
Testing parallel random number generators

Ashok Srinivasan a, Michael Mascagni b,*, David Ceperley c

a Department of Computer Science, Florida State University, Tallahassee, FL 32308-4530, USA
b Department of Computer Science, Florida State University, Tallahassee, FL 32308-4530, USA
c National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign,

Urbana, IL 61801, USA

Received 20 January 2001; received in revised form 15 March 2002; accepted 29 June 2002

Abstract

Monte Carlo computations are considered easy to parallelize. However, the results can be

adversely affected by defects in the parallel pseudorandom number generator used. A parallel

pseudorandom number generator must be tested for two types of correlations––(i) intra-

stream correlation, as for any sequential generator, and (ii) inter-stream correlation for cor-

relations between random number streams on different processes. Since bounds on these

correlations are difficult to prove mathematically, large and thorough empirical tests are nec-

essary. Many of the popular pseudorandom number generators in use today were tested when

computational power was much lower, and hence they were evaluated with much smaller test

sizes.

This paper describes several tests of pseudorandom number generators, both statistical and

application-based. We show defects in several popular generators. We describe the implemen-

tation of these tests in the SPRNG [ACM Trans. Math. Software 26 (2000) 436; SPRNG––scal-

able parallel random number generators. SPRNG 1.0––http://www.ncsa.uiuc.edu/

Apps/SPRNG; SPRNG 2.0––http://sprng.cs.fsu.edu] test suite and also present re-

sults for the tests conducted on the SPRNG generators. These generators have passed some

of the largest empirical random number tests.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Parallel random number generators; Random number tests; Parallel algorithms; Random

number software

*Corresponding author.

E-mail addresses: asriniva@cs.fsu.edu (A. Srinivasan), mascagni@cs.fsu.edu (M. Mascagni), ceper-

ley@ncsa.uiuc.edu (D. Ceperley).

0167-8191/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0167-8191 (02 )00163-1

www.elsevier.com/locate/parco

Parallel Computing 29 (2003) 69–94

http://www.ncsa.uiuc.edu/Apps/SPRNG
http://www.ncsa.uiuc.edu/Apps/SPRNG
http://sprng.cs.fsu.edu
mail to: asriniva@cs.fsu.edu


1. Introduction

Monte Carlo (MC) methods can loosely be defined as numerical processes that

consume random numbers. MC computations have in the past, and continue to, con-

sume a large fraction of available high-performance computing cycles. One of the
reasons for this is that it is easy to parallelize these computations to achieve linear

speed-up, even when communication latency is high, since usually little communica-

tion is required in MC. We discuss this further in Section 2.

Since MC computations depend on random numbers, the results can be adversely

affected by defects in the random number sequence used. A random number gener-

ator (RNG) used in a program to produce a random sequence is actually a determin-

istic algorithm which produces numbers that look random to an application, and

hence is often referred to as a pseudorandom number generator (PRNG). That is,
the application produces an answer similar to what it would have with a truly ran-

dom sequence, typically from a uniform distribution on the unit interval. 1

Each PRNG has a finite number of possible states, and hence the ‘‘random’’ se-

quence will start repeating after a certain ‘‘period,’’ leading to non-randomness. Typ-

ically, sequences stop behaving like a truly random sequence much before the period

is exhausted, since there can be correlations between different parts of the sequence.

We shall describe these terms further, and discuss PRNGs and parallel PRNGs

(PPRNGs) in greater detail in Section 2.1.
Many of the RNGs in use today were developed and tested when computational

power was a fraction of that available today. With increases in the speed of comput-

ers, many more random numbers are now consumed in even ordinary MC compu-

tations, and the entire period of many older generators can be consumed in a few

seconds. Tests on important applications have revealed defects of RNGs that were

not apparent with smaller simulations [12,14,30,31]. Thus RNGs have to be sub-

jected to much larger tests than before. Parallelism further complicates matters,

and we need to verify the absence of correlation among the random numbers pro-
duced on different processors in a large, multiprocessor computation. There has,

therefore, been much interest over the last decade in testing both parallel and sequen-

tial random number generators [2,3,5,9–12,19,29,33,34], both theoretically and em-

pirically.

