in the array to be powered on 

to serve a file.  This means that when the server is under light load, all disks have to remain 

powered, even though a smaller array of disks could adequately handle the load.  Load balancing 

leads to an over-provisioning of resources when the system is not under peak load. 

Unused storage space:  Increasingly, storage capacity is outgrowing its demands, and not 

all the storage space on a RAID device is used.  Due to the 100% increase per year in aerial 

density of storage and the exponential drop in the storage pricing, researchers are increasingly 

looking for creative ways to consume the unused storage.  For example, a work at Princeton 

explores trading off capacity for performance [26].  The Elephant file system also explores the 

possibility of storing every version of file updates [24].   

Additionally, administrators tend to purchase more space in advance to avoid frequent 

upgrades [10].  Because of this overcompensation, storage space is left unused, which could be 

used opportunistically.  This space could be used for data block replication or for some other 

storage to help reduce power consumption. 

Cyclic fluctuating load:  Many system loads display daily cyclic fluctuations.  A 24-hour 

period of academic web traffic load displays activity as a bell curve with the afternoon being at 

the curve crest, reflecting students’ schedules.  Depending on the types of traffic, different 

systems may exhibit different cyclic patterns, with varying ranges of light to high loads over the 

course of a day [13].   

The design of conventional RAIDs does not take advantage of this fluctuating load.  In 

fact, conventional RAIDs provide the same level of performance regardless of system demands.  

Under periods of light load, a conventional RAID will have all of the disks powered even though 

a fraction of those disks could handle the load.  This is certainly an opportunity lost. 

 

1.3 Thesis 

 
This thesis hypothesizes that by using a novel data distribution technique, it is possible to 

achieve energy savings while preserving performance.  To do this, the PARAID design needs to 

provision resources according to fluctuating workloads.  Since performance degradation is not an 

option for servers, PARAID, at the minimum, needs to strive to preserve peak performance.  
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PARAID should also take advantage of any unused space to conserve energy.  Strategic data 

redundancy techniques can be used to create opportunities to power off disks.  The overhead 

involved in maintaining redundancy information should not overpower the energy saving 

benefits.  Finally, PARAID cannot be too aggressive using power switches to achieve energy 

saving, since server-class disks are not designed to be powered on and off frequently.  PARAID 

needs to explore the cyclic workload behavior to power switch disks in a sparing and effective 

way.   

The remaining thesis first reviews the basics of the RAID design (Chapter 2).   Then, 

Chapter 3 presents PARAID, along with explaining how unused storage can be traded for both 

performance and energy savings.  Chapters 4, 5, and 6 show a detailed PARAID design, which is 

prototyped and empirically evaluated.  Finally, Chapter 7 relates PARAID to existing work; 

Chapter 8 discusses the some future directions of PARAID; and Chapter 9 presents a summary 

and conclusions. 
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CHAPTER 2 

2CONVENTIONAL SERVER CLASS RAIDS 

 
 
 
 

In 1988, Berkeley introduced a concept in mass storage called Redundant Arrays of 

Inexpensive Disks or RAID [19].  RAID combines multiple disks into an array of disks that 

yields performance exceeding that of a single large expensive disk.  The goals of conventional 

RAID are to increase disk performance by maximizing disk parallelism and to make storage 

more reliable through redundancy.  It is necessary to understand how conventional RAID works 

to be able to understand the goals, design, and evaluation of the new Gear-Shifting Power-Aware 

RAID. 

 

2.1 Physical and Logical Disk 

 
The description of a RAID device directly ties to the physical and logical characteristics 

of a disk device.  A physical disk consists of the mechanical hardware.  A physical disk needs to 

be represented in computer software in terms of a logical disk. 

Figure 2.1 shows the mechanical parts of a disk.  A disk contains one or more magnetic 

platters, which store the data on the surface.  Each platter is attached to a spindle, which is 

attached to a spindle motor.  When the motor is powered, the platters rotate.  For both surfaces of 

each platter, a disk head is responsible for reading and writing data.  Each head is attached to a 

disk arm, which is attached to the arm assembly that moves the arms together over the surface of 

the platters. 

Figure 2.2 shows the logical representation of the disk.  The logical disk represents the 

mechanical disk in software.  Each surface on each platter is viewed logically as having 

concentric circles radiating out from the center of the platter surface to the edge of the platter 
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surface.  Each circle represents a track of data on the platter.  A track consists of sectors (Figure 

2.2), and a sector is the smallest data access unit that can be read from or written to the disk.  The 

same track on every surface of every platter forms a cylinder (Figure 2.1).   

Disk access involves three timing components: seek time, rotational latency, and data 

transfer time.  Seek time is the amount of time needed for the arm to move to the correct radial 

position on the platter surface.  Rotational latency is the amount of time taken to rotate the 

desired sector under the disk head.  The transfer time is the duration for data to be read or written 

to or from the platter’s surface.  Data transfer time depends on the rotation speed, the density of 

the magnetic media, and the number of sectors that can be stored in a track, which is a function 

of radial distance of the head from the center of the platter. 

When discussing RAID, it is important to know what a sector is because the RAID 

software issues reads and writes at this access granularity.  The algorithm used by the RAID 

software to distribute the content of a file into various sector locations on different disks is 

known as a striping pattern, which in terms defines the personality (or the RAID level) [19] of a 

RAID device.  It is also important to know about the disk latency, a factor of seek time and 

rotational latency, and data transfer time because these metrics define the performance for a disk 

and a RAID device. 

Finally, not all disks are the same.  Server-class storage uses high performance disks to 

be able to meet peak demand on the server.  A typical server-class disk will have a platter 

rotation between 10,000 and 15,000 rotations per minute and have an average latency of 2.99 ms 

[5, 6].  Lower performing disks, for example those used in laptop computers, rotate at 5400 to 

7200 rotations per minute and have an average latency of 7.14 ms [7, 8]. 

One advantage to lower performing disks is that they use less power, typically 2 W when 

active and less then a Watt when inactive [7, 8].  This is much less power compared to a high 

performance server-class disk that uses around 13 Watts when active and 10 Watts when inactive 

[5, 6].  A possible alternative approach to save energy than that proposed by PARAID is to use 

lower performing disks in server class computers.  This approach suffers from one critical 

disadvantage.  These lower performing disks cannot meet the demand of the peak load for a 

server without installing additional lower performing disks.   In addition to degraded 

performance, lower performing disks are less reliable [7, 8].  This alternative approach is not 

satisfactory because performance and reliability are degraded. 
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Figure 2.1: Physical disk components Figure 2.2: Logical disk components 

 
 
 
 

2.2 Conventional RAID 

 
RAID was introduced as an alternative to a single large disk because the performance of 

the CPU and memory continued to outpace that of a disk.  RAID narrowed this performance gap 

by allowing multiple disks to access data in parallel.  The success of RAID is evident today due 

to its continued wide-spread use in commercial, academic, and even personal computing. 

A RAID makes several disks appear as one storage device.  The logical view of a RAID 

device is a single storage device, which is also the view perceived from file systems above. 

Figure 2.3 shows the difference between the logical view of the RAID device and the physical 

disks.  Each logical sector in a RAID is translated through a mapping function to one of the disks 

based on a given RAID striping pattern.  Figure 2.3 shows how logical sectors are evenly 

distributed across the disks in the array creating a uniform striping pattern. 

The uniform striping pattern is used by RAIDs to maximize the parallelism to access 

multiple disks.  Since all disks are involved in every data request, the throughput (the bytes 

transferred within the duration of transfer) outperforms that of a single disk.  However, the disk 

access latency (seek time and rotational delay) suffers, since each request has to wait for the 

slowest disk among all to access the data. To be able to write the sectors of data in a uniform 

striping pattern, RAID uses a mapping function to map the logical sector of data to a sector on a 

disk in the array.   

arm 
assembly 

arm head spindle 

platter 

cylinder 

arm track sector 
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Logically, RAID manages data in chunks.  Physically, a chunk of data consists of many 

sectors.  Typical chunk sizes are 4, 16, 32, 64, or 128 Kbytes.  For the common setting of 512-

byte sectors, a 4-Kbyte logical chunk has eight sectors.   

Chunks that reside in the corresponding locations of every disk in the array form a stripe 

in the array.  Figure 2.3 shows how four chunks from the logical RAID make up a stripe on four 

disks.  Logical chunk A is mapped to the first disk in the array; B to the second; and so on.  

When the chunks of data are read from the disks, reads are performed in parallel, effectively 

improving the read performance over a single disk.   

 
 
 
 

 
Figure 2.3: Logical RAID to physical disks 

 
 
 
 

To provide reliability, RAID introduces data redundancy, so data loss from failed disk(s) 

can be recovered through the redundant data.  The reliability of a disk is defined by its mean time 

to failure, or MTTF.  The MTTF for an individual disk is rated by the disk manufacturer.  The 

MTTF for a group of disks is the MTTF of a single disk in the array divided by the number of 

disks in the array [19].  For example, for 100 disks with a rated MTTF of 30,000 hours each, the 

MTTF for the entire group is 300 hours.  An administrator would have to replace a disk every 

two weeks!  RAID improved upon this by introducing a check disk into the array of disks that 

A B 

C D 

A B C D

logical RAID 

physical RAID 

chunk 

stripe 
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contained redundant information.  When a disk fails and is replaced, the check disk can be used 

to reconstruct the data on the disk.  By introducing the check disk, the MTTF of an array of disks 

exceeds the useful lifetime of any single disk. 

 

2.3 RAID Levels 

 
A RAID personality (or RAID level) is defined by how logical sectors are mapped to the 

disks and the strategy to use and distribute redundant data.  The original RAID paper introduced 

5 different RAID levels, ranged from simple mirroring of data to complex distribution of 

redundant data.  In the context of PARAID, it is worthwhile reviewing RAID levels 0, 1 and 5.  

RAID level 0 was not introduced in the seminal work on RAID but was formally introduced by 

the same group in 1994 [3]. 

One metric to characterize different RAID levels is by their overhead cost in storage 

capacity.  The overhead cost is the capacity used to store redundant data divided by capacity 

usable to store the actual data.  For example, mirrored data from one disk to another disk has a 

100% overhead cost.  For every one data disk there is one check disk for the mirrored data.  

Usable storage capacity is the total capacity of data disks and check disks that can be used to 

store data.  For example, mirrored data has 50% usable storage capacity because for every two 

disks, only half of that, one disk, is used for data. 

RAID level 0, also known as striped or non-redundant mode, maximizes disk parallelism 

to achieve maximum performance but offers no data redundancy.  RAID 0 offers the minimal 

reliability and has the same reliability as a group of disks without any check disks.  This level 

appends the capacity of the disks in the array so that the logical device has a total size equal to 

that of the disks added together.  The striping pattern used by this level balances disk load in a 

uniform fashion for maximum disk parallelism.  The overhead cost of this device is 0% and the 

storage capacity is 100%.   

RAID level 1, also known as disk mirroring.  This level mirrors all disks, which provides 

for data redundancy but the overhead cost is 100% and the storage capacity is 50%.  Mirroring 

can actually improve latency for the RAID storage device over that of a single disk.  Since the 

data is mirrored (or replicated), two mirrored disks can race to serve I/O requests and possibly 

reduce the access latency.  It is common to use RAID 1 when only two disks are available and 
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reliability is desired.  For many disks, RAID 1 can statistically lose 1/3 of disks without data 

loss. 

RAID level 5, also known as block-interleaved distributed-parity, provides redundancy 

and performance to a large number of disks.  This level is appealing to large data centers because 

of these features.  This level requires three or more disks in the array to accommodate at least 

two data disks and always just one check disk.  This level employs the use of bit parity 

information to reconstruct lost data, which can reliably recover from single-disk failures.  For 

every stripe in the RAID device, one parity block is created and must be stored, effectively using 

one check disk for the device.  This parity information is distributed uniformly across the disk 

array so that no one disk is constantly being accessed for parity information.  If a disk fails then 

the sectors on the other disks are used to calculate the missing data.  If the sector happens to be a 

parity sector, the parity is simply recalculated.  For 5 disks, RAID 5 has an overhead cost of 25% 

and a useable storage capacity of 80%.   

 
 
 
 

 
Figure 2.4: RAID level 5 striping pattern 

 
 
 
 

Figure 2.4 shows the data layout of RAID 5 using a left-symmetric parity distribution.  

