Real-Time Modeling of Millions of Pedestrians

Rainald Löhner CFD Center, College of Sciences George Mason University, Fairfax, VA, USA

www.cfd.gmu.edu/~rlohner

CFD Center

Acknowledgements

- SL Rasch
 - Bodo Rasch, Achmed Rasch, Eberhard Haug, Bernhard Gawenat, Britto Muhammad, Prabhu Dambalbarth, Stefan Haenlein, Timo Leucht, Iris Treffinger, Mohammed Dridi, Mohammed Gdoura
- GMU
 - Niamul Baqui
- GMU/USArmy
 - Michelle Isenhour

Outline

- Motivation
- Pedestrian Motion: Empirical/Experimental Data
- Modeling Options
- PedFlow
- Large-Scale, Real-Time Computing
- Examples
- Coupling CFD-CCD / Biomed
- Conclusions and Outlook
- References

Motivation

CFD Center

Why Pedestrian Flow Simulation ?

- Situations With Many Individuals:
 - Airports/Train/Bus Stations/Ports
 - Sport/Music/Cinema/Theater
 - Museums/Conferences/Conventions

– Pilgrimage Centers

Demonstrations

Why Pedestrian Flow Simulation ?

- Simulations of Interest For:
 - Comfort/Event Experience
 - Traffic Management
 - Evacuation
 - Avoidance of Injury/Death
 - Spread of Disease

Large Gatherings...

CFD Center

Number of Pilgrims /Yr

- Hindu Mela, India
- Ayyappan Saranam, India
- Our Lady of Guadalupe, Mexico
- Amritsar (Sikh)
- Tirupati, India
- . Arba'een, Karbala, Iraq
- Our Lady of Aparecida, Brazil
- . Lourdes, France
- Hajj, Makkah

O(10-70M) O(20M) O(13M) O(10M) O(10M) O(8M) O(8M) O(7M) O(2M)

CFD Center

Visitors to Religious Sites/Yr

- Notre Dame, Paris: O(
- Makkah & Medina:
- St. Peters, Rome:
- Western Wall, Jerusalem:
- Bethlehem, Palestine:

- O(13M)
- O(10M)
- O(7M)
- O(3M)
- O(2M)

Airports (2014)

- Atlanta:
- Beijing:
- Heathrow:
- Tokyo:
- . Los Angeles:
- Dubai:
- Chicago:

O(96M) [0.25M/Day !] O(86M) O(74M) O(73M) O(71M) O(70M) O(70M)

Train Stations (2014)

O(1,260M) [>3M/Day !]

O(910M)

- Shinjuku, Tokyo:
- Shibuja, Tokyo: O(1,090M)
- Ikebukuro, Tokyo:
- Umeda, Osaka: O(820M)
- · Yokohama, Kanagawa:O(760M)
- Gare du Nord, Paris: O(120M)

Pedestrian Motion: Empirical Data

CFD Center

Predtetschenski & Milinski

МОСКОВСКИЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ИНЖЕНЕРНО-СТРОИТЕЛЬНЫЙ ИНСТИТУТ ИМ. В. В. КУЙБЫШЕВА

Доктор техн. наук В. М. ПРЕДТЕЧЕНСКИЙ, канд. техн. наук А. И. МИЛИНСКИЙ

ПРОЕКТИРОВАНИЕ ЗДАНИЙ С УЧЕТОМ ОРГАНИЗАЦИИ ДВИЖЕНИЯ ЛЮДСКИХ ПОТОКОВ

"Донущено Министерством высшего и среднего специального образования СССР в качестве учебного пособия для студентов архитектурной и строительных специальностей высших учебных заведений"

ИЗДАТЕЛЬСТВО ЛИТЕРАТУРЫ ПО СТРОИТЕЛЬСТВУ Москва Prof. Dr. sc. techn. Wsewolod Michailowitsch Predtetschenski Dr.-Ing. Anatoli Iwanowitsch Milinski

Personenströme in Gebäuden

— Berechnungsmethoden für die Projektierung —

Verlagsgesellschaft Rudolf Müller

George Mason University

CFD Center

Empirical Data

- Predtetschenski & Milinski
 - German Edition: 1971 !
 - Large Compilation of Empirical Data
 - Standard Reference for Pedestrian Traffic Design
- Fruin
- Many Other Smaller Reports

Empirical Data

- Current Work
 - Seyfried (Jülich)
 - Measurements and Modeling
 - Torrens (Arizona, Maryland)
 - Extensive Review of Physiological and Psychological Data/Measurements
 - Manocha et al. (UNC Chapel Hill) <u>http://gamma.cs.unc.edu/LARGE</u>
 - Visualization, GPS-based Tracking, Photo-Realism
 - INRIA, Others...