While the quality of the PRNG sequence is extremely important, the unfortunate

fact is that important aspects of quality are hard to prove mathematically. Though

there are theoretical results available in the literature regarding all the popular

PRNGs, the ultimate test of PRNG quality is empirical. Empirical tests fall broadly
into two categories (i) statistical tests and (ii) application-based tests.

Statistical tests compare some statistic obtained using a PRNG with what would

have been obtained with truly random independent identically distributed (IID)

numbers on the unit interval. If their results are very different, then the PRNG is

1 Non-uniform distributions can be obtained from a uniform distribution using certain standard

techniques [18]. So we shall discuss only uniform distributions in the rest of the paper.

70 A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94



considered defective. A more precise explanation is given in Section 3.1. Statistical

tests have an advantage over application-based tests in that they are typically much

faster. Hence they permit the testing of a much larger set of random numbers than

application-based tests. Certain statistical tests [16,21] have become de-facto stan-

dards for sequential PRNGs, and PRNGs that ‘‘pass’’ these tests are considered
‘‘good.’’ We wish to note that passing an empirical test does not prove that the

PRNG is really good. However, if a PRNG passes several tests, then our confidence

in it increases. We shall later describe parallel versions of these standard tests that

check for correlations in a PPRNG.

It turns out that applications interact with PRNGs in unpredictable ways. Thus,

statistical tests and theoretical results are not adequate to demonstrate the quality of

a PRNG. For example, the 32-bit linear congruential PRNG CONG, which is much

maligned for its well known defects, performed better than the shift register sequence
R250 in an Ising model application with the Wolff algorithm [12], though the latter

performed better with the Metropolis algorithm. Subsequently, defects in the latter

generator were also discovered. Thus we need to test PRNGs in a manner similar

to that of the application in which it is to be used. Typically, the application-based

tests use random numbers in a manner similar to those of popular applications, ex-

cept that the exact solution to the test applications are known. Such tests are de-

scribed in Section 3.2.

When dealing with a new application, the safest approach is to run the application
with different PRNGs. If the runs give similar results, then the answers can be ac-

cepted. The extra effort is not wasted, because the results from the different runs

can be combined to reduce the statistical error.

Parallelism further complicates matters, and many users resort to ad hoc meth-

ods of PRNG parallelization. We later demonstrate defects in some of these strat-

egies in Section 4. In order to avoid many of these pitfalls, the SPRNG 2 PPRNG

library was developed. SPRNG provides a standard interface that permits users to

easily change PRNGs and rerun their application, thus ensuring that the results
are PRNG independent. These generators have also been subjected to some of

the largest empirical tests of PRNGs, and correct defects in some popular genera-

tors. These test results too are presented in Section 4. The SPRNG software also

comes with a suite of ‘‘standard’’ tests for PPRNGs, and can thus be used to also

test non-SPRNG PRNGs.

The outline of the rest of the paper is as follows. In Section 2, we discuss parall-

elization of MC simulations, parallelization of PRNGs, and also mention some spe-

cific PPRNGs that we use in subsequent tests. We then describe empirical tests for
PPRNGs, both statistical and application-based (physical-model tests), in Section 3,

along with a description of their implementation in the SPRNG test suite. We presents

test results in Section 4 and conclude with a summary of the results and recommen-

dations on PPRNGs in Section 5.

2 The SPRNG [32,26] parallel pseudorandom number library comes with a suite of tests to verify the

quality of the generators, and is available at http://sprng.cs.fsu.edu.

A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94 71

http://sprng.cs.fsu.edu


2. Monte Carlo parallelization

One of the most common methods of MC parallelization is to use the same MC

algorithm on each processor, and use a different random number stream on each

processor. Results differ on the different processors due to differences in the random
number sequences alone. These results are then combined to produce the desired an-

swer with an overall smaller error than non-combined results, as shown in Fig. 1.

Such a parallelization scheme requires little communication between processors,

and thus one can easily obtain a linear speed-up. This is the main reason for the pop-

ularity of MC on parallel computers.