The parity chunk is calculated from the other chunks in a stripe.  Because of this, a write request 

stripe 0 

disk 0 

parity chunk data chunk 

stripe 1 

stripe 2 

stripe 3 

stripe 4 

disk 1 disk 2 disk 3 disk 4 
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in RAID 5 requires the data chunk and the parity chunk to be written.  If the parity chunks were 

to be stored on one disk, then this disk would quickly become a hot spot in the array because 

every write request for any chunk would require a write on the parity check disk.  RAID 5 solves 

this problem by having the parity chunks uniformly striped across the array. 

 

2.4 Summary of RAIDs and Their Limitations 

 
Conventional RAIDs improve the throughput of mass storage devices by combining disks 

into an array and accessing them in parallel.  How those disks are used within the RAID device 

is defined by the RAID level that is used.  Each RAID level has a different striping pattern that 

provides different benefits.  RAIDs 0, 1, and 5 balance the load uniformly when possible, so that 

no single disk becomes the bottleneck.   

Server-class RAIDs are not designed to save power for three major reasons.  (1) Since 

RAID balances the load across all disks and requires all disks to be powered on to serve any 

request, all disks need to be power-switched as a single unit.  Since servers tend to receive 

requests 24x7, the chance of turning off disks due to an idle server is significantly reduced [25].  

(2) During the periods where the servers are lightly loaded, all drives are required to be powered 

to serve the requests, while perhaps a single powered drive is sufficient to meet the server 

demand.  In other words, RAIDs over-provision resources during non-peak loads.  (3) For 

reliability, server-class drives are not designed for frequent on-and-off power switches.  

Conventional power-saving approaches would be too aggressive on power switching and harm 

the hardware reliability of conventional RAIDs. 
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CHAPTER 3 

3POWER-AWARE RAID 

 
 
 
 

3.1 Skewed Striping for Energy Savings 

 
PARAID exploits over-provisioned and unused storage to improve energy efficiency and 

reliability.  In particular, the use of skewed striping patterns is the key to achieving power 

savings without degrading performance.  By assigning data blocks in a skewed pattern, the 

number of powered disks can vary according to the system demands. 

3.1.1 The Power-Aware RAID and Skewed Striping 

PARAID uses a skewed striping pattern to place the data blocks on the array of disks, so 

that the number of powered disks can vary according to the system demands.  The disks in the 

array are first organized into hierarchically overlapping sets of disks, analogous to gears in 

automobiles.  Figure 3.1 shows an example of data blocks stored on a four-disk array with two 

sets of disks, a two-disk set (gear 1) and a four-disk set (gear 2) containing the two-disk set.  This 

organization enables the skewed striping pattern to create and shift gears to reduce disk power 

consumption.  These gears allow for two operation modes.  If PARAID operates with only gear 

1, then disks 3 and 4 are not needed and can be powered off to conserve power.   

Each gear in PARAID is capable of serving all I/O requests with different levels of 

performance, due to different levels of parallelism in disk accesses.  Figure 3.2 shows an 

example of a four-block file being read from a PARAID device from either gear 1 (consists of 

two disks) or gear 2 (consists of four disks).  Notice that some of the blocks are stored more than 

once.  Disk 1 has a copy of data blocks 3 and 7, while disk 3 also has a copy of data blocks 3 and 
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7.  Some blocks are replicated, so that a file can be accessed either through the two-disk set or 

the four-disk set.   

The replicated blocks can be used to enhance reliability.  However, not all blocks are 

replicated in PARAID.  Blocks 5 and 6 are stored on disks 1 and 2, but not on disks 3 and 4.  

Non-replicated blocks will use other mechanisms for reliability, and will be discussed in Section 

4.4. 

 
 
 
 

 
Figure 3.1: Skewed striping disk sets Figure 3.2: PARAID gears 

 
 
 
 

3.1.2 Saving Power with Skewed Striping 

To save power, PARAID needs to operate in a gear that will meet system demands, while 

powering off as many disks as possible.  This can be thought of as using just enough disk 

parallelism for performance while minimizing the number of powered disks.  This relationship 

between disk parallelism and the number of powered disks illustrates the inherent tension 

between performance and saving power.  Maximizing disk parallelism will achieve maximum 

throughput while saving the least amount of power, whereas minimizing the number of powered 

disks will maximize power savings, but achieve the worst throughput. 
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Figure 3.3: Workload approximation: conventional RAID versus PARAID 

 
 
 
 

Figure 3.3 shows the relationship between performance and energy.  As workload 

increases, energy and performance also increase.  Due to gears, the PARAID device can power 

just enough disks to match the workload.  Conventional RAIDs do not offer this power 

management granularity, and with RAIDs the number of powered disks provides only the 

maximal throughout.  In an ideal implementation with zero overhead, PARAID can approximate 

the workload line arbitrarily close, as the number of gears increases.  The closer to the workload 

line, the more power can be saved. 

PARAID works because under a light system load, the performance perceived by end-

users is not as sensitive to whether requests are served by two disks or four disks.  These periods 

of light load are opportunities to power off disks and save power.  Figure 3.4 shows how the 

number of disks can vary according to the system load.  As the system experiences more load, 

the disk parallelism increases.  Figure 3.5 also shows how a conventional RAID device cannot 

vary the number of power-on disks due its use of a uniform striping pattern. 
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Figure 3.4: PARAID load balancing Figure 3.5: Conventional RAID load balancing 

 
 
 
 

Gear shifting a PARAID device means switching from one gear to another.  This can also 

be thought of as changing the view into the array of disks from one set of disks to another set of 

disks.  Figure 3.6 shows how PARAID will gear shift to meet the system demand.  PARAID 

knows when to gear-shift based on of the disk utilization for the disks within the gear.  If the 

disks are utilized below a low-watermark threshold, then PARAID will shift into a lower gear.  If 

the disks are utilized above a high-watermark threshold, then PARAID will shift into a higher 

gear. 

 
 
 

 
Figure 3.6: Gear shifting to adjust to load 
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The characteristics of the workload impact PARAIDs ability to save energy.  Under 

workload that is consistently high, requiring peak performance or near peak performance all of 

the time, PARAID will not have sufficient opportunities to gear shift into lower gears and save 

energy.  Under workload that is consistently low, trivial power-saving techniques can be used to 

save energy.  Realistically, workload tends to fluctuate, driven by human behavior, between high 

and low periods over a period of time, for example over the course of a day or a week.  People 

are more active during the day then at night.  This cyclical fluctuation in workload is where 

PARAID excels by providing peak performance under high load and energy savings under low 

load. 

 

3.2 Preserving Peak Performance 

 
It is essential that performance be preserved.  RAID is configured to meet the demands 

placed on the server under peak load.  PARAID must be able to match that performance.  This is 

accomplished in PARAID by operating in the highest gear when the load on the system demands 

it.  Within each gear, load is balanced across the disks.  This allows for maximum disk 

parallelism (maximum throughput performance) within the gears.  When a PARAID device 

operates in the highest gear, all disks are being used in parallel to read and write data, providing 

a level of performance comparable to a same size RAID device. 

A PARAID device has the potential to perform better in reading small files when 

operating in a low gear.  This is due to the latency associated with reading from a disk.  Disk 

latency is a factor of seek time and rotational latency.  The average latency for a RAID device is 

bound by the latency of the slowest disk.  When the number of disks is reduced in the array, it is 

more probable that the average latency is statistically reduced.  Therefore, the average latency 

associated with reading small files is less on a PARAID device operating in a low gear, using 

fewer disks, compared to that of a conventional RAID device. 

A PARAID device also has the potential to degrade throughput for large files when 

operating in a low gear due to the throughput achieved when reading files from multiple disks in 

parallel.  When the number of disks is reduced, the throughput is reduced.  Therefore, the 

throughput associated with reading large files is degraded on a PARAID device operating in a 
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low gear compared to that of a conventional RAID device.  Reading large files is likely to trigger 

the PARAID device to perform a gear shift into a higher gear and increase disk parallelism.   

 

3.3 Maintaining Reliability 

 
PARAID must be able to tolerate disk failures to retain the reliability semantics offered 

by conventional RAID.  Because PARAID relies on power cycling disks to save energy, 

PARAID must also address a new concern over reliability.  Power cycling has an adverse affect 

on the MTTF of a disk, which is designed for an expected number of power cycles during its 

lifetime.  For example, the disks used in this thesis have a 20,000 power cycle rating [5]. Every 

time a disk is power cycled, it comes closer to its eventual failure. PARAID must manage the 

power switches with care to mask this undesirable effect of power cycling. 

3.3.1 Resiliency Approaches without Data Redundancy 

PARAID manages the power cycling of the disks by inducing a bimodal distribution of 

busy and idle disks.  The busier disks stay powered on and the more idle disks often stay off, 

leaving a set of middle-range disks that are power-cycled more frequently.  PARAID can 

manage the power cycles for each disk by switching the gear-membership role of the disks 

according to their current number of power cycles. 

For example, take a PARAID device that has six disks in its array and three gears.  The 

first gear has disks 1 and 2, the second gear has disks 1 to 4, and the last gear has all six disks.  

Figure 3.7 shows that given this gear layout, disks 1 and 2 are the busier disks, and disks 5 and 6 

the most idle, leaving disks 3 and 4 to be power-cycled more frequently.  By keeping a count of 

the number of power cycles that each disk has performed, PARAID can decide which roles to 

exchange amongst the disks.  After disks 3 and 4 have reached a certain power cycle threshold 

relative to other disks, they can be role exchanged with the disks not in gear 1, so that each disk 

is rate-limited in terms of increasing the number of power cycles, helping to prolong the MTTF 

of the PARAID device as a whole.  Also, due to the lack of power switching, gear-1 disks can 

maintain the same level of reliability as before, since they are always powered. 

In addition to inducing the bimodal distribution of busy and idle disks, PARAID can rate-

limit the disks for the frequency of power cycles.  By rationing power cycles, PARAID can 
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operate with an eye to targeted life expectancy.  For example, if the disks have a five-year life 

expectancy (due to the system upgrade policy), and the disks are expected to tolerate 20,000 

cycles, then each disk in the array cannot be power-cycled more than 4,000 times a year (333 

times a month or 76 times a week).  Once any of the disks have reached the rationed amount of 

power cycles for a determined period, a PARAID device can operate in a mode where no power 

cycles will take place.  Once the period expires and enters a new rationing period, the disks can 

be power-cycled again to conserve energy, according to system load. 

 
 
 
 

 
Figure 3.7: Disk role exchange 

 
 
 
 

By creating a bimodal distribution of busy-to-idle disks, exchanging the roles of the disks 

within the array and rationing the number of power cycles for each disk, the life expectancy of 

disks due to frequent power cycling can be controlled effectively. 

Furthermore, as PARAID is filled up over time, and the unused storage available for 

skewed striping diminishes, the skew of the striping pattern will be adjusted to approach a 

uniform distribution.  Since the uniform distribution of blocks decreases the opportunities to 

power off disks, the frequency of power cycles will be automatically dampened automatically as 

PARAID ages. 
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3.3.2 Resiliency Approaches with Data Redundancy 

The current PARAID design based on RAID 0 can tolerate a single-disk failure outside of 

the first gear, because of the way the data blocks are replicated across the disk array in a skewed 

manner.  Also, each gear contains the full content of the PARAID content.  If a disk fails, the 

PARAID device can choose a gear that does not use the failed disk to continue operating.  Once 

the failed disk has been replaced, the new disk can be synchronized with other disks.  In fact, 

PARAID can handle multiple disk failures as long as the gear-1 disks in PARAID are still 

operational.  The PARAID device cannot guarantee a full recovery from a single-disk failure, 

which is when all sets of disks contain a common disk that fails.  In this case, PARAID might be 

able to recover a subset of data blocks once the failed disk has been replaced, but the PARAID 

device would certainly need to stop operating until that happens. 

The MTTF for a RAID-0 device is the MTTF of a single disk divided by the number of 

disks in the array [3].  The MTTF for PARAID is the MTTF of a single disk divided by the 

number of disks in the first gear.  RAID 0 is the most comparable level to PARAID because 

PARAID—like RAID 0—balances load within each gear uniformly.  Given a four disk array, 

each with a rated MTTF of 1,200,000 hours [16], a RAID-0 device using this array has an MTTF 

of 300,000 hours or 34 years.  In comparison, a PARAID device using the same array of disks 

with 2 disks in the first gear would have an MTTF of 600,000 hours or 68 years. 

 

3.4 Summary 

 
By using a skewed striping pattern that creates sets of disks within the array of disks, the 

number of powered disks can vary according to system load.  These sets of disks can be thought 

of as gears that can be shifted, so that just enough disks can be powered to match the current 

workload on the system.  Opportunities to save power arise during light or moderate loads when 

low gears can be used, allowing unused disks to be powered off.  This cannot be readily achieved 

by power switching conventional RAIDs.   