We Are Not Machines...

Abb. 14:

Ergebnisse praktischer Messungen der Bewegungsgeschwindigkeit von Personenströmen über Treppen aufwärts

CFD Center

We Are Not Machines...

George Mason University

CFD Center

Hajj 2014 Data

- Done by Prabhu Dambalbarth and Britto Muhammad (SLR)
- Aim: Fill Data Gap for High Density Flows
- Video Data
 - Need Video to Ensure Correct IDs
- Cover Region with 10sqm Cells
- Tag Individual, Measure Velocity / Density
- Total of 350 Data Points
 - From 20,500 Individual HR Photos

Hajj 2014

Evaluation of Images

At Time 0 sec

m

~3.8 m

At Time ~6.0 sec

At Time 8.8 sec

Grid Name: C2	
Nr. of Pilgrims	: 55 Persons
Cell area	: 10 sqm
Density	: 5.5 p/m²
Time	: 8.83 sec
Distance	: 3.3 m
Velocity	: 0.37 m/s

George Mason University

CFD Center

CFD Center

CFD Center

Average Flux distribution on 04.10.14 - 10th Dhu al-Hijjah

CFD Center

George Mason University

on 04.10.14 - 10th Dhu al-Hijjah

CFD Center

CFD Center

Other Empirical Data

- Memory Map of Planned Route / Stations
- Visual Horizon
 - 2.5 5.0 m
 - 120 Deg Perception
- `Personal Comfort Zone'
 - Dependent on Culture

Modeling Options

CFD Center

Pedestrian Flow Simulation (1)

- Discrete Space Model
 - Cellular Automata
 - Pedestrians at Nodes of (Adaptive) Grid
 - Allow Motion to One Neighbouring Cell/Place
 - Integrate in Time (Discrete/Fixed Intervals)
 - Schadschneider, Blue & Adler, ... Pedestrian and Evacuation Dynamics (2002)
- Current Shortcomings
 - Motion Limited by Underlying Grids
 - Max Density Prescribed by Underlying Grid

Pedestrian Flow Simulation (2)

- Social Force Model
 - Treat Every Individual
 - Model Forces Influencing Motion
 - Integrate in Time
 - Helbing-Molnar-Farkas-Viczek (HMFV) Nature (2002)
 - Improvements by Lakoba et al. Simulation (2005)
- Current Shortcomings
 - Forces Symmetric [Removed in Some Models]
 - One Influences All / Too Many
 - Forces Difficult to Tune

Pedestrian Flow Simulation (3)

- Gas/Fluid Analogy
 - Viscosity, Forces as Functions of Density
 - Write `Euler/Navier-Stokes Like' Equations
 - Integrate in Time
 - Helbing Complex Systems (1992)
 - Others...Recent: Hughes Ann. Rev. of Fluid Mech.
- Current Shortcomings
 - No Proper Set of Equations in 2-D
 - Most of the Work 1-D
 - No Realistic Examples in 2-D
 - Difficult to Implement Crossing Streams

Pedestrian Flow Simulation (4)

- Agent-Based Simulations
 - High-Level: Finite State Machine
 - Physical State, Behaviour State, Property Set
 - FSM Transitions: Spatial, Property, Temporal, Stochastic
 - Low-Level: Local Collision Avoidance (LCA)
 - Reciprocal Velocity Obstacles (RVOs)
 - Integrate in Time
 - Manocha, Torrens, Others
- Current Shortcomings
 - Does Not Get Inter-Pedestrian Forces (Safety)
 - Expensive (CPU)

Discrete Models

CFD Center

Discrete Models

- Any Pedestrian Flow Simulation:
 - Global Movement: Strategic, Tactical
 - Local Movement: Operational
- Global Movement
 - Targets (Regions/Lines/…) → Will Force
- Local Movement
 - Collision Avoidance
 - Social Force/ Contact Models
 - Local Geometry Info
 - Walls, Paths, Roughness, ...