Of course, the random number (RN) stream on each processors should be of high

quality. In addition, there should be no correlation between RN streams on different

processors. To illustrate the complications that can arise from parallelism, we con-
sider the following extreme case. If the RN streams on all the processors were iden-

tical, then the results will be identical across the processors, and there would be no

benefit from the parallelization. In real situations, there could be correlations be-

tween the RN streams across the different processors, or the streams could overlap,

reducing the effectiveness of the parallelization. In the worst case, this could even

lead to erroneous results, as demonstrated in a practical situation in Fig. 8 presented

later, in Section 4 of this paper.

There is, therefore, a need to check for two types of defects in PPRNGs. First, we
must verify that each RN stream on each processors is random. That is, there should

be no apparent correlation between the elements within a single RN sequence. We

refer to this as the absence of intra-stream correlations. Secondly, there should be

no correlation between streams on the different processors. We call this the absence

of inter-stream correlations.

We observe here that with the above method of parallelization, where the same

algorithm was replicated on each processor, intra-stream correlations generally tend

to affect the results more than inter-stream correlations of MC simulations of
Markov Chains, which are probably the largest consumers of MC parallel comput-

ing cycles. There is an alternate parallelization using domain decomposition, where

the computation of a single sequential run is distributed across the processors by di-

viding the state space across the processors. This is typically done when the solution

space is very large. In that case, the initialization time could be significant, since in

MC calculations with Markov Chain, the results of the first several steps are often

Fig. 1. Parallelization of MC computations through process replication.

72 A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94



discarded in order to prevent the results from depending on the initial state. In these

computations, inter-stream and intra-stream correlation can have an equal effect on

the solution. Thus, for the purpose of testing PPRNGs, such a decomposition is

more effective.

2.1. Parallelizing PRNGs

We shall next describe popular methods of designing PPRNGs. Before doing this

we explain some terms regarding sequential PRNGs, in terms of Fig. 2. A PRNG

consists of a finite set of states, and a transition function T that takes the PRNG

from one state to the next. The initial state of the PRNG is called the seed. Given

a state Si for the PRNG, there is a function F that can give a corresponding integer

random number Ii or a floating point random number Ui. The memory used to store
the state of a PRNG is a constant, and therefore the state space is finite. Therefore, if

the PRNG is run long enough, then it will enter a cycle where the states start repeat-

ing. The length of this cycle is called the period of the PRNG. Clearly, it is important

to have a large period.

We next discuss some common methods of PPRNG. In the methods of cycle di-

vision, a cycle corresponding to a single RNG is partitioned among the different pro-

cessors so that each processor gets a different portion of the cycle (see [13,20], for

example). This partitioning is generally performed in one of the following three
ways. First, users randomly select a different seed on each processor and hope that

the seeds will take them to widely separated portions of the cycle, so that there will

be no overlap between the RN streams used by the different processors. In the sec-

ond, sequence splitting scheme, the user deterministically chooses widely separated

seeds for each processor. The danger here is that if the user happens to consume

more random numbers than expected, then the streams on different processors could

overlap. Apart from this, generators often have long-range correlations [7,8]. These

long-range correlations in the sequential generator become short-range inter-stream
correlations in such a parallel generator. Lastly, if there are n processors, then each

stream in the leap frog scheme gets numbers that are n positions apart in the original

sequence. For example, processor 0 gets random numbers x0; xn; x2n; . . . This again

Fig. 2. This figure shows different terms associated with the state-space of a PRNG.

A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94 73



has problems because long range correlations in the original sequence can become

short-range intra-stream correlations, which are often worse than inter-stream corre-

lations.