Balancing the load within each gear allows for maximum disk parallelism for that gear.  

When the load on the system demands peak performance, high gears are used to match the 

performance of conventional RAID.  Through the use of gear-membership role exchanges 

among disks and rationing power cycles, PARAID can be configured to adhere to specified life 
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expectancy.  Overall, PARAID reduces the amount of energy consumed in mass storage while 

retaining similar performance and reliability.   
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CHAPTER 4 

4DETAILED PARAID DESIGN 

 
 
 
 

The design of PARAID has five major components: the PARAID Personality, the 

PARAID Monitor, the PARAID Gear-Shifting Logic, the PARAID Reliability Manager, and the 

PARAID User Administration Tool.   

Figure 4.1 shows various PARAID components, their logical associations, and their 

locations in a system.  The PARAID Personality, Monitor, Gear-Shifting Logic, and Reliability 

Manager all reside within the kernel space of the operating system while the User Administration 

Tool resides in the user space.  Most of the components reside within the kernel space, so they 

can communicate with one another without crossing the kernel/user space boundary and 

associate overhead.  Through these five components, PARAID builds power-aware RAID 

devices, reduces power consumption, maintains performance, and manages reliability. 

 
 

 
Figure 4.1: PARAID logical design 
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4.1 Building Power-Aware RAID Devices 

 
The PARAID Personality is responsible for device creation, state management, and 

handling I/O requests. 

4.1.1 Creating a PARAID Device 

When a PARAID device is first created, the PARAID Personality must determine the size 

of the PARAID device, create the data structures for tracking the current states of the device, and 

create the PARAID super block.  To do this, the system administrator must specify the disks to 

be included in the PARAID device and the desired number of gears and pass this information 

into the PARAID Personality upon creation.  This information can be specified via a 

configuration file or command line arguments.   

The storage capacity needed by a PARAID device can be computed in two ways:  

bottom-up or top-down.  The bottom-up approach starts by assuming that everything can be 

stored within the first gear (the minimum number of disks that can hold the data) then 

incrementally builds additional gears to the remaining disks.  This approach also allows 

incremental addition of disks to PARAID.  Since gear-2 disks might not be big enough to hold 

the information for higher gears, this approach may require some backtracking to readjust the 

maximum number of the first gear.  The top-down approach starts with uniform striping of the 

actual data across all disks (the highest gear), and incrementally creates lower PARAID gears via 

replicating some of the data as unused space permits.  Currently, the PARAID prototype uses the 

bottom-up approach.  The top-down approach is left as future work. 

Based on this information, PARAID calculates the size of the PARAID device.  The 

PARAID device capacity can be calculated with the algorithm listed in Table 4.1.  The algorithm 

assumes that the disks in the array have the same size. 

The number of disks in the first gear and the size of each disk will determine the size of a 

PARAID device.  Once the capacity of the PARAID device has been determined, the space 

required for each gear (boundary) is allocated for each disk.  These static boundaries on each 

disk for each gear are used to ease computing an offset when accessing data blocks.  These 

boundaries can also change dynamically to provide more flexibility.   
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Table 4.1: PARAID capacity algorithm 

PARAID Capacity Algorithm 
 

n = number of gears 
nDiskgi = number of disks in gear i 
Cg1 = storage capacity of gear 1, in disk blocks 
Cdisk = storage capacity of a disk 
 

while ( disk

n

i g

g C
nDisk

C

i

>∑
=2

1 ) { 

  Cgi -= 1 disk block 
} 

 

 
 
 
 

Figure 4.2 also depicts how the capacity algorithm in Table 4.1 determines the total 

capacity for the device, considering the disks and gears.  The total capacity for the PARAID 

device is the storage space on disks 1 and 2 that makes up the first gear.  Notice that there is 

some unused space on disks 1 and 2.  This is due to the PARAID Personality reducing the total 

capacity of the PARAID device so that all of the replicated data blocks for each gear can fit on 

all disks.   

Once the size of the PARAID device is determined, the necessary data structures used to 

maintain the current state of the PARAID device are created and initialized.  Each of the five 

PARAID components must maintain information about the PARAID device and the operation of 

the device.  This information is listed with the discussion of each component. 

Lastly, the PARAID device super block must be created and persisted.  The super block 

for the PARAID device is 512 bytes or one sector and is written to the first sector of each disk.  

By persisting the super block, the PARAID device can be stopped and started without having to 

be created each time.  Once the size of the PARAID device has been calculated, the data 

structures necessary to maintain the state of the device have been created, and the super block 

has been persisted, the PARAID device is ready to handle block I/O. 
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Figure 4.2: Placement of data blocks on disks by skewed striping 

 
 
 
 

4.1.2 Handling Block I/O 

It is the responsibility of the PARAID Personality to handle the requests sent to the 

PARAID device from the file system. The PARAID Personality must interpret an incoming 

request, map the block to the appropriate disk and sectors according to the striping pattern, and 

issue the block I/O to access the block. 

The file system considers the PARAID device to be one contiguous block of storage to 

which it may issue read and write requests.  The PARAID Personality is located between the file 

system and the disk.  The PARAID Personality interprets the read/write requests from the file 

system so that it may place the blocks on the disks in the array according to the striping pattern.  

This is where the PARAID Personality writes the blocks to the disks in a skewed fashion so that 

the gears within the PARAID device can be created. 

The formulas presented in Table 4.2 are used in the PARAID Personality to map the 

logical sector of the block I/O request sent from the file system to the disk.  The mapping 

formulas map a logical sector to a disk and a sector on that disk device.  Formula 1 in Table 4.2 

is used to map a logical sector to a disk.  Formula 2 is used to map a logical chunk to the chunk 

on a disk.  Formula 3 is used to map a chunk on a disk to a sector on a disk. 
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Table 4.2: Skewed striping mapping formulas 

1. PARAID Logical Sector to Disk Formula 
 
Terms 
 logical chunk number = logical sector number / sectors per chunk 
 gi = number of disks in gear i 
Formula 
 disk number = logical chunk number % gi 
 
2. PARAID Logical Chunk to Disk Chunk Formula 
 
Formula 
 chunk number on disk i = logical chunk number / gi 
 
3. PARAID Disk Chunk to Disk Sector Formula 
 
Terms 
 n = number of sectors per chunk 
 f = sector offset within chunk = logical sector number % n 
 r = gear boundary offset on disk 
Formula 
 sector number = (chunk number on disk i * n) + f + r 
 

 
 
 
 

The following example shows how the mapping function works in the PARAID device 

and is depicted in Figure 4.3.  Take for example, a PARAID device with four disks and two 

gears.  Gear 1 has two disks, and gear 2 has all four.  The sector size is 512 bytes; the block size 

is 1 Kbyte; and the chunk size is 4 Kbytes.   Currently, the second gear is active.  Using this 

information, the logical sector 2008 can map the physical disk within the array using formula 1 

in Table 4.2.  In this formula the logical chunk number equals 251 (eight sectors in a 4-Kbyte  

chunk).  Therefore, the logical disk number is 3 (251 % 4).  The chunk on the disk, also the stripe 

in the gear, can be computed using formula 2.  Since the logical chunk number is 251, the chunk 

number on disk 3 is 62 (251 / 4).   Now the sector number on the disk can be computed using 

formula 3.   Because logical sector 2008 is the first sector in the chunk, f is zero.  The factor f 

represents the offset within the chunk for the sector; the first sector in the chunk has no offset.  

The factor r is zero because the storage space for gear 2 on disk 3 starts at the first sector for data 

storage.  Therefore, the sector is 496 ((62 * 8) + 0 + 0). 
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Figure 4.3: Logical to physical disk mapping 

 
 
 
 

For data to be retrievable from any gear, some blocks need to be replicated, which means 

that some blocks need to be written more than once.  The case where an update needs to apply to 

a disk that is not currently powered will be discussed in Section 4.2.2.  The PARAID Personality 

determines whether a block needs to be updated to multiple disks by cycling through each gear 

for a block’s potential storage locations.   However, since gears have hierarchical overlapping 

sets of disks, an update to gear 2 disks can exclude gear 1 disks, which are already updated.  

For example, consider a PARAID device that has four disks and two gears.  The first gear 

consists of disks 0 and 1, and the second gear consists of all four.  When a write request arrives, 

the PARAID Personality will use the logical sector of the request to find the disk location within 

gear 1, and then do the same for gear 2.  For gear 1, the update will always result in a disk write 

to either disk 0 or disk 1.  However, since gear 2 consists of all four disks, should the update 

location reside in disk 0 or disk 1, the update is not necessary, since the same update has been 

applied during the gear 1 iteration.  Should the update location reside on disks 2 or 3, the update 

will be written in both places. 

The PARAID Personality must maximize disk parallelism when reading blocks from the 

disks.  Maximized disk parallelism is achieved by using the mapping formulas in Table 4.2 that 

calculate the disk and sector to read the block from.  Disk parallelism is maximized on reads 

because the load is balanced across all disks in the gear when the blocks are written.  This is 
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most important when PARAID is operating in the highest gear so that peak performance can be 

provided under peak workload.  

Finally, the PARAID personality must track the number of disks and gears, and also the 

number of disks within each gear.  This information is used to help map the blocks of data from 

the logical view to the physical disks.  The logical chunk is obtained with each I/O request made 

to the device while the disk, chunk, and sector are computed from this information with each 

request. 

 

4.2 Gear Shifting 

 
The PARAID Gear-Shifting Logic is responsible for gear shifting PARAID, which 

includes power cycling the disks, and disk synchronization. 

4.2.1 Power Cycling 

The PARAID Gear-Shifting Logic performs gear shifts between gears.  The PARAID 

Monitor helps the gear-shifting logic by advising when the gears should be shifted.   

To gear shift between gears, the PARAID Gear-Shifting Logic must know the current 

gear and the target adjacent gear.  The PARAID Gear-Shifting Logic powers off appropriate 

disks when shifting to a lower gear, and powers on necessary disks when shifting to a higher 

gear.   

When powering on disks, stale disk content has to be resynchronized.  Once the 

synchronization is complete, the current gear can be changed to the new gear.  Powering off 

disks is immediate, since no disk synchronization is necessary. 

4.2.2 Disk Synchronization 

When disks are powered off, no requests are sent to those disks.  As soon as a powered 

off disk misses a write request, the disk no longer contains the most up-to-date data for all data 

blocks.  The disk needs to synchronize the stale data at the time when it is powered on or right 

before the stale information is accessed.  Full synchronization requires that all stale data be 

updated with current data.  Depending on the total size of the stale data, this process could take a 

long time.  The on-demand approach only updates the stale data when it is accessed.  The on-
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demand approach allows the gear shift to take place much more quickly, but the full 

synchronization approach provides better data consistency. 

To be able to synchronize a disk, outstanding write requests to powered off disks are 

captured by the PARAID Gear-Shifting Logic.  In the case of full synchronization, when an 

powered off disk is switched to a powered on state, the PARAID Gear-Shifting Logic reissues a 

list of outstanding write requests to the disk that is to be synchronized.  Sometimes this process 

involves rereading the data from a committed copy before reissuing the write data. 

In the case of on-demand synchronization, the PARAID Personality uses a dirty-block 

list.  If the block being accessed is dirty and not cached, PARAID will retrieve the block from 

the first gear and return it to the requestor.  PARAID will then write that block to the disk(s) that 

has stale data, effectively piggybacking the synchronization step at the access time, and skipping 

the rereading step at times.   

To capture the write I/O requests, the PARAID Gear-Shifting Logic needs to make sure 

that the first-gear disks are always up-to-date.   The Gear-Shifting Logic also needs to track the 

stale disk locations for synchronizations.  This list of dirty blocks is not only kept in memory for 

fast access during on-demand synchronization but is also persisted to secondary storage in case 

of system failure.   

A failed disk can stop the gear-shifting process.  Disks can also fail in the middle of the 

synchronizations.  However, the list of outstanding writes is maintained throughout the disk 

failure and recovery process.  Once the failed disk recovers, the synchronization can continue 

from where it left off.   

Whether to use on-demand or full synchronization is configurable.  On-demand 

synchronization will allow PARAID to adjust to frequent changing workload.  This also means 

tracking additional writes while the disks are not synchronized.  The full-synchronization 

approach may be preferable if there are few gear shifts and the workload is dominated by reads, 

effectively keeping the number of blocks to be synchronized small.  The full synchronization 

method is also available for manual maintenance of the PARAID device.  For example, an 

administrator would need to have a consistent system state before pulling out a hard disk. 
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4.3 Saving Energy 

 
The PARAID Monitor monitors the workload placed on the PARAID device, determines 

when the gears should be shifted based on the workload, and makes requests to the PARAID 

Gear-Shifting Logic to switch gears. 