PEDESTRIAN MOTION

• Newton's Law:

```
m \mathbf{v}, t = \mathbf{f}
\mathbf{x}, t = \mathbf{v}
```

- m: Mass
- v: Velocity
- **x**: Position
- f: Sum of All Forces
- Modeling Effort: f

PEDFLOW

CFD Center

PEDESTRIAN FORCES

- Internal Forces
 - Will Force (Get There (in Time))
 - Pedestrian Collision Avoidance Forces: Intermediate Range
 - Pedestrian Collision Avoidance Forces : Near Range
 - Wall/Obstacle (Collision) Avoidance Forces
- External Forces

CFD Center

- Contact: Other Pedestrians
- Contact: Walls/Obstacles
PEDESTRIAN FORCES: Will Force

• Given:

- **v**_d: Desired Velocity
- v: Current Velocity

$$\mathbf{f}_{will} = \mathbf{g}_{w} (\mathbf{v}_{d} - \mathbf{v})$$

- Modeling Effort: g_w
 - Fitness
 - Desire to Reach a Goal
 - Climate
 - Signals
 - Noise, ...

CFD Center

PEDESTRIAN FORCES: Will Force

• Suppose Only Will Force, From Rest:

$$\begin{array}{l} \mathbf{m} \ \mathbf{v}_{,t} = \mathbf{g}_{w} \left(\ \mathbf{v}_{d} - \mathbf{v} \right) \\ \bullet \quad \bigstar \\ \mathbf{v} = \mathbf{v}_{d} \left(\ 1 - \mathbf{e}^{-\alpha t} \right) \quad ; \quad \alpha = \mathbf{g}_{w} \ / \ \mathbf{m} = 1 \ / \ t_{r} \\ \mathbf{v}_{,t}(t=0) = \mathbf{v}_{d} \quad ; \quad \alpha = \mathbf{v}_{d} \ / \ t_{r} \end{array}$$

- \rightarrow Can Define g_w Via Relaxation Time t_r
- Typical Values: $\mathbf{v}_d = 1.35 \text{m/sec}$; $t_r = O(0.5 \text{sec})$

CFD Center

Ellipticity

- Ellipticity:
 - Required to Achieve Higher Densities
 - Done With 5 Circles [Faster Contact]
 - e=0.0 → Circle; e=1.0 → Ellipse
 - Elliptical:
 - $x_{1,5} = 1/1.8 [-/+ 1.3 + 0.5 sin(t) ; 0.5 cos(t)$
 - $X_{2,4}=1/1.8$ [-/+ 0.8 + 0.8 sin(t) ; 0.8 cos(t)
 - $X_3 = 1/1.8$ [1.0 sin(t) ; 1.0 cos(t)
 - Circular
 - $x_{1,5} = 1/1.8 [-/+ 1.3 + 0.5 sin(t) ; 0.5 cos(t)$
 - $X_{2,4}=1/1.8$ [-/+ 0.8 + 1.0 sin(t); 1.0 cos(t)
 - $X_3 = 1/1.8$ [1.8 sin(t); 1.8 cos(t)

George Mason University

CFD Center

Hajj-Related Studies

CFD Center

Temporary Mataf

CFD Center

Temporary Mataf

CFD Center

Time : Laylat al-Qadr - 25th July 2014 - TAWAF

Sahn Level; Flux=5.0p/sec

Velocity: Left: With Columns, Right: No Columns

CFD Center

Sahn Level; Flux=5.0p/sec

Density: Left: With Columns, Right: No Columns

CFD Center

Temporary Mataf 06/13

CFD Center

Detailed Simulation of Sahn Area

- Compute Normal Tawaf With Influx 5.0 p/sec
- Define Prayer Rows Emanating from Kaaba
- Restart from Steady State, Resetting Time=0
- Time: [0: 1.75] min
 - Additional People Stream in to Pray (8.0 p/sec)
 - People in Tawaf Continue as As Before
- Time: [1.75: 9.08] min
 - Rows Form From Outside (some from Kaaba [Film])
 - People Try to Find a Prayer Location
- Time: [9.08:12.42] min
 - Close Ranks and Move Forward If Free
- Time: [12.42:17.42] min: Prayer Time
- Time: [17.42:25.75] min:
 - People That Came in to Pray: Exit from Entry
 - People in Tawaf: Continue Ritual

CFD Center

CFD Center

Prayer Simulation: Sahn Level

CFD Center

CFD Center

Barcelona: Area Considered (1)

CFD Center

Barcelona: Area Considered (2)

CFD Center

Raction Time / Evacuation Delay

• Some Empirical Data; Used Here: Lord Data

CFD Center

CFD Center

CFD Center

CFD Center

CFD Center

Number of Pedestrians: 1.2 MIntegration Time: 1.0 hr

ndomn	nprol	ncore	runtime	run/real time
128	4	512	3379	0.94
256	2	512	3492	0.97
128	8	1024	2461	0.68