Apart from these defects, the method of cycle-division results in a non-scalable pe-

riod. That is, the number of different random numbers that can be used stays fixed,
instead of increasing with the number of processors as in the scheme that is described

below. In addition, since most PRNGs use modular arithmetic, the cost of generating

RNs is dependent on the modulus chosen. In addition, the period of most PRNGs is

also dependent on the modulus. Thus, with cycle division, longer periods are required

as more numbers are generated on ever faster processors. This leads to the use of lar-

ger arithmetic moduli and a subsequent increase in the generation cost of individual

RNs. Thus cycle-division is not a scalable procedure. In addition, we shall later give

results that demonstrate statistical defects that arise in cycle-division-based schemes.
The parallelization scheme we recommend is based on parameterization (see [23–

25,28], for example). This provides independent full-period streams on each proces-

sor. We can parameterize a set of streams by a stream number. Given the stream

number i, there is an easy way of producing the ith stream. These parameterizations

are done in two ways. The first is seed parameterization: in certain generators, the set

of possible states naturally divides itself into a number of smaller cycles. We can

number these cycles from 0 to N � 1, where N is the total number of cycles available.

We then give each processors a seed from a different cycle. The other is iteration func-
tion parameterization: the iteration function is the function that gives the next state in

the sequence, given the current state. In this method of parameterization, a different

iteration function is used for each stream. In order to achieve this, we need a way of

parameterizing the iteration function so that given i, the ith iteration function can be

easily produced.

2.2. Parallel PRNGs tested

We next define the PPRNGs tested in this paper, and the method of their parall-

elization.

SPRNG PPRNGs: The following PPRNGs from the SPRNG libraries were tested:

1. Combined multiple-recursive generator: cmrg

This generator is defined by the following recursion:

zn ¼ xn þ yn � 232 ðmod 264Þ;
where xn is the sequence generated by the 64-bit linear congruential generator
(LCG) given below and yn is the sequence generated by the following prime

modulus multiple-recursive generator (MRG):

yn ¼ 107374182yn�1 þ 104480yn�5 ðmod 2147483647Þ:
The same prime modulus generator is used for all the streams. Streams differ due

to differences in the 64-bit LCG. The period of this generator is around 2219, and

the number of distinct streams available is over 224.

74 A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94



2. 48-Bit linear congruential generator with prime addend: lcg

The recurrence relation for the sequence of random numbers produced by this

generator is given by the following recurrence:

xn ¼ axn�1 þ p ðmod 248Þ;
where p is a prime number and a is the multiplier. Different random number
streams are obtained by choosing different prime numbers as the addend p [15,27].

The period of this generator is 248, and the number of distinct streams available is

about 219.

3. 64-Bit linear congruential generator with prime addend: lcg64

The features of this generator are similar to the 48-bit LCG, except that the arith-

metic is modulo 264. The period of this generator is 264, and the number of distinct

streams available is over 224.

4. Modified lagged-Fibonacci generator: lfg

The recurrence relation for this sequence of random numbers is given by the fol-

lowing equation:

zn ¼ xn � yn;

where � is the exclusive-or operator, x and y are sequences obtained from additive

lagged-Fibonacci generator (LFG) sequences X and Y of the following form:

Xn ¼ Xn�k þ Xn�‘ ðmod 232Þ;

Yn ¼ Yn�k þ Yn�‘ ðmod 232Þ:
‘ and k are called the lags of the generator, and we use the convention that ‘ > k. x
is obtained from X by setting the least-significant bit of the latter to 0. y is ob-

tained from Y by shifting the latter right by one bit. This modification of the LFG

is performed in order to avoid certain correlations that are observed in the un-

modified generator.

The period of this generator is 231ð2‘ � 1Þ, and the number of distinct streams

available is 231ð‘�1Þ, where ‘ is the lag. For the default generator with lag
‘ ¼ 1279, the period is �21310, and the number of distinct streams is 239618.

The sequence obtained is determined by the ‘ initial values of the sequences X and

Y . The seeding algorithm ensures that distinct streams are obtained during par-

allelization [23,24,28].

5. Multiplicative lagged-Fibonacci generator: mlfg

The recurrence relation for this sequence of random numbers is given by the fol-

lowing equation:

xn ¼ xn�k � xn�‘ ðmod 264Þ:
The period of this generator is 261ð2‘ � 1Þ, and the number of distinct streams

available is 261ð‘�1Þ, where ‘ is the larger lag. For the default generator with lag
‘ ¼ 17, the period is approximately 278, and the number of distinct stream is 2976.