4.3.1 Shifting to a Higher Gear 

To decide whether the PARAID device should gear shift into a higher gear, the PARAID 

Monitor needs to know the load placed on the current gear.  The gear utilization threshold is the 

metric used to determine when to perform a gear shift.  Since the data and requests are uniformly 

spread within a gear, the percent utilization of the gear can be extracted by the percent utilization 

of individual disks within a gear, in number of requests per time interval.  A system 

administrator can set the gear utilization threshold to specify how utilized a gear should be 

before switching to a higher gear (e.g. 80%).   

To know the demand trend on the system, the PARAID Monitor keeps a moving average 

of utilization over the past 60 seconds for each disk.  For every second, each disk is checked to 

see if any access has occurred.  If an access has occurred, the disk is marked as active for that 

second.  Table 4.3 lists the formula used to calculate the moving average. 

 
 
 
 

Table 4.3: Moving average formula 

PARAID Monitor Disk Moving Average Formula 
 
 Terms 
  t = time interval for moving average in seconds 
  u = number of seconds disk utilized over time interval t 
   
 Formula 

Moving average = u / t 
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If the moving average is above the threshold for all disks in the active gear then the 

PARAID Monitor will make a request to the PARAID Gear-Shifting Logic to switch to the next 

higher gear.  Figure 4.4 shows a gear shift from a low gear to a high gear because the moving 

utilization average rose above the threshold. 

Switching to a higher gear is aggressive, so that the PARAID device can respond quickly 

to a sharp increase in workload.  As soon as the gear utilization rises above the threshold, an 

upward gear shift will be performed.  Figure 4.5 shows how PARAID responds to fluctuating 

workload with sharp increases by performing multiple upward gear shifts.   

 
 
 
 

 
Figure 4.4: Upward workload trend Figure 4.5: Steep upward workload trend 

 
 
 
 

4.3.2 Shifting to a Lower Gear 

To decide whether the PARAID device should downshift, the PARAID Monitor not only 

needs to know the current gear utilization, but also the utilization trends.  Downshifting gears 

needs to be done conservatively, so that wild swings in system activities will not (1) mislead the 

PARAID device into a gear that cannot handle the requests (Figure 4.6) and (2) cause rapid 

oscillating of gear switching. 

This is prevented by keeping moving averages of the gear utilizations at three different 

time intervals: 10, 60, and 300 seconds.  The moving averages for each time interval are 

computed with the formula in Table 4.3.  Monotonically decreasing moving averages at 300 
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seconds, 60 seconds, and 10 seconds identifies a steady decreasing utilization trend.  Having 

identified this trend, the PARAID Monitor then checks if the next lower gear with fewer disks 

can handle the current workload based on a threshold (computed as a function of the number of 

disks available at the lower gear).  If both conditions are met, the PARAID Gear-Shifting Logic 

switches to the next lower gear. 

Figure 4.6 shows that the PARAID Monitor performs a downshift in gears when a 

significant downward trend in the gear utilization is detected and when the current utilization is 

below a certain threshold.  Notice this approach is more stable and resilient to wild swings in 

workload. 

To be able to identify the utilization trends and make the decision to gear shift, the 

PARAID Monitor must also maintain the threshold for each gear.  In addition, the moving 

averages are continuously computed by the Monitor and checked against the thresholds for 

downshifting opportunities. 

 
 
 
 

 
Figure 4.6: Downward workload trend 

 
 
 
 

Moving 
Average 

Utilization 
Threshold 

Time 

Downshift 

300s, 60s, 10s moving 
averages



32 

4.4 Managing Reliability 

 
The PARAID Reliability Manager is responsible for managing the life expectancy of 

each disk and recovering a PARAID device upon disk failure.  The goal of the PARAID 

Reliability Manager is to match a level of reliability provided by conventional RAIDs. 

4.4.1 Managing Life Expectancy 

Power cycles reduce the life expectancy of disks.  The disks used in the evaluation of 

PARAID have a rating of 20,000 as the expected number of power cycles during the entire disk 

life.  Thus, it is crucial to use power cycles sparingly and effectively, so that they are unlikely to 

become the cause of disk failures.   

To achieve this, the PARAID Reliability Manager rations power cycles over the disks.  

The system administrator needs to tell PARAID Reliability Manager the power-cycle ratings of 

disks, the time interval to enforce the rationing, and the desired life expectancy of the disks.   

 
 
 
 

Table 4.4: Power cycle rationing formula 

Power Cycle Rationing Formula 
 
Terms 
 p = number of power cycles for the disk 
 i = number of rationing interval(s) per year 
 l = life expectancy in year(s) 
  
Formula 
 number of power cycles per rationing interval = p / (i * l) 

 
 
 
 
 

The formula in Table 4.4 trivially determines the number of disk power cycles that can be 

rationed within a rationing time frame, given the rationing intervals, desired life expectancy, and 

the power cycle rating.  For example, a disk with a 20,000 power-cycle rating using a weekly 

rationing time interval and a five-year life expectancy can be power-cycled 76 times a week 

(20,000 / (52 * 5)). 
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Each gear-shifting decision is checked with the PARAID Reliability Manager to make 

sure that the power cycle is allowed according to the rationing scheme.  Of course, an 

administrator can override and force gear shifting to occur for maintenance purposes.   

Recall that due to the use of bimodal distributions, busier disks and more idle disks are 

power cycled less frequently, leaving the middle-range disks to be power cycled more often.  

When those disks perform significantly more power cycles compared to other peers (based on a 

threshold), the Reliability Manager will role exchange this disk with a disk that has performed  

fewer power cycles.  By exchanging the roles of the disks, the number of power cycles can be 

evenly distributed across the disks, and the overall life expectancy of the PARAID device can be 

significantly prolonged. 

4.4.2 Recovery from Disk Failure 

One of the benefits of using a skewed striping pattern is the expanded ability of the 

PARAID device to recover from disk failures.  Take RAID 0 as a basis for comparison.  RAID 0 

will suffer data loss if any of the disks fails.  However, PARAID based on the RAID 0 

implementation (or PARAID 0) can survive disk failures due to replicated data blocks, as long as 

the failed disk is not within the first gear.   

When a disk fails, the PARAID-0 Reliability Manager notifies the system administrator 

through log files, real-time status outputs, or alert email messages.  Once the administrator has 

replaced the failed disk, the PARAID-0 Reliability Manager instructs the PARAID 0 Gear-

Shifting Logic to synchronize the new disk with the first-gear disks.  No specialized reliability 

mechanisms are required. 

If failure involves one of the first-gear disks, the PARAID-0 device will fail.  Then, 

PARAID 0 needs to rely on conventional recovery techniques such as backups.  However, a 

PARAID based on RAID 5 will be able to use the additional parity information to survive such 

failures.  

The time it takes for a disk to recover depends on the amount of data needed to be 

transferred to the new disk.  If a failed disk participates in only the highest gear, the data required 

for recovery will be much less than that of a failed disk that participates in many different gears. 

This is an inherent property of the skewed striping pattern, as shown in Figure 4.2.   
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For example, given a PARAID device with four disks of 30 Gbytes each and two gears of 

two and four disks respectively, the amount of time for disk recovery can be conservatively 

determined by the time to read data from gear 1 and write it to the new disk.  The calculated 

capacity for this device using the PARAID capacity algorithm would be 60 Gbytes.  Disk 3 and 4 

require 15 Gbytes of storage each.  This means that 15 Gbytes of data need to be synchronized if 

either disk 3 or 4 fails.   

To be able to manage the reliability, the PARAID Reliability Manager needs to know the 

life expectancy and the rationing time interval.  Based on this information the Reliability 

Manager can calculate the allowable power cycles per rationing interval for each disk and 

determine the best disk to role exchange when needed. 

 

4.5 User Administration 

 
The PARAID User Administration Tool, pdadm, short for PARAID administration, 

provides the knobs and buttons that allow the administrator to configure the PARAID device for 

desired system characteristics.   

4.5.1 Controls 

The knobs and buttons provided to the PARAID administrator can be categorized by each 

component.  Table 4.5 shows the entire set of controls, categorized by component, that are 

available to the system administrator. 

For the PARAID Gear-Shifting Logic, pdadm allows the PARAID administrator to 

request to jump into any preconfigured gear.  Of course, changing into the wrong gear at the 

wrong time could negatively impact the performance of the storage device.  If the PARAID 

device were to be switched from a high gear to a low gear while the system was experiencing 

peak load, the device would not be able to serve the data fast enough, ultimately overloading the 

system.  The User Administration Tool will notify the administrator if the requested gear does 

not have the throughput to handle the current load, so that this can be prevented.   

The User Administration Tool also allows the request to synchronize a disk, so an 

administrator can bring all disks into a consistent state, perhaps because they have been powered 

off for a very long time.   
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For the PARAID Monitor, pdadm allows changing the minimum time interval between 

gear shifts, so PARAID can react more quickly to downward utilization trends.  This tool also 

allows the administrator to set the upper and lower utilization thresholds for each gear.  By 

having a higher upper threshold, more power can be saved because PARAID will spend more 

time in lower gears, with fewer powered disks.  By having a lower upper threshold, the PARAID 

device might perform better, having more disks powered on longer.  By having a higher down 

shifting threshold, the PARAID device will react more quickly to downward sloping trends and 

shift into lower gears more quickly.  While having a lower downshifting threshold, the PARAID 

device will wait longer to shift into lower gears, taking a very significant downward utilization 

trend to switch into a lower gear.  Lastly, this tool allows the administrator to turn the Monitor on 

and off.  It might be the case that the administrator does not want the PARAID Monitor to run at 

all and the administrator will shift the gears manually. 

 
 
 
 

Table 4.5: PARAID User Administration controls 

PARAID User Administration Controls 
PARAID Disk Manager 
Gear Shift Button Manually shift gears 
Synchronize Button  Manually synchronize the disks 
PARAID Monitor 
Time Interval Knob Adjust the mandatory time between 

gear shifts 
Gear Threshold Knob Adjust the upper and lower utilization 

thresholds for each gears. 
On/Off Button Turn the monitor on or off 
PARAID Controller 
Rationing Interval Knob Adjust the time interval that rationing 

is enforced 
Disk Life Expectancy Knob Adjust the minimum guaranteed life 

expectancy for the disks 
Power Cycles/Disks Knob Adjust the number of power cycles for 

a disk 
Default Operating Gear Knob Set the operating gear when the 

PARAID device has used its rationed 
amount of power cycles for an 
rationing interval 
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For the PARAID Reliability Manager, pdadm allows the PARAID administrator to set 

the rationing interval, the life expectancy for PARAID, and the power-cycle rating for a disk.  

The administrator has the ability to tweak the reliability versus power savings through these 

PARAID Reliability Manager knobs.  If the load on the system fluctuates frequently, and the 

desired goal is to maximize power savings, then the life expectancy of the disks will decrease.  If 

the goal is to maximize the life expectancy, then the number of times a disk can be power cycled 

per interval will be reduced, potentially missing out on opportunities to save power.   

The administrator can set the rationing of power cycles to be weighted seasonally.  For 

example, if more workload on average is experienced in the winter season, the administrator can 

set this season to be weighted more heavily than the other seasons.  This would increase the 

number of rationed power cycles for the rationing intervals over that season and lower the 

number of rationed power cycles for the other seasons.   

If the rationed number of power cycles is not used within a rationing interval for a 

particular disk, the remaining power cycles can be accumulated into the next rationing interval.  

Conceivably, by the end of the life expectancy, the disks could have many power cycles 

remaining.  As time goes by over the lifetime of the disks, the remaining power cycles will have 

been continually accumulated into the next rationing interval.  Using this information, the 

administrator can decide to keep the current power saving policy configured for the device and 

enjoy the extended PARAID lifespan of the disks or set a more aggressive power saving policy 

and enjoy more power savings 
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CHAPTER 5 

5PARAID IMPLEMENTATION 

 
 
 
 

The PARAID prototype was built on Linux using the 2.6.5 kernel, which was the latest 

release at the time of implementation.  Linux was chosen due to its open source and it contains a 

software RAID module. 

The PARAID Personality, PARAID Monitor, PARAID Reliability Manager, and the 

PARAID Gear-Shifting Logic are built in the kernel space.  The PARAID User Administration 

Tool is built in the user space.  The PARAID Personality is built as a part of the Linux software 

RAID module.  The PARAID Gear-Shifting Logic, Monitor, and Reliability Manager are also 

implemented as Linux kernel modules, but are not part of the Linux software RAID.  These 

kernel modules are loaded when the PARAID Personality is loaded.  The module functions 

within the Gear-Shifting Manager, Monitor, and Reliability modules are called from the 

PARAID Personality logic. 