Photo-Realistic Rendering Based on PEDFLOW Calculations

CFD Center

Rendering via 3-D Studio Max

CFD Center

Coupling of CFD and CCD

CFD Center

Coupling of CFD and CCD

- Flow May Influence Motion of Pedestrians
 Smoke, Toxic Materials, Fire, …
- Motion (Presence) of Pedestrians May Influence Flow
 - Narrow Passages in Subways
- Flow May Also Influence Spread of Diseases
 Flu, SARS, Coronavirus, …
- → Need Coupled CFD/CCD

CFD Center

Metro Evacuation

CFD Center

Metro Evacuation

CFD Center

Pedestrians in Passage

CFD Center

Conclusions and Outlook

CFD Center

Conclusions and Outlook (1)

- Developed Efficient Code for the Simulation of Pedestrian Flows and Crowd Dynamics
- Basis:
 - Global (Overall) Direction: Desired Location/Time
 - Local Obstacle / Pedestrian Avoidance
- Results Obtained to Date:
 - Correct Crowd Dynamics, Lane Forming, Overtaking, Avoidance of Obstacles, ...
- Results Promising
- Validation, Validation, Validation ...
 - Video Footage

Conclusions and Outlook (2)

- Incorporate More Realism
 - Queing in Certain Locations
 - Tellers, Train Stations, Bus Stops, ...
 - Moving in Walkways and Escalators
 - In/Outflow Behaviour
 - Elevators
 - Trains/Subways
 - Panic Behaviour
 - Fallen Pedestrians

— ...

Conclusions and Outlook (3)

- Link to Other Disciplines:
- PEDPRESS: Asphyxia, Collapse, ...
 - Ongoing Experiments
- CFD: Smoke/Comfort
 - Working
- CFD: Spread of Diseases
 - Need Medical Data / Spread Factors
- CSD: Loading of Structures
 - Working

Conclusions and Outlook (4)

- Ongoing Theoretical Studies
 - Entry Into Incoming Crowd (Emergency Personnel)
 - Density-Velocity Diagrams (PM/Helbing/Seyfried/...)
- Overall: Young Discipline, Exciting Area !
- Lots of Work to be Done !
References

CFD Center

References (1)

- R. Löhner On the Modeling of Pedestrian Motion; Appl. Math. Modelling 34, 2, 366-382 (2010).
- M.K. Gdoura, R. Löhner, E. Haug and B. Gawenat On the Influence of Columns in Densely Populated Corridors; *The Conference in Pedestrian and Evacuation Dynamics 2014 (PED2014), Transportation Research Procedia* 2, 2-9 (2014).
- M. Isenhour and R. Löhner Verification of a Pedestrian Simulation Tool Using the NIST Recommended Test Cases; *The Conference in Pedestrian and Evacuation Dynamics 2014 (PED2014), Transportation Research Procedia* 2, 237-245 (2014).
- R. Löhner and E. Haug On Critical Densities and Velocities for Pedestrians Entering a Crowd; *The Conference in Pedestrian and Evacuation Dynamics 2014 (PED2014), Transportation Research Procedia* 2, 394-399 (2014).
- J. Zhang, D. Britto, M. Chraibi, R. Löhner, E. Haug and B. Gawenat Qualitative Validation of PEDFLOW for Description of Unidirectional Pedestrian Dynamics; *The Conference in Pedestrian and Evacuation Dynamics 2014 (PED2014), Transportation Research Procedia* 2, 733-738 (2014).
- M. Isenhour and R. Löhner Verification of a Pedestrian Simulation Tool Using the NIST Stairwell Evacuation Data; *The Conference in Pedestrian and Evacuation Dynamics 2014 (PED2014), Transportation Research Procedia* 2, 739-744 (2014).
- R. Löhner Real-Time Micro-Modeling of a Million Pedestrians; invited plenary lecture, *Proc. Particles 2015*, Barcelona, Spain, Sept 28-29 (2015).
- R. Löhner Real-Time Micro-Modeling of a Million Pedestrians; invited plenary lecture, *Proc. Workshop I: Mathematical Foundations of Traffic*, UCLA, Los Angeles, Sept 28 Oct 2 (2015).