The sequence obtained is determined by the ‘ initial values of the sequence x. The

seeding algorithms ensures that distinct streams are obtained during paralleliza-

tion [25].

A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94 75



6. Prime modulus linear congruential generator: pmlcg

This generator is defined by the following relation:

xn ¼ axn�1 ðmod 261 � 1Þ;
where the multiplier a differs for each stream [22]. The multiplier is chosen to be

certain powers of 37 that give maximal period cycles of acceptable quality. The

period of this generator is 261 � 2, and the number of distinct streams available is

roughly 258.

Each of these PPRNGs has several ‘‘variants.’’ For example, changing the lags for

the LFG will give a different variant of this generator. The user is not allowed to se-

lect an arbitrary parameter to get a different variant, but must choose from a set of

well-tested ones. This is done by setting the parm argument in the initialization call

for the PPRNG. This argument can always be set to 0 to get the default variant.

Other PRNGs:

1. rand: This is a 32-bit LCG available on Unix systems. We use it as a sequential

PRNG to demonstrate defects even in its use on a single processor, as every

PPRNG also needs to be a good serial PRNG.

2. random: The popular Unix additive LFG, random, with a lag of 31, was used to

demonstrate defects even on a single processor. The SPRNG LFG corrects these

defects.

3. ranf: The 48-bit Cray LCG, ranf is similar to the sequential version of the 48-
bit LCG in SPRNG (as is the popular Unix generator drand48). We show that

when using a sequence splitting scheme with this generator it fails a particularly

effective test. The sequence splitting was performed by splitting the cycle into frag-

ments of size 3� 235, and using a different fragment for each segment. We chose a

factor of 3 in the above fragment size because it is known that powers of two

alone will result in strong correlations in this generator. In order to give the par-

allelization a fair chance of demonstrating its utility, we did not choose such an a

priori worst-case situation.

3. Description of tests

A good PPRNG must also be a good sequential generator. Since the tests previ-

ously performed on sequential generators were not sufficiently large, we have per-

formed much larger tests. Sequential tests check for correlations within a stream,

while parallel tests check for correlations between different streams. Furthermore,
applications usually require not just the absence of correlations in one dimension,

but in higher dimensions as well. In fact, many simulations require the absence of

correlations for a large number (say thousands) of dimensions.

PRNG tests, both sequential and parallel, can be broadly classified into two cate-

gories: (i) statistical tests and (ii) application-based tests. The basic idea behind sta-

76 A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94



tistical tests is that the random number streams obtained from a generator should

have the properties of IID random samples drawn from the uniform distribution.

Tests are designed so that the distribution of some test statistic is known exactly

or asymptotically for the uniform distribution. The empirically generated RN stream

is then subjected to the same test, and the statistic obtained is compared against the
known distribution. While a boundless number of tests can be constructed, certain

tests have become popular and are accepted as de facto standards. These include

the series of tests proposed by Knuth [17], and the DIEHARD tests implemented

by Marsaglia [21]. Generators that pass these tests are considered good.

It is also necessary to verify the quality of a PRNG by using it in real applications.

Thus we also include tests based on physical models, which use random numbers in a

manner similar to that seen in a real application, except that the exact solution is

known. The advantage of the statistical tests is that these tests are usually much fas-
ter than the application-based ones. On the other hand, the latter use random num-

bers in the same manner as real applications, and can thus be considered more

representative of real random number usage, and also typically test for correlations

of more numbers at a time.

3.1. Statistical tests

We can modify sequential RN tests to test PPRNGs by interleaving different
streams to produce a new RN stream. This new stream is then subjected to the stan-

dard sequential tests. For example if stream i is given by xi0; xi1; . . ., 06 i < N , then

the new stream is given by x00; x10; . . . ; xN�1;0; x01; x11; . . . If each of the individual

streams is random, and the streams are independent of each other, then the newly

formed stream should also be random. On the other hand, any correlation between

streams manifests as intra-stream correlation in the interleaved stream, and this can

be tested with the conventional PRNG tests.