 

5.1 PARAID Personality Implementation 

 
The PARAID Personality is implemented as a part of the Linux software RAID, which is 

a kernel module.  The Linux software RAID is implemented as the md (multiple device) device 

driver module, which builds RAIDs from multiple disks.  An md device is categorized as a block 

device within the Linux operating system; the resulting software RAIDs are, therefore, block 

devices. 

Each of the conventional RAID personalities are implemented as modules that are loaded 

and used by the md device driver as needed.  The md device driver knows different types of 

multiple devices that it can create, along with which associated modules to load.  When a 
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creation request is made to an md device driver, the md device driver associates an array of 

disks, loads the appropriate module, and associates the two.  The md device driver creates a data 

structure of virtual function pointers for each new md device.  When a RAID module is loaded, 

the RAID module will initialize the corresponding virtual function pointers to its own functions, 

so that the md device driver can call specific functions defined by the RAID module. This 

concept is depicted in Figure 5.1.   

Most important is the RAID Personality’s implementation of the block request I/O 

function, which is assigned to and used by the block queue for a new RAID device.  This means 

that all I/O activities will use a RAID Personality’s specific implementation, which can enforce 

its own striping pattern by mapping the logical block location to the physical block location.  

Figure 5.2 shows how the request function of each RAID Personality takes in the block I/O 

requests and maps them to the physical disks. 

 
 
 
 

 
Figure 5.1: MD Device Driver Figure 5.2: Make Request Function 

 
 
 
 

For the PARAID Personality implementation, changes were made to the md device driver 

to become aware of PARAID and its modules for its creation.  The PARAID Personality module 

contains the I/O request function, which maps the logical block locations on the md device to the 

physical block locations on the disks in a skewed fashion.   
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During PARAID initialization, memory is allocated for several data structures.  Most 

important is the data structure that tracks the current state of the PARAID device.  This data 

structure tracks the gears in the device, the active gear, the size of the array, the participating 

disks, and the size of each disk, among other things.  This state data structure also allows 

different PARAID modules to communicate, in addition to using external module functions.  For 

example, when the PARAID Gear-Shifting Logic switches gears, it does so by changing the 

active gear data element on the state data structure to the new gear.  The I/O request function 

picks up the gear change by examining the active gear data element before sending off another 

block I/O. 

Also during initialization, the PARAID Personality module starts a PARAID Linux 

kernel daemon.  This daemon provides the heartbeat to the PARAID device, but most important, 

the daemon calls the PARAID Monitor at regular intervals, so that the Monitor can decide when 

to gear shift. 

 

5.2 PARAID Gear-Shifting Logic Implementation 

 
The major responsibilities of the PARAID Gear-Shifting Logic include power cycling the 

disks in a gear-shifting fashion and synchronizing disk content.  The Gear-Shifting Manager 

exposes an external module function that allows the Monitor to tell the Gear-Shifting Manager 

when a gear shift is needed and what gear to shift into.  The PARAID Gear-Shifting Logic is 

implemented as a Linux kernel module that is loaded whenever the md device driver loads the 

PARAID Personality. 

The Gear-Shifting Manager controls the power status of disks through the disk device I/O 

control interface.  In particular, PARAID currently uses SCSI devices, for which the device 

driver provides built-in I/O control commands for starting and stopping SCSI disks. 

To synchronize the content of a powered-off disk before bringing it back into operation, the 

Gear-Shifting Manager keeps a list of the outstanding blocks that need to be updated for each 

disk.  Maintaining these lists is not CPU-intensive, and they are updated whenever a write 

request is made to a powered off disk.  For the current implementation, the Gear-Shifting 

Manager performs a full synchronization after bringing back a powered off disk, by iterating 

through the list for that disk and reissuing all outstanding writes.  On-demand synchronization is 
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currently not implemented.  For each block that needs to be synchronized, the Gear-Shifting 

Manager will first read in the data block from a first-gear disk, and then write the block to the 

disk being brought back online.  Once the synchronization is complete, the Gear-Shifting 

Manager switches to the new gear by changing the active gear on the PARAID state data 

structure. 

 

5.3 PARAID Monitor Implementation 

 
The major responsibility of the PARAID Monitor is to decide when a gear shift should 

take place.  To make this decision, the Monitor tracks disk activity, so that the moving averages 

of disk utilization can be calculated.  The PARAID daemon, started by the PARAID Personality 

module, calls an external module function on the PARAID Monitor module every second.  This 

allows the Monitor to track the busyness of a disk for the past 10-, 60-, and 300-second periods.  

Basically,  if a disk has had any read or write activity since the last second, then the disk is 

considered busy for that second, which is recorded in a data structure that keeps the disk 

utilization for the 10-, 60-, and-300 second time intervals.  To be specific, the Monitor keeps a 

counter to track read and write requests made to each disk.  If the counts have increased since the 

last monitoring interval, the disk is considered to have been utilized.  The PARAID Monitor is 

implemented as a Linux kernel module that is loaded whenever the md device driver loads the 

PARAID Personality. 

As well as keeping track of the current activity on the disks, the Monitor calculates the 

moving averages every second and checks to see if there is an opportunity to shift gears.  This is 

done as specified in the design of the Monitor by checking the moving averages to the upper and 

lower thresholds of the device.  Currently, the Monitor checks only one threshold for each gear.  

When a gear shift is needed, the Monitor contacts the PARAID Gear-Shifting Manager to 

perform the gear shift. 

 

5.4 PARAID Reliability Manager Implementation 

 
The PARAID Reliability Manager is responsible for managing the life expectancy of the 

PARAID device and also recovering from a disk failure.  This component has not been 
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implemented in the prototype, but would be implemented as a Linux kernel module in the same 

fashion as the PARAID Gear-Shifting Logic and PARAID Monitor. 

 

5.5 PARAID User Administration and Raidtools 

 
The major responsibility of the PARAID user administration component—or pdadm for 

short—is to provide a way for the PARAID administrator to communicate with the PARAID 

device.  This communication includes setting device configuration parameters, so that the 

PARAID device can be tweaked for optimal performance.  The pdadm User Administration Tool 

uses the device I/O control for communication. 

To send a command, pdadm obtains a handle to the PARAID device and issues an I/O 

control command to it.  The command is received by the md device driver, which then reacts 

accordingly.   Common commands to PARAID are hardwired into pdadm and the md device 

driver, and specific actions taken by the md device driver vary by the command. 

Table 5.1 lists the commands that are currently implemented in the pdadm user administration 

program. 

 
 
 

Table 5.1: pdadm controls 

PARAID User Administration Controls 
pdadm -c <value> Change the PARAID device active gear. 

'-c 1' to change to gear 1 
pdadm –d <value> Turn the PARAID debug information on or off.  

0 - off, 1 – on 
pdadm –e Print md device debug data to /var/log/messages. 
pdadm -i <value> Change the time interval for the PARAID Monitor. 
pdadm -m <value> Turn the PARAID Monitor on or off.  

0 - off, 1 - on. 
pdadm -p <value> Print paraid information.  

0 – PARAID read/write statistics,  
1 – PARAID current state,  
2 – PARAID synchronization data from PARAID Disk 
Manager 

pdadm -t <value> Change the utilization threshold for the PARAID 
Monitor 

pdadm –v Print the version of pdadm 
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The pdadm program was implemented as a user space C program, which is one part of a 

larger set of RAID tools called Raidtools.  Raidtools provide utilities to administer RAID devices 

and have been included in popular Linux distributions for years.  Perhaps the most important of 

these is the mkraid tool, which creates RAID devices.  The mkraid tool also examines a RAID 

configuration file called raidtab, which exists in the standard Linux /etc directory and issues 

device I/O control commands to the md device driver.  The raidtab file defines the RAID device 

that is to be created by the mkraid tool:  Table 5.2 lists a raidtab file that defines a RAID-0 

device with four disks in the array. 

 
 
 
 

Table 5.2: RAID Level 0 raidtab 

RAID Level 0 /etc/raidtab 
 
raiddev /dev/md0 
raid-level              0  
nr-raid-disks           4 
persistent-superblock   0 
chunk-size              4 
device                  /dev/sdb1 
raid-disk               0 
device                  /dev/sdc1 
raid-disk               1 
device                  /dev/sdd1 
raid-disk               2 
device                  /dev/sde1 
raid-disk               3 
 

 
 
 
 

The raiddev parameter identifies the md device that is to be created.  The raid-level 

parameter identifies the level of RAID to create—in this case RAID level 0–while the nr-raid-

disks parameter defines the number of disks to be included in the array.  The persistent-

superblock parameter defines whether the super block should be persisted to the disk.  (Persisting 

the superblock allows the RAID device to be shut down without having to recreate it to start the 

device again.)  The chunk-size parameter identifies the size of the chunk, in Kbytes, that is to be 

used in the RAID device.  The device parameter identifies disks to be included in the array while 

the raid-disk parameter identifies the role the disk above it will play in the array. 
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The mkraid tool had to be changed, so that it could handle making PARAID devices.  

Additional raidtab parameters had to be defined and the mkraid tool had to be updated to be able 

to recognize these new parameters.  Table 5.3 lists a raidtab file for a PARAID device with four 

disks in the array and two gears.  The first gear has disks 0 and 1, and the second gear has all 

four disks. 

 
 
 
 

Table 5.3: PARAID raidtab 

PARAID /etc/raidtab 
 
raiddev /dev/md0 
raid-level              9 
nr-raid-disks           4 
nr-gears                2 
default-tier            1 
persistent-superblock   1 
chunk-size              4 
debug                   0 
device                  /dev/sdb1 
raid-disk               0 
device                  /dev/sdc1 
raid-disk               1 
device                  /dev/sdd1 
raid-disk               2 
device                  /dev/sde1 
raid-disk               3 
gear                    0 
gear-width              2 
gear                    1 
gear-width              4 
 

 
 
 
 

The new parameters added for PARAID are the nr-gears, gear, and gear-width.  The nr-

gears parameter identifies the number of gears in this PARAID device.  The gear parameter 

identifies a gear and the gear-width parameter identifies the number of disks included in that 

gear.  In addition, the md device driver had to be updated, so that it knows how to handle the 

new PARAID commands. 
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5.6 Source Listing 

 
Table 5.4 lists the source files created or changed for the implementation of the 

PARAID prototype.  The table includes the file name and the path where the file can be found, 

and it also includes a short description of the PARAID modifications.  Additionally, a line count 

is included for each file.  The total source consists of 3,435 lines of PARAID code. 

 
 
 
 

Table 5.4: PARAID source listing 

File Description Lines 
/linux/drivers/md/paraid.c Implements the PARAID RAID personality. 1070 
/linux/include/linux/raid/paraid.h Implements the PARAID RAID personality. 134 
/linux/drivers/md/paraid-dm.c Implements the PARAID Disk Manager 662 
/linux/include/linux/raid/paraid-dm.h Implements the PARAID Disk Manager. 52 
/linux/drivers/md/paraid-mon.c Implements the PARAID Monitor. 478 
/linux/include/linux/raid/paraid-mon.h Implements the PARAID Monitor. 44 
/linux/drivers/md/paraid-pm.c 
 

Implements the PARAID Print Manager 
Linux Kernel Module.  This module contains 
all of the system output functions for the 
PARAID device. 

182 

/linux/include/linux/raid/paraid-pm.h Implements the PARAID Print Manager. 18 
/linux/drivers/md/md.c Implements the Multiple Device, md. 212 (added) 
/linux/include/linux/raid/md_u.h 
 

Implements the Multiple Device, md, user 
space definitions. 

24 (added) 

/linux/include/linux/raid/md_p.h 
 

Implements the Multiple Device, md, 
physical space definitions. 

5 (added) 

/linux/incude/linux/raid/md_k.h 
 

Implements the Multiple Device, md, kernel 
space definitions. 

16 (added) 

/raidtools/pdadm.c 
 

Implements the PARAID User 
Administration tool, pdadm. 

480 

/raidtools/mkraid.c The make raid Raidtool implementation. 11 (added) 
/raidtools/parser.c The Raidtool command parser 

implementation. 
47 (added) 
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CHAPTER 6 

6EVALUATING PARAID 

 
 
 
 

Unlike most of the existing power reduction work, PARAID was evaluated empirically 

and under realistic workloads to verify the validity of its design.  Empirical evaluation of 

PARAID involves prototyping PARAID, constructing a power measurement framework, and 

searching for appropriate and realistic workloads.  The two types of workload used were a web 

server workload and the PostMark benchmark [14]. 

