WORKSHOP INTRODUCTION

Ashok Srinivasan, University of West Florida

In collaboration with

Sirish Namilae, Anuj Mubayi, Matthew Scotch, Robert Pahle, Brian Eddy, and John Coffey

VIRAL INFECTION PROPAGATION THROUGH AIR-TRAVEL www.cs.fsu.edu/vipra

OUTLINE

- VIPRA project
- NSF CSSI grant goals
- Workshop goals

VIPRA PROJECT

MOTIVATION

- Air travel is an important factor in infection spread
- There had been calls to ban flights from Ebola infected areas
 - This can have large human and economic impact
 - Fine-tuned policy prescriptions can be as effective
 - Reassures the public that action is being taken
 - Avoids negative human and economic impacts

PROJECT GOALS

- Analyze the relative impact of different policies on spread of diseases through air-travel
 - Example: Different boarding procedures
- Why it matters
 - Provides insight to decision makers on policy or procedural choices that can reduce risk of infection spread without disrupting air travel

CHALLENGES IN MODELING

- Models yielding scientific understanding may be hard to apply to public policy analysis
 - Predictions are difficulty due to inherent uncertainties
- Aggregate-level models may be inadequate
 - Lead to coarse-scale prescriptions
- Analysis of empirical data has limitations
 - Impact of new policies difficult to evaluate
 - May not capture extreme events

OUR MODELING APPROACH

- Use fine-scale model of human movement in planes to determine response to policies
- Parameterize sources of uncertainty
 - Parameter sweep over this space to identify vulnerability
- Link with phylogeography model to examine global consequences of local decisions

Air-travel policies to reduce infection spread

Human movement in flights and airports

QUESTIONS TO BE ANSWERED

- Can simple policies reduce infection risk without causing major disruptions?
 - Change plane type
 - Change boarding and disembarkation procedures
 - Change seating arrangements
 - Change airport layout and procedures

SELF PROPELLED ENTITY DYNAMICS MODEL

- Social dynamics is motivated by Molecular Dynamics, and treats entities as particles
 - Individuals experience self propulsion that induces them to move toward their desired goal
 - They experience repulsive forces from other persons and surfaces
- We add human behavioral characteristics to social dynamics
- Parameterize the sources of uncertainty and carry out a parameter sweep to identify their robustness under a variety of possible scenarios

EXAMPLE OF UNCERTAINTY: PEDESTRIAN SPEED

		Manner of movement (pace)				
	Age	Slow	Ordinary	Fast	Running	Sprinting
Female	21–30	0.7–1.4	1.1–1.6	1.5–2.0	2.0–3.6	3.6–5.2
	31–40	0.8–1.3	1.1–1.5	1.5-2.1	2.0-3.7	3.9–4.5
	41–50	0.7–1.3	1.1–1.6	1.5-2.0	2.4–3.0	3.0-4.2
	51–60	0.7–1.1	1.1–1.6	1.6-2.1	2.0–3.6	2.9–4.3
Male	21–30	0.8–1.4	1.3–1.6	1.8–2.2	2.6–4.6	4.3–6.6
	31–40	1.0-1.4	1.2–1.8	1.8–2.5	2.8–4.6	4.8-6.9
	41–50	0.8–1.3	1.2–1.6	1.8-2.3	3.0-4.2	4.3–6.9
	51–60	1.0-1.3	1.3–1.6	1.8-2.1	2.6-4.2	5.0-5.7

All speeds are in m/s

From: Pedestrian speeds and accelerations, Jakub Zębala, Piotr Ciępka, Adam Reza, Problems of Forensic Science 91, (2012)

PARAMETER COMBINATIONS

Choose parameter combinations that reflect real behavior Select a variety of distinct scenarios

 δ, σ, ϵ are MD parameters

 V_A is avg. passenger speed in the absence of anyone in front

t_{lug} is the avg. time a passenger spends taking luggage out or putting luggage in the overhead bin

t_{exit} is the time for exiting the plane, obtained as simulation output

BOARDING STRATEGIES

IMPACT OF BOARDING STRATEGIES

Boarding Boeing 757-200

- One passenger at the first day of infection
- Infection probability = 0.06
- Contact radius = 1.2 m
- Strategies that prevent clustering in the cabin reduce infection likelihood

Probabilities are meant to compare different alternatives, not predict infection likelihood precisely

SUMMARY OF APPLICATION RESULTS

- Identified procedures that can lead to decrease in contacts
 - Random boarding leads to lower risk of infection spread
 - Boarding has a higher impact than deplaning
 - Smaller planes are better than larger ones
- Use of better procedures and smaller planes could have reduced Ebola risk by 87% without travel restrictions

FUTURE DIRECTIONS

- Assimilate data into simulation model
- Consider the consequences of air travel

Zika importation risk prediction

- Identify human mobility from social media data and link with metapopulation epidemic model
- Fine-grained results predict locations within Miami with granularity of the order of a square mile

Top neighborhoods for Puerto Rico residents	Percentage	Top neighborhoods for Miami residents	Percentage
Miami Airport	16.9%	Downtown	25%
Marlin Parks	14.2%	Miami Beach	20%
Wynwood	14.0%	Wynwood	10%
InterContinental	13.5%	Miami Airport	10%
Miami Beach	10.0%	Allapattah	10%

NSF CSSI GRANT GOALS

BROAD GOALS

- A modular software for pedestrian dynamics
 - Enable code contributions from the research community
- A workflow to link pedestrian dynamics with epidemic and phylogeography models
- Tools and data to permit rigorous analysis and validation
- Interfaces for researchers and decision makers to visualize their results

PEDESTRIAN DYNAMICS SOFTWARE

WORKFLOW

TOOLS AND DATA

- Tools
 - Uncertainty analysis
 - Parameter sweep
 - Others?
- Data for validation and analysis
 - Summary of LBS data from Florida
 - Others?

WORKSHOP GOALS

BROAD GOALS

- Identify desirable features for the pedestrian dynamics software
- Identify desirable features of the workflow to link pedestrian dynamics and epidemic models
- Identify the types of questions that decision-makers would want scientists to answer
- Develop plans for a research community that leverages pedestrian dynamics for modeling disease spread
 - Plan a "perspectives"-type paper, perhaps
 - Think about a frameworks proposal for the future

WORKSHOP FORMAT

- Short talks that provide a high-level view of research trends in different sub-fields
 - Discussion at lunch for a research agenda linking these fields
- Discussion with decision makers to identify their needs
 - What questions should we answer and what type of science should we perform?
- Identify software features that will lead to a sustainable community code and develop a user base
- Finalize plans for the above on the second day