We form several such new streams, and test several blocks of random numbers
from each stream. Usually the result of the test for each block is a Chi-square value.

We take the Chi-square statistics for all the blocks and use the Kolmogorov–

Smirnov (KS) test to verify that they are distributed according to the Chi-square dis-

tribution. If the KS percentile is between 2.5% and 97.5%, then the test is passed by

the RN generator. The SPRNG [32] test suite provides a standard implementation to

perform these tests.

In presenting the test result below, we shall let ncombine denote the number of

streams we interleave to form a new stream, nstreams the number of new streams,
and nblocks the number of blocks of random numbers from each new stream

tested. In order to permit reproduction of our test results, we give a few more argu-

ments that are specific to the SPRNG implementation: seed denotes the (encoded)

seed to the RN generator, param the parameter for the generator, and skip the

number of random numbers we skip after testing a block, before we start a test

on the next block.

We next briefly describe each test followed by its test specific arguments. We

also give the number of RNs tested and asymptotic memory requirements (in bytes,

A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94 77



assuming an integer is 4 bytes and a double precision floating point number is 8

bytes).

The details concerning these tests are presented in Knuth [17], unless we mention

otherwise. The SPRNG PRNGs were also tested with the DIEHARD test suite, in-

cluding the parallel tests using interleaving.

1. Collisions test: n logmd log d
We concatenate the log d most-significant bits from logmd random integers to

form a new logm ¼ logmd 	 log d-bit random integer. We form n 
 m such num-

bers. A collision is said to have occurred each time some such number repeats.

We count the number of collisions and compare with the expected number. This test

thus checks for absence of log d-dimensional correlation. It is one of the most effec-

tive tests among those proposed by Knuth.
Number of RNs tested: n 	 logmd
Memory: 8 	 nstreams 	 nblocksþ 4 	 nþ 2logmd	log d

2. Coupon collector’s test: n t d

We generate random integers in ½0; d � 1�. We then scan the sequence until we find

at least one instance of each of the d integers, and note the length of the segment over

which we found this complete set. For example, if d ¼ 3 and the sequence is:

0; 2; 0; 1; . . ., then the length of the first segment over which we found a complete

set of integers is 4. We continue from the next position in the sequence until we find
n such complete sets. The distribution of lengths of the segments is compared

against the expected distribution. In our analysis, we lump segments of length > t to-
gether.

Number of RNs tested: n 	 d 	 log d
Memory: 8 	 nstreams 	 nblocksþ 4 	 d þ 16 	 ðt � d þ 1Þ

3. Equidistribution test: d n

We generate random integers in ½0; d � 1� and check whether they come from a

uniform distribution, that is, if each of the d numbers has equal probability.
Number of random numbers tested: n
Memory: 8 	 nstreams 	 nblocksþ 16 	 d

4. Gap test: t a b n

We generate floating point numbers in (0,1) and note the gap in the sequence

between successive appearances of numbers in the interval ½a; b� in (0,1). For ex-

ample, if ½a; b� ¼ ½0:4; 0:7� and the sequence is: 0:1; 0:5; 0:6; 0:9; . . ., then the

length of the first gap (between the numbers 0.5 and 0.6) is 2. We record n such

gaps, and lump gap lengths greater than t together in a single category in our ana-
lysis.

Number of RNs tested: n=ðb� aÞ
Memory: 8 	 nstreams 	 nblocksþ 16 	 t

5. Maximum-of-t test(Maxt): n t

We generate t floating point numbers in [0,1) and note the largest number. We re-

peat this n times. The distribution of this largest number should be xt.
Number of RNs tested: n 	 m
Memory: 8 	 nstreams 	 nblocksþ 16 	 n

78 A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94



6. Permutations test: m n

We generate m floating point numbers in (0,1). We can rank them according to

their magnitude; the smallest number is ranked 1; . . ., the largest is ranked m. There

are m! possible ways in which the ranks can be ordered. For example, if m ¼ 3, then

the following orders are possible: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1). We
repeat this test n times and check if each possible permutations was equally probable.