6.1 Measurement 

 
A measurement framework was built to empirically evaluate the execution of the 

PARAID prototype (Figure 6.1).  The measurement framework included both the hardware and 

software components. 

6.1.1 Measurement Framework Hardware 

The measurement system hardware consisted of two computers, with one acting as a 

client and the other a server.  The client computer hosted the trace playback system that 

generated workload, and the server computer hosted a web server that used a RAID storage 

device (Table 6.1).  Four disks were used to build the RAID devices on the server.  The client 

and server computers were connected directly to each other by a CAT-6 crossover cable so that 

extraneous network traffic would not interfere with the experiments.   
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Figure 6.1: Measurement framework 

 
 
 
 

Table 6.1: Measurement framework hardware 

 Server Client 
Processor Intel Xeon 2.8 Ghz Intel Pentium 4.2.8 Ghz 
Memory 2 Gigabytes 1 Gigabytes 
Network Gigabit Ethernet Gigabit Ethernet 
Disks 36.7 GB 15k RPM SCSI 

Ultra 320 
160 GB 7200 RPM 
SATA 

 
 
 
 

To measure the power of the disks, the power measurement framework included an 

Agilent 34970A digital multimeter.  The multimeter sampled the power of each disk several 

times per second.  Each disk was connected to the multimeter on a unique channel, and the 

multimeter was connected to the client computer via a universal serial bus.  The sampled data 

gathered by the multimeter was sent to the client computer.  The multimeter took several samples 

per channel per second but logged only the average to the client computer, approximately once 

per second.  Figure 6.1 shows the client and server computers and the multimeter in the 

measurement system. 

Measuring the power consumption of any electrical device is based on Ohm’s Laws, 

which state that current can be calculated by dividing the voltage drop across a resistor by the 
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amount of resistance from the resistor.  Ohm’s Laws also state that the power used by a device 

can be calculated by multiplying the voltage drop across the device by the current.   

 
 
 
 

Table 6.2: Ohms Laws 

Ohms Law For Current 
 
 I (Current) = Vr (Voltage Drop of Resistor) / R (Resistor) 
 
Ohms Law for Power 
 
 P(Power) = Vd (Voltage Drop of Disk Device) * I 
 

 
 
 
 

To use Ohm’s Laws to measure the power of a disk, a closed circuit was created and a 

resistor was inserted in series at the beginning of the circuit, as shown in Figure 6.2.  A 

multimeter measured the voltage drop across the resistor, Vr, by measuring the voltage at the 

beginning of the resistor and the voltage at the end of the resistor, and calculating the difference 

between the two.  The amount of current used by the resistor—which is also the current used by 

the disk—can thus be calculated using Ohm’s Laws, as listed in Table 6.2.  A multimeter also 

measures the voltage drop across the disk, Vd, and this is used to calculate the power of the disk. 

To create this closed circuit in the measurement system, each disk was removed from the 

web server, and a resistor was introduced into each disk’s 12V+ and 5V+ power lines.  The 

12V+ line supplied power to the spindle motor; the 5V+ line provided power to the disk 

electronic chipset.  The SCSI cable is connected directly to the motherboard, which allows the 

SCSI cable to maintain the same performance as if the disks were connected to the SCSI hot 

swappable backplane in the server. 

A 0.1 Ohm resistor was inserted in series between the power supply and the adapter for 

each 12V+ and 5V+ line.  One set of multimeter probes was attached to both ends of the resistor, 

and another set was attached to each of the positive and negative lines of the corresponding disk, 

as shown in Figure 6.3.  This allowed the multimeter to measure the voltage drop across the 
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resistor, and the voltage drop of the disk.  The current of the disk was calculated from the voltage 

drop of the resistor.  The voltage drop across the disk remained constant. 

 
 
 
 

 
Figure 6.2: Introducing a resistor in series between the 
disk and the power supply. 

Figure 6.3: Measuring the power of the disks in the 
measurement system. 

 
 
 
 

6.1.2 Measurement Framework Software 

The software used in the measurement framework falls into two groups:  the web server 

software and client workload software.  During the experiments, the server received the 

workload generated from the client, so that PARAID running on the server could be evaluated.  

The PARAID prototype was built under Linux 2.6.5, which required the installation of the 

Fedora Core 2 operating system on the server.  The server used the ext2 file system and also had 

the Apache web server 2.0.52 installed.  

During the experiments, the client is responsible for generating the workload that is sent 

to the server and logging the power measurement data from the multimeter.  The client has 

Microsoft Windows XP installed because the Agilent Multimeter software logs the data using 

Microsoft Excel.   

The trace playback software that resides on the client is called WebClient, and it was 

developed by Mathew Oldham at Florida State University [18].  The WebClient program was 

implemented in Java version 1.5 and was designed to playback web log traces.   
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While replaying the web log activities, the WebClient program generates performance 

statistics.  The WebClient program measures end-to-end performance metrics that encompass 

both server and per-request performance numbers.  WebClient measures latency, which is the 

elapsed time to receive the first response from the server for a given request.  WebClient also 

measures the elapsed time between sending the first byte of the request to receiving the last byte 

of the response for every request.  Additionally, WebClient records the total number of 

connections completed per second and the total number of concurrent connections between the 

client and server.  The WebClient measures throughput by accounting for the total number of 

bytes sent by the server during the corresponding transmitting interval.  These end-to-end 

statistics, generated by WebClient, are used to evaluate the performance of the PARAID 

prototype. 

 

6.2 Workload 

 
An ideal workload stresses a system in representative ways, so that realistic system 

performance characteristics can be captured.  Trace replays are commonly used to capture this 

level of realism.  The downside of this choice is that traces may also reflect hardware 

characteristics that cannot be easily duplicated with the benchmarking framework.  The 

workload chosen was a Web server workload, which is unique in that Web server activity 

exhibits daily fluctuations in amount of activity.  More activity was observed during the day and 

less during the night.  This fluctuating characteristic was essential for evaluating PARAID in its 

ability to save power. 

Capturing the real workload is tricky.  It is important to capture a snapshot of the file 

system of the traced server so that the effects of fragmentation are not overlooked in 

measurement.  Most system administrators have security concerns for revealing such level of 

details of a system [21].  Web servers might contain sensitive user data that cannot be revealed, 

such as the answers for final exams.  To work around this problem, the workload capture 

program disregarded the actual file content stored on the web server and captured only the name, 

size, type of file, file creation time stamp, modification time stamp, and last access time stamp.  

The capture program then encrypted the file names using the SHA-1 algorithm [22] and filled 

files with randomized characters. 
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The trace was captured from an academic web server within the Computer Science 

Department at Florida State University.  This web server is used by all students and faculty of the 

department for classes, administration, and research.  The activity was captured from August 

2004 to November 2004.  The file system contained approximately 47 Gbytes of data, 44,000 

directories, and 518,000 files. 

 
 
 
 

 
Figure 6.4: September 23, 2004, workload 

 
 
 
 

After analyzing the traces, September 23, 2004 was chosen as one of the Wednesdays 

that had a higher volume of activity.  The data from that day contains only the typical daily 

fluctuation in load, which can be exploited by PARAID for saving power.  This particular 24-

hour period of trace activity had an approximate total 450 Mbytes of data transmitted within 

17,000 requests.  The activity for this day is shown in Figure 6.4.  Notice that the peak traffic is 

in the middle of the day, during which time, PARAID will gear-shift into a higher gear.  For the 

remainder of the day, PARAID can find opportunities to save power. 

To warm up the cache, six hours of trace activity from the day before was run before the 

data gathering began.  The total duration of the trace used in the experiments was lengthened to 

30 hours. 



51 

In addition to the web server workload, the PostMark benchmark was used to evaluate 

PARAID.  PostMark is designed to simulate an Internet Service Provider (ISP) workload.  ISP 

workload consists of a combination of electronic mail, netnews, and web-based transactional 

traffic [14].  The PostMark benchmark was chosen because it can stress the peak performance of 

PARAID. 

 

6.3 Experimental Results 

 
It was important to compare PARAID with a conventional RAID 0 device, since neither 

have reliability mechanisms such as mirroring or parity bits.  Comparing PARAID to other 

RAID levels with reliability mechanisms will overstate PARAID’s performance numbers.   

The PARAID prototype was also compared with a modified RAID 0 device, RAID-0 

LRU, which used a least recently used (LRU) policy to determine when to power off individual 

disks [2].  Since a disk experiences a significant spike in power as it is powered on, a disk that is 

too frequently power-cycled will use more power than a disk always powered.  Therefore, a 

break-even threshold is used, which is an interval at which the power saved by turning off a disk 

during this interval is equal to the power used to bring the disk back online.  Also, this interval 

needs to account for the time needed to spin a disk back up, which can take around 8 seconds for 

server-class drives. 

For the RAID-0 LRU device, the LRU policy used an 18-second break-even threshold.  

Therefore, a disk is not powered off unless it has been inactive for at least 18 seconds.  When 

using an LRU policy for each disk in RAID-0 LRU, some of the disks can stay powered, while 

others might be powered off.  (In practice, this scenario was rare, because all disks are required 

to serve the I/O requests due to the uniform striping pattern.) 

It is important to evaluate RAID-0 LRU, because it demonstrates that server-class storage 

has few opportunities to power all disks off.  Therefore, it was expected that RAID-0 LRU would 

perform in a manner similar to RAID 0 most of the time.  Only when there was no workload 

would RAID-0 LRU actually save power. 

The PARAID device used in the experiments, PARAID-0 2g, had two gears: the first 

gear had two disks, and the second gear had four.  This device switches into a high gear when the 
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workload on the system demands it.  When the workload is light, this device switches into the 

lower gear, using only two disks, and thus saves power.   

The RAID-0 device had four disks.  All RAID 0, RAID-0 LRU, and PARAID-0 2g were 

compiled on the measurement server, and all three used a chunk size of 4 Kbytes with the ext2 

file system installed. 

To conduct each experiment, the trace of the web workload captured on September 23 

was replayed on the measurement framework.  The client generated activity to the web server, 

which ultimately forwarded I/O requests to the benchmarking devices.  Each experiment was 

repeated four times.  In preliminary experiments, replaying the trace at normal speed did not 

generate enough activity on the web server to cause the PARAID-0 2g device to switch into a 

higher gear, so the web user arrival rate was accelerated to eight times the normal speed. (Timing 

dependent on human interactions, such as the time between user mouse clicks on links, is not 

accelerated.)   

In the evaluation of PARAID, two important questions need to be answered.  First, does a 

PARAID device reduce the amount of power consumed, compared to a conventional RAID?  

Second, is performance preserved using a PARAID device compared to that of a conventional 

RAID?   

6.3.1 Power Measurements 

Figure 6.5 shows the amount of power consumed versus time for RAID-0, RAID-0 LRU, 

and PARAID-0 2g respectively.  The lines strongly correlate to the level of workload over the 

24-hour trace playback period:  more power is consumed during the midday when the web traffic 

volume was heaviest as seen in Figure 6.4.   

To produce these graphs, the voltage drops were sampled across the resistors and the 

disks several times per second and were averaged every one second.  The one-second averages 

were used to compute the power used per second, and these numbers were averaged over a four-

minute period to form a data point.   

Figure 6.5 shows that RAID 0 ranged between 20 and 34 watts; RAID-0 LRU ranged 

between 12 and 33 watts; and PARAID-0 2g ranged between 16 and 32 watts.  

On average, RAID-0 LRU used 5% less power usage than RAID 0; however, at a given 

time, RAID-0 LRU can save anywhere from 0% to 47% l.  PARAID-0 2g saved 23% of power 
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on average, and it can save between 6% and 40% power at a given time.  Note that powering off 

a disk only stops a disk from spinning its platter, and therefore, only the 12V line is powered off.  

Power is still needed for the 5v line that powers a disk’s electronic chipset, so that the disk can 

pass commands along the daisy-chained disks via the SCSI interface cable.  Therefore, the power 

never drops to zero for the PARAID cases, even when all of the disks are powered off.  In fact, a 

disk with the spindle motor powered off still consumes about three watts of power for the 

electronic chipset. 

 
 
 
 

 
Figure 6.5: Power measurements 
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6.3.2 Performance Measurements 

For performance, Figures 6.6 and 6.7 show CDFs of per-request latency and completion 

time respectively in milliseconds (ms).  The per-request latency measures the time for the web 

server to return the first byte of data.  For RAID 0, 65% of the files had latencies less than 1 ms, 

and almost 100% of the files had latencies less than 100 ms.  For RAID-0 LRU, 75% of the files 

had latencies less than 1 ms.  RAID-0 LRU drops some of the requests due to the latency of 

spinning disks back up, which is greater than the web server timeout.  This was not a problem for 

PARAID-0 2g because PARAID dose not switch to the new gear until the disks have spun up.  