CFD Center

References (2)

- P. Dambalmath, B. Muhammad, E. Haug and R. Löhner Fundamental Diagrams for Specific Very High Density Crowds; pp. 6-11 in *Proc. Pedestrian and Evacuation Dynamics 2016 (PED2016)*, (W. Song, J. Ma and L. Fu eds.), University of Science and Technology Press, Hefei, China (2016).
- R. Löhner, E. Haug and B. Muhammad, Optimized Automatic Wayfinding for Pedestrian Simulations; pp. 200-205 in *Proc. Pedestrian and Evacuation Dynamics 2016 (PED2016)*, (W. Song, J. Ma and L. Fu eds.), University of Science and Technology Press, Hefei, China (2016).
- M. Isenhour and R. Löhner Validation Data from the Evacuation of a Student Center; pp. 472-479 in *Proc. Pedestrian and Evacuation Dynamics 2016 (PED2016)*, (W. Song, J. Ma and L. Fu eds.), University of Science and Technology Press, Hefei, China (2016).
- R. Löhner, E. Haug, C. Zinggerling and E. Onate; Real-Time Micro-Modeling of City Evacuations; pp. 500-504 in *Proc. Pedestrian and Evacuation Dynamics 2016 (PED2016)*, (W. Song, J. Ma and L. Fu eds.), University of Science and Technology Press, Hefei, China (2016).
- R. Löhner and F. Camelli Tightly Coupled Computational Fluid and Crowd Dynamics; pp. 505-509 in *Proc. Pedestrian and Evacuation Dynamics 2016 (PED2016)*, (W. Song, J. Ma and L. Fu eds.), University of Science and Technology Press, Hefei, China (2016).
- M. Isenhour and R. Löhner Pedestrian Speed on Stairs: A Mathematical Model Based on Empirical Analysis for Use in Computer Simulations; pp. 529-533 in *Proc. Pedestrian and Evacuation Dynamics 2016 (PED2016)*, (W. Song, J. Ma and L. Fu eds.), University of Science and Technology Press, Hefei, China (2016).
- R. Löhner, M. Baqui, E. Haug, B. Muhamad Real-Time Micro-Modelling of a Million Pedestrians; *Engineering Computations* 33, 1, 217-237 (2016).

CFD Center

References (3)

- R. Löhner, E. Haug, C. Zinggerling and E. Onate; Real-Time Micro-Modeling of City Evacuations; *Comp. Part. Mech.* 5, 71-86; DOI 10.1007/s40571-016-0154-z (2018).
- M. Baqui and R. Löhner Real-Time Crowd Safety and Comfort Management from CCTV Images; *Proc. Real-Time Image and Video Processing 2017 Conf.* SPIE Digital Library, DOI: http://dx.doi.org/10.1117/12.2262319 (2017).
- R. Löhner, F. Camelli and E. Onate Tightly Coupled Computational Fluid and Crowd Dynamics via Immersed Boundary Methods; pp. 441-448 in *Proc. VII Int. Conf. on Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2017* (M. Papadrakakis, E. Onate and B. Schrefler eds.), Rhodes, Greece, June 12-14 (2017).
- R. Löhner, M. Baqui and M. Isenhour Combining Big Computing And Big Data For Monitoring, Predicting, And Managing Pedestrian Mass Events; *Proc. TGF17* George Washington Univ., Washington, D.C. July 19-22 (2017).
- M. Baqui, R. Löhner and M. Isenhour Temporal Study of Crowds Using Automated Tools; *Proc. TGF17* George Washington Univ., Washington, D.C. July 19-22 (2017).
- R. Löhner, B. Muhamad, P. Dambalmath and E. Haug Fundamental Diagrams for Specific Very High Density Crowds; *Collective Dynamics* 2; doi: http://dx.doi.org/10.17815/CD.2017.13 (2018).
- M. Baqui and and R. Löhner Towards Real-Time Monitoring of the Hajj; *Proc. Pedestrian and Evacuation Dynamics 2018 (PED2018)*, Lund, Sweden, August 21-14 (2018).
- R. Löhner, E. Haug and Britto M. Social Force Modeling of the Pedestrian Motion in the Mataf; *Proc. Pedestrian and Evacuation Dynamics 2018 (PED2018)*, Lund, Sweden, August 21-14 (2018).

CFD Center

References (4)

- F. Togashi, T. Misaka, R. Löhner and S. Obayashi Application of Ensemble Kalman Filter to Pedestrian Flow; *Proc. Pedestrian and Evacuation Dynamics 2018 (PED2018)*, Lund, Sweden, August 21-14 (2018).
- M. Baqui and and R. Löhner Extracting Crowd Velocities at High Density; *Proc. Pedestrian and Evacuation Dynamics 2018 (PED2018)*, Lund, Sweden, August 21-14 (2018).
- F. Togashi, T. Misaka, R. Löhner and S. Obayashi Using Ensemble Kalman Filter to Determine Parameters for Computational Crowd Dynamics Simulations; *Engineering Computations* 35, 7, 2612-2628 (2018), doi: https://doi.org/10.1108/EC-03-2018-0115