Behavioral dynamics of pedestrian and crowd motion

William H. Warren Chancellor's Professor Dept. of Cognitive, Linguistic, & Psychological Sciences Brown University

How do pedestrians visually guide their behavior?

- I. Individual locomotion
- II. Pedestrian interactions
- III. Collective crowd motion
- Goal: Build an experiment-driven, microscopic pedestrian model from the bottom up
 - Ultimately, based on visual information

- There are many pedestrian models used in planning and design
- But few are grounded in experiments on human behavior

Behavioral dynamics approach

• Treat agent and environment as a pair of coupled dynamical systems

Emergent behavior

- Behavior corresponds to solutions of the system's dynamics
 - goal states = attractors
 - avoided states = repellers
 - transitions = bifurcations

The VENLab (12x14 m)

- Wireless HMD (Samsung Odyssey)
- Inside-out head tracking
- MSi VR-One backpack computer
- 16 Qualisys motion-capture cameras

I. Locomotion

Elementary behaviors

- Steer to goal
- Obstacle avoidance
- Moving target interception
- Moving obstacle avoidance
- Barrier circumvention
- Wall-following

Model each behavior as a nonlinear 2nd-order system


```
3. Barrier
```


4. Walls

Complex environments

- Linear combinations of components
- Fixed parameters

II. Pedestrian interactions

• What are the *rules of engagement*?

Do people treat each other like moving targets and obstacles?

- 1. Pursuit: modeled by interception
- 2. Evasion: modeled by moving obstacle avoidance

$$\ddot{x} = -c \, \frac{\dot{\theta}}{\theta}$$

 $\ddot{\phi}=c\dot{\psi}$

- 3. Following:
 - (a) Speed control: Match leader's speed by canceling optical expansion

(b) Steering control: Align with leader's heading by canceling angular velocity

Grand Central Station scenario

Minimal model:

- goal + obstacle + moving obstacle
- mean error = 30cm over 10s elapsed time

III. Collective motion

What is the *neighborhood of interaction* in a crowd?

- Experiments in virtual crowds
 - Participant "walks with" crowd

- Perturb heading (±10°) or speed (±0.2 m/s)
- of a subset of neighbors (0, 25, 50, 75, 100%)
- Record participant's trajectory

Neighborhood model

• Weighted average of neighbors

 Weight decays exponentially w/ distance

• Accounts for the virtual crowd data

Human swarm

- Model generates collective motion
- Predicts individual trajectories
 - visual model does, too

Counterflow

• Spontaneous lane formation

Minimal model:

goal (4 leaders) + following + moving obstacle

Conclusions

- Understanding how humans actually move and interact is essential for any pedestrian model
- An experimentally-grounded, bottom-up, agent-based model predicts individual trajectories and crowd flows
 - TBD: walls, interactions of multiple components
- Eventually, behavioral dynamics model could interface with models of infectious disease dynamics

References

- Fajen, B.R. & Warren, W.H. (2003) Behavioral dynamics of steering, obstacle avoidance, and route selection. *Journal of Experimental Psychology: Human Perception and Performance, 29,* 343-362.
- Warren, W.H. (2006) The dynamics of perception and action. Psychological Review, 113, 358-389.
- Warren, W.H. & Fajen, B.R. (2008) Behavioral dynamics of visually-guided locomotion. In A. Fuchs & V. Jirsa (Eds.), *Coordination: Neural, behavioral, and social dynamics*. Heidelberg: Springer, 45-75.
- Rio, K., Rhea, C., & Warren, W.H. (2014) Follow the leader: Visual control of speed in pedestrian following. *Journal of Vision*, 14(2), 4:1-16.
- Rio, K.W., Dachner, G.C. & Warren, W.H. (2018) The local neighbourhood underlying collective motion in human crowds. *Proceedings of the Royal Society B, 285,* 20180611.
- Warren, W.H. (2018) Collective motion in human crowds. *Current Directions in Psychological Science*, 27, 232-240.