Because of this, Figure 6.6 shows that some of the requests were never served: less than 100% of 

the files served in 1000 ms.  For PARAID-0 2g, 77% of the files have latencies of less than 1 ms, 

and almost 100% of the files had latencies of less than 90 ms.   
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Figure 6.6: Latency measurements 
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Figure 6.7 shows the CDF of per-request total completion time, which is the time 

between sending the first byte of a request from the client to receiving the last byte from the 

server (at the client end).  For RAID 0, 34% of the requests had a completion time of less than 1 

ms, while almost 100% of the files had a total completion time of less than 400 ms.  For RAID-0 

LRU, 40% of the files had a completion time of less than 1 ms.  Again, not all of the requests 

were successfully served by the web server using RAID-0 LRU.  For PARAID-0 2g, 41% of the 

files were served in less than 1 ms, and almost 100% of the files were served in less than 600 ms. 
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Figure 6.7: Total Completion Time measurements 
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6.3.3 Postmark Benchmark Measurements 

The PostMark benchmark is a popular ISP synthetic benchmark, which was used to stress 

the peak performance of a storage device for its read- and write-intensive activity [14].  The 

PostMark Benchmark was run only on the server (without the client) (Figure 6.1).  Figure 6.8 

shows three sets of PostMark numbers for RAID 0 and PARAID-0 2g.  Each benchmark was 

conducted four times directly on the server used for the web benchmark.  With an average file 

size of 1 Kbyte, RAID-0 was able to complete 50,000 transactions in 5.6 seconds on average, 

while PARAID-0 2g did the same in 4.4 seconds.  With an average file size increased to 20 

Kbytes, RAID 0 was able to complete 50,000 transactions in 52 seconds on average, while 

PARAID-0 2g did the same in 54 seconds.  With the same file size setting with 100,000 

transactions, RAID 0 completed the benchmark in 110 seconds while PARAID-0 2g did the 

same in 116 seconds.  Overall, the observed overhead is within 5%. 
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Figure 6.8: PostMark Benchmark measurements 
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6.3.4 Reliability Measurements 

The reported power benefits of PARAID-0 2g involved only one power cycle over the 

course of the 24-hour trace playback period.  This power cycle took place during the middle of 

the day when the PARAID-0 2g device gear shifted from gear 1 into gear 2 to accommodate the 

high activity, and then gear-shifted back to gear 1 once the activity had decreased.  Also, only the 

two disks not in the first gear were power–cycled; therefore, it is conceivable that PARAID-0 2g 

can operate with 365 power cycles a year, knowing that the daily fluctuations of load are highly 

predictable.  With a 20,000 power-cycle rating [5], the number of power cycles incurred by 

PARAID should have a very limited impact on the life expectancy and the reliability of these 

disks. 

 

6.4  Discussion of Results 

 
The empirical results need to answer two questions regarding power and performance.  

The experiments also raise more questions:  what is the impact of having more gears on a 

PARAID device?  Why did PARAID-0 2g outperform RAID 0 in latency and total completion 

time at times?  What impact did the workload used for the experiments have on the results? 

In terms of the power impact made by the number of gears, two gears saved 18% more 

power than using only one gear.  For one gear, the only opportunity to save power is when there 

is no traffic on the server.  Outside of that opportunity, RAID-0 LRU will use just as much 

power as RAID 0.  With a busier workload, a one-gear PARAID device would save even less 

power.  Having gears allows PARAID to more accurately vary the number of powered disks 

according to demand.  Figure 6.9 shows the amount of power savings lost using a one-gear 

PARAID device.  Figure 6.10 shows how having multiple gears allows one to save more power 

by closely matching the workload curve. 

Having more gears can save more energy, but there is a capacity and write propagation 

overhead associated with each additional gear.  PARAID trades capacity for saving energy, and 

the capacity overhead is a factor of the number gears in the device and the number of disks per 

gear.  In addition, PARAID relies on block replication to be able to create the gears.  As the 

number of gears increases, more blocks need to be replicated and maintained for consistency.  
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Because of the overhead, using fewer gears that save a significant amount of energy is preferable 

to using many gears that only offer marginally more energy savings. 

 
 
 
 

 
Figure 6.9: Opportunity lost to save power by RAID 0 Figure 6.10: Opportunity lost to save power by PARAID. 
 
 
 
 

In terms of performance, RAID-0 LRU performed worse than PARAID-0 2g.  The 

slower latency can be directly attributed to the need to power on more disks from power-saving 

mode.  Having multiple gears hides this delay better by having a threshold to time-cushion the 

disk spin-up time.   

PARAID-0 2g on average used 23% less power than RAID 0, with only a four-disk array.  

Should PARAID use a larger array with more gears, over a longer period of time, the savings 

would be even more significant. 

PARAID-0 2g performed well compared to RAID 0, in both latency and total completion 

time.  With statistical significance, PARAID-0 2g was able to serve 10+% more requests with a 

latency of 1 ms.  In terms of total completion time, PARAID-0 2g outperformed RAID 0 for the 

first 10 ms, having 4% to 7% more requests completed.  RAID 0 did eventually catch up to 

PARAID-0 2g performance and ultimately surpass PARAID-0 2g as the latency and the total 

completion time increased.  For a uniformly striped RAID, as the number of disks increase, the 

probability of one of the disks incurring a full seek and waiting for a full rotation approaches 1.  

On the other hand, skewed striping allows smaller files to be served faster as the number of 
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powered disks decreases.  The RAID devices used in these experiments had a chunk size of 4 

Kbytes.  If the requested file was over 8 Kbytes, more than two disks would be required to serve 

the file in the RAID-0 device, while PARAID-0 2g can potentially use only two disks when it is 

operating in the first gear. 

RAID 0 has the potential to serve large files faster than PARAID-0 2g, while operating 

with only the first gear.  The throughput of RAID 0—a factor of the number of disks that can 

transfer bytes in parallel—will be better than that of PARAID-0 2g at lower gears.  This might 

explain why eventually RAID 0 catches up to PARAID-0 2g as the total time to completion 

increases.   

This analysis reveals that the type of workload has strong implications on the 

opportunities to save power.  The web workload used had a defined fluctuation of loads.  The 

power measurement curves strongly correlate with the workload curves, and PARAID with 

multiple gears was able to take advantage of that fact.   

How would a change in the workload affect the results?  If workload had been heavier 

over the course of a 24-hour period, there would have been less of an opportunity for PARAID to 

save power.  In fact, a heavy enough workload would prevent any form of power-saving 

approaches from being effective.  The reverse of that is also true: if the workload had been 

lighter, more power would have been saved.  However, a trivial all-on-and-off RAID-0 LRU can 

serve the purpose of power-saving.  What has been revealed through experimentation is that by 

matching the way disks are used with the fluctuating workload, significant power benefits can be 

gained.  Also, it is possible to meet peak performance needs while degrading performance in a 

way not perceivable by end users during off-peak hours.  

In summary, PARAID-0 2g did save power with limited performance degradation.  It 

does make a significant difference to have multiple gears in the PARAID device.  This allows 

PARAID to more closely follow the workload curve, ultimately saving more power.  PARAID-0 

2g outperforms RAID 0 for small files, but underperforms with large files, explaining the gaps 

between the two devices in latency and total completion time.  Workload certainly plays a 

significant role in the amount of power that can be saved, and the opportunity for PARAID to 

save power is dependent on the characteristics of the system workload. 
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CHAPTER 7 

7RELATED WORK 

 
 
 
 

Previous energy reduction work has mostly been done in the area of mobile computing.  

Only recently has reducing energy been a concern in server-class computing.  Some approaches 

directly involve the storage hardware; some involve RAIDs; other approaches involve the entire 

file system or even the applications.  This chapter focuses on RAID approaches.  Note that most 

results obtained in the arena of energy reduction are based on simulation, whereas PARAID was 

prototyped and empirically measured. 

Through simulation, massive arrays of idle disks (MAID) [4], have shown to use only 

15% of the power that is used in comparable RAIDs that are always powered.  The primary goal 

of MAID is to provide a disk-based archival system that can compete with tape libraries in terms 

of capacity and performance.  MAID takes advantage of the observation that 50% of the data that 

is written is never accessed in a mass storage system in super computing environments [15].  

Therefore, MAID is structured into two sets of disks—data disks and cache disks.  The data disks 

hold all data blocks, while the cache disks hold a copy of the recently accessed data blocks.  

When an I/O request arrives, MAID first checks the cache disks.  If the data is on the cache 

disks, the data is returned, otherwise the request is sent to the data disks.  MAID reduces power 

by keeping the cache disks always powered and spinning down the data disks when not needed.  

MAID is effective in saving power for mass storage that handles tape archival workload because 

this workload is predictable.  The cache disks are populated with the data blocks that are 

accessed frequently, allowing the data disks to stay powered off.   

PARAID differs from MAID in both intention and design.  The intention of MAID is to 

provide a competitive alternative to tape archival storage systems.  Under tape archival 

workload, MAID can excel to save power.  MAID uses a power management policy similar to 
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RAID-0 LRU; the disks are either on or off based on disk activity.  If the workload contains light 

but short periodic accesses with consistent cache misses, the power management policy of MAID 

will keep all the disks powered.  This provides MAID with limited opportunity to save power on 

workload that is fluctuating in nature.  PARAID can hug the curve of the workload by gear 

shifting into the best gear, allowing PARAID to save power more aggressively.  As far as 

capacity is concerned, MAID requires cache disks.   

Popular data concentration (PDC) [20] claims to save more power than MAID.  PDC 

centers on the popularity, or the frequency, of file access.  PDC puts the most popular data on the 

first disk, the second most popular on the second disk, and so on.  Disks are powered off in PDC 

based on activity; disks that are not active for a certain duration are spun down.  PDC was 

evaluated via simulations.  

PARAID differs from PDC in the way data is skewed.  PARAID will outperform PDC in 

throughput because PARAID balances load within each gear through uniform striping, while 

PDC stores each file only on one disk.  PDC does create more opportunities to power off disks, 

but PDC sacrifices performance both at the peak and light system loads.   

The power-aware cache management policy (PA-LRU) [27] claims to use 16% less 

energy and achieve a 50% better average response time than that of LRU cache management 

policy.  PA-LRU assumes no striping, and it saves power by caching more data blocks from the 

less active disks.  Lengthening the access interval for these less active disks allows these disks to 

be powered off for longer durations.  The authors overcame some of the shortcomings of PA-

LRU by later introducing the partition-based cache management policy (PB-LRU) [28].  PB-

LRU divides the cache into separate partitions for each disk.  Each partition is managed 

separately by a replacement algorithm such as LRU.  PB-LRU can adapt to different workloads 

more quickly (something PA-LRU had trouble doing) because the cache miss sequencing is 

easier to control.  PB-LRU provides similar energy savings and I/O response times to that of PA-

LRU.  In both papers, the evaluation was based on simulation.   

PARAID differs significantly from the approaches by PA-LRU [27, 28]; therefore, it is 

difficult to compare the two directly.  The biggest difference is that the work done with PARAID 

considers the effects of striping in storage while PA-LRU does not.  This has significant impacts 

on performance in storage.  PA-LRU will simply not be able to deliver the same level of 

performance as PARAID while saving energy.   
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Carrera et al. [2] and Gurumurthi et al. [9] explored power reduction of server-class disks 

by varying the speed of the disks.  Both papers showed through simulation that power 

consumption can be significantly reduced.  Both of these works simulated a hypothetical multi-

speed disk.  The simulated disk varies its speed according to the load imposed on the disk, in an 

effort to save energy.  On the other hand, PARAID uses off-the-shelf disks and is prototyped to 

demonstrate the actual energy savings. 
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CHAPTER 8 

8FUTURE WORK 

 
 
 
 

The research associated with PARAID is on-going work.  There are several areas of 

continuing research with PARAID:  determining the reliability of a PARAID device, exploring 

different striping strategies, measuring PARAID under a wider range of workloads, and 

extending PARAID to be based on RAID 5.  Also, the PARAID Reliability Manager was not 

implemented in the initial prototype and is currently under development. 