Number of RNs tested: n 	 m
Memory: 8 	 nstreams 	 nblocksþ 8 	 mþ 16 	 ðm!Þ

7. Poker test: n k d

We generate k integers in ½0; d � 1� and count the number of distinct integers ob-

tained. For example if k ¼ 3, d ¼ 3 and the sequence is: 0; 1; 1; . . ., then the number

of distinct integers obtained in the first 3-tuple is 2. We repeat this n times and compare

with the expected distribution for random samples from the uniform distribution.
Number of RNs tested: n 	 k
Memory: 8 	 nstreams 	 nblocksþ 0:4 	minðn; kÞ þ 12 	 k þ 4 	 d

8. Runs up test: t n

We count the length of a ‘‘run’’ in which successive random numbers are non-de-

creasing. For example if the sequence is: 0.1, 0.2, 0.3, 0.4, then the length of the first

run is 3. We repeat this n times and compare with the expected distribution of run

lengths for random samples from the uniform distribution. Runs of length greater

than t are lumped together during our analysis.
Number of RNs tested: 1:5 	 n
Memory: 8 	 nstreams 	 nblocksþ 16 	 t

9. Serial test: d n

We generate n pairs of integers in ½0; d � 1�. Each of the d2 pairs should be equally

likely to occur.

Number of RNs tested: 2 	 n
Memory: 8 	 nstreams 	 nblocksþ 16 	 d 	 d

There are certain other tests that are inherently parallel, in contrast to the above

scheme which is really parallelization of sequential tests. Since these tests are inher-

ently parallel, we need not interleave streams, and thus ncombine ¼ 1, while nstreams,
is the total number of streams tested. All these streams are tested simultaneously,

rather than independently as in the previous case. We describe the tests below.

1. Blocking (sum of independent distributions) test: n groupsize

The central limit theorem states that the sum of groupsize independent variables
with zero mean and unit variance approaches the normal distribution with mean

zero and variance equal to groupsize. To test for the independence of RN streams,

we form n such sums and check for normality. (Note: We also computed the exact

distribution and determined that the assumption of normality was acceptable for

the number of random numbers we added in our tests. The SPRNG test suite imple-

mentation uses the normality assumption in the percentile given as the result. How-

ever, it also gives a range where the exact percentile will lie. Thus users are given a

margin of error.)

A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94 79



2. Fourier transform test: n
We fill a two-dimensional array with RNs. Each row of the array is filled with n

RNs from a different stream. We calculate the two-dimensional Fourier coefficients

and compare with the expected values. This test is repeated several times and we

check if there are particular coefficients that are repeatedly ‘‘bad.’’ If the same coef-
ficients turn out to be high in repeated runs, or if the number of coefficients that are

high is much more than expected, then we can suspect defects in the generators. This

test does not give a single number that can be presented as a result, and so we shall

not mention it in Section 4. We did small tests on the SPRNG generators and did not

detect any anomalies.

3.2. Application-based tests

Application-based tests use random numbers in a manner similar in which they

are used in practical applications. Generally, the exact behavior of the test is known

analytically. We describe the tests implemented in the SPRNG test suite.

1. Ising model––Metropolis and Wolff algorithms:

For statistical mechanical applications, the two-dimensional Ising model (a simple

lattice spin model) is often used, since the exact answer for quantities such as energy

and specific heat are known [1]. Since the Ising model is also known to have a phase

transition, this system is sensitive to long-range correlations in the PRNG. There are
several different algorithms, such as those of Metropolis and Wolff, that can be used

to simulate the Ising model, and the random numbers enter quite differently in each

algorithm. Thus this application is very popular in testing random number genera-

tors, and has often detected subtle defects in generators [2,3,12,31,35].

We can test parallel generators on the Ising model application by assigning dis-

tinct random number sequences to different subsets of lattice sites [3]. This is essen-

tially the domain decomposition method of MC parallelization, and, as mentioned

earlier, is more effective in determining inter-stream correlations than the replication
method. In our tests of PPRNGs, we assign a distinct stream to each lattice site, thus

testing the independence of a larger number of streams simultaneously