 

8.1 Reliability Simulator 

 
It is difficult to test disk failure from power cycling because of the time commitment 

required.  The disks used in the PARAID evaluation have a 20,000 power-cycle rating.  It is 

simply not practical to test this empirically by power cycling a disk 20,000 or more times.  To 

overcome this obstacle, a simulator will be built to project the usefulness of the PARAID 

Reliability Manager rationing and role exchange algorithms.  Validation will only be done with 

limited time constraints (e.g., measuring the aging of a disk according one of the popular 

S.M.A.R.T tools [23]). 

The simulator will work with the actual PARAID components, so that input into the 

simulator will be the same input for the PARAID Reliability Manager.  A trace will be used to 

drive the simulator.  The simulator will allow for different algorithms to be tested quickly and 

also project the reliability of PARAID in terms of disk failures due to power cycling. 
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8.2 Striping Strategy 

 
The current PARAID-prototype changes the disk layout of RAID.  Therefore, adapting to 

different RAID levels requires the creation of different PARAID levels.  Another approach is to 

store soft replicated states in the unused portion of a RAID to create the gears.  The replicated 

states are considered soft because each state can be invalidated and reconstructed without 

affecting the data consistency and correctness of the original RAID operations.  The original 

RAID level disk layout then can be preserved.  Soft replicated states can be created in a skewed 

fashion.  This more modular and flexible approach would allow PARAID to sit easily on top of 

current RAID levels.  Also, PARAID could be augmented to existing RAIDs.  Figure 8.1 shows 

an example of the soft-state PARAID design.  The example PARAID device in the figure has 

four disks and three gears.  The first gear consists of disks 1 and 2; the second gear, disks 1 to 3.  

Both gears 1 and 2 use soft state.  The third gear consists of all four disks and does not use soft 

state.  When operating in this gear, the original RAID code and disk layout is used.  To create the 

gears, the data blocks from disk 4 are replicated to form the second gear, and then the blocks 

from disk 3 are replicated to form the first gear.  Because the data blocks of disk 4 are replicated 

in gear 2, disk 4 can be powered off when PARAID is in gear 2.  The same applies for disks 3 

and 4 when gear shifting into gear 1. 

 
 
 

 
Figure 8.1: Soft state skewed striping design 
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8.3 Workload 

 
Workload plays a large role in the success of PARAID.  How much energy can be saved 

is dependent on the type of workload.  The evaluated PARAID prototype has been tested against 

web server workload.  Other workload types need to be tested for the applicability of PARAID to 

saving power.  For example, database workload is heavily transaction-oriented and tends to have 

more write requests, stressing the server throughput and response time [11].  Database workload 

will evaluate how well PARAID handles update propagation when a drive is brought back 

online.  Also, PARAID needs to be evaluated against heavier web server workload.  The web 

server workload obtained in this evaluation had to be accelerated to be able to stress the 

measurement framework. 

 

8.4 RAID Level 5 

 
The initial PARAID prototype was built with a uniform striping pattern within each gear, 

which provided no redundancy, similar to RAID 0.  Therefore, there is no way to recover from a 

disk failure within the first gear of PARAID.   

To be as reliable as RAID 5, one of two strategies can be employed.  The first strategy is 

to construct a parity block for every stripe as is done in RAID 5 for the first gear only.  The 

parity block allows for a single disk failure within the first gear.  Also, the additional properties 

of being able to handle any number of disk failures outside of the first gear would still hold.  This 

approach is more reliable than RAID 5 due to other replicated blocks.  The first gear consists of a 

minimum of three disks imposed by existing RAID 5 standard.  Three disks are needed because a 

disk is used to store the parity.  If only two disks are used, mirroring is a better alternative.  

The second strategy to be as reliable as RAID 5 is to use soft state replication as 

mentioned above.  Since the soft state sits on top of a RAID level personality, the underlying 

RAID 5 mechanisms can be completely reused.  This approach is less intrusive and can be 

applied to other existing RAID levels.  Also the skewed striping strategy could be easily 

changed.  A skewed striping strategy based on file temperature could be interchanged very easily 

when using a soft state approach. 
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CHAPTER 9 

9CONCLUSION 

 
 
 
 

This thesis hypothesizes that by using a novel data distribution technique, it is possible to 

achieve energy savings while preserving performance on server-class storage systems.  Through 

the use of a novel skewed striping pattern, PARAID was able to achieve performance in both 

latency and total completion time comparable to that of conventional RAID, while consuming 

23% less energy.    

The prototyping and evaluation processes of PARAID have illustrated the following 

lessons:   

• Servers are purchased to meet the peak load specifications, leaving the system under-

utilized most of the time.  PARAID exploited underutilizations in storage capacity and 

performance and translate them into power savings. 

• Since performance has been the primary focus of servers, energy savings are not built-in 

to the system design.  This afterthought can be seen in the existing RAID designs and the 

construction of the PARAID power measurement framework. 

• Since servers constantly receive requests, conventional ways of using system-wide 

measure of idleness to govern power provide limited opportunities.  By organizing 

storage resources in hierarchical overlapping sets of disks or gears, power can be saved 

by powering the appropriate set of components to match the fluctuations of system 

demands.  The skewed replication strategy used by PARAID and smooth switching 

among gears also mask the disk spin-up latency.   

• Cyclic fluctuations detected in user loads allow PARAID to use stable and limited gear 

shifting to achieve power savings and deliver matching performance.  Since the reliability 

of server-class drives assumes limited number of power cycles, PARAID can also 
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leverage the knowledge of cyclic load fluctuations to power switch sparingly and 

effectively, thus controlling and limiting the adverse effects of power cycling on 

reliability. 

 

PARAID has demonstrated that achieving energy savings does not necessarily involve 

significant performance loss.  Another insight that emerges from the PARAID is that the 

characteristics of the workload ultimately dictate the system design.  For the average 

performance of PARAID, this thesis has only explored an academic web server trace.  Different 

workload types with different fractions of reads and writes, file systems, workload curves, peak-

to-trough ratios of workload volumes, and access localities will lead to different strategies to 

form hierarchical overlapping set of disks.  Different groupings of disks lead to different 

performance, energy consumption, reliability characteristics, and overhead characteristics.  This 

insight also leads us to revisit the implications of workloads and to design more tailored systems. 

 



68 

 
 
 
 
 

REFRENCES 

 
 
 
 
[1] Cao P, Felten EW, Li K, Implementation and Performance of Application-Controlled File 
Caching, Proceedings of the 1st Operating Systems Design and Implementation Symposium, 
1994. 
 
[2] Carrera E, Pinheiro E, Bianchini R, Conserving Disk Energy in Network Servers, 
Proceedings of the 17th Annucal ACM International Conference on Super Computers, 2003. 
 
[3] Chen P, Lee E, Gibson G, Katz R, Patterson D, RAID: High-Performance, Reliable 
Secondary Storage, ACM Computing Surveys, 26(2), June 1994. 
 
[4] Colarelli D, Grunwald D, Massive Arrays of Idle Disks For Storage Archives, Proceedings of 
the 2002 ACM/IEEE Conference on Supercomputing, November 2002. 
 
[5] Fujitsu, MAP Series Disk Drive, 2005.  
http://www2.fcpa.fujitsu.com/sp_support/ext/enterprise/datasheets/map10krpm-datasheet.pdf. 
 
[6] Fujitsu, MAS Series Disk Drive, 2005.  
http://www2.fcpa.fujitsu.com/sp_support/ext/enterprise/datasheets/mas15krpm-datasheet.pdf. 
 
[7] Fujitsu, MHV 4200 RPM Series Disk Drive, 2005.  
http://www.fcpa.fujitsu.com/download/download/hard-drives/mhv-at-datasheet.pdf. 
 
[8] Fujitsu, MHV 5400 RPM Series Disk Drive, 2005  
http://www.fcpa.fujitsu.com/download/download/hard-drives/mhv-ah-datasheet.pdf. 
 
[9] Gurumurthi S, Sivasubramaniam A, Kandemir M, Franke H, DRPM: Dynamic Speed Control 
for Power Management in Server Class Disks, Proceedings of the International Symposium on 
Computer Architecture, pages 169-179, June 2003. 
 
[10] Hamblen M, IS Managers caught in storage capacity chase, Computerworld, May 1997. 
http://www.computerworld.com/news/1997/story/0,11280,5204,00.html 
 
[11] Hsu W, Smith A, Young H, Characteristics of production database workloads and the TPC 
benchmarks, IBM System Journal, 40(3), pages 781-802, 2001. 



69 

 
[12] Huang H, Pillai P, Shin KG,  Design and Implementation of Power Aware Virtual Memory, 
Proceedings of the 2003 USENIX Annual Technical Conference, 2003. 
 
[13] Iyengar A, Challenger J, Dias D, Dantzig P, High-performance Web Site Design 
Techniques, IEEE Internet Computing, 4(2):17–26, March 2000. 
 
[14] Katcher J, PostMark: A New File System Benchmark, Technical Report TR3022, Network 
Appliance Inc., October 1997. 
 
[15] Miller E, Katz R, An analysis of file migration in a Unix supercomputing environments, 
Proceedings of the 1993 USENIX Winter Technical Conference, pages 421-433, 1993. 
 
[16] Moore J, Chase J, Ranganathan P, Sharma R, Making Scheduling "Cool": Temperature-
Aware Workload Placement in Data Centers, Proceedings of the 2005 USENIX Annual 
Technical Conference, 2005. 
 
[17] Nightingale EB, Flinn J, Energy-Efficiency and Storage Flexibility in the Blue File System, 
Proceedings of the 6th Symposium on Operating Systems Design and Implementation, December 
2005. 
 
[18] Oldham M, A Power and Performance Measurement Framework for Server-Class Storage, 
Honors Thesis, Florida State University, April 2005. 
 
[19] Patterson DA, Gibson G, Katz RH, A case for redundant arrays of inexpensive disks 
(RAID). ACM SIGMOD International Conference on Management of Data, 1(3):109-116, June 
1988. 
 
[20] Pinheiro E, Bianchini R, Energy Conservation Techniques for Disk Array-Based Servers, 
Proceedings of the 18th Annual ACM International Conference on Supercomputing (ICS'04), 
June 2004. 
 
[21] Radcliff D, Guarding the data warehouse gate, Computerworld, October 2001. 
http://www.computerworld.com/industrytopics/financial/story/0,10801,64307,00.html 
 
[22] RFC-3174 - US Secure Hash Algorithm 1, 2001. http://www.faqs.org/rfcs/rfc3174.html 
 
[23] SANtools, Inc., 2005. http://www.santools.com/smartmon.html 
 
[24] Santry DS, Feeley MJ, Hutchinson NC, Veitch AC, Carton RW, Ofir J, Deciding when to 
forget in the Elephant File System, Proceedings of the 17th ACM Symposium on Operating 
Systems Principles, 1999. 
 
 
 



70 

[25] Xu R, Wang A, Kuenning G, Reiher P, Popek G, Conquest: Combining Battery-Backed 
RAM and Threshold-Based Storage Scheme to Conserve Power, Work in Progress Report, 19th 
Symposium on Operating Systems Principles (SOSP), October 2003. 
 
[26] Yu X, Gum B, Chen Y, Wang R, Li K, Krishnamurthy A, Anderson T, Trading Capacity for 
Performance in a Disk Array, Proceedings of the 4th Symposium on Operating Systems Design 
and Implementation, October 2000. 
 
[27] Zhu Q, David FM, Devaraj C, Li Z, Zhou Y, Cao P, Reducing Energy Consumption of Disk 
Storage Using Power-Aware Cache Management, Proceedings of the 10th International 
Symposium on High Performance Computer Architecture, February 2004. 
 
[28] Zhu Q, Shanker A, Zhou Y, PB-LRU: A Self-Tuning Power Aware Storage Cache 
Replacement Algorithm for Conserving Disk Energy, Proceedings of the 18th Annual ACM 
International Conference on Supercomputing (ICS'04), June 2004. 
 



71 

 
 
 
 
 

BIOGRAPHICAL SKETCH 

 
 
 
 

Charles O. Weddle III 

 

 Charles O. Weddle III was born in Madison, Wisconsin, in 1971.  He spent his childhood 

in Indiana.  In spring of 1994, he completed his Bachelors of Science degree in Computer 

Science from Miami University.  Charles spent eight years working in the industry as a software 

engineer before returning to Florida State University to obtain his Masters of Science degree in 

Computer Science in summer of 2005.  Charles will begin work on his PhD in Computer Science 

in the fall of 2005.  Charles is a member of the Association for Computer Machinery and the 

Institute of Electrical and Electronic Engineers.  Charles is also a member of the Computer 

Science academic honorary Upsilon Pi Epsilon.  Charles’s other interests include running, golf, 

and history. 

 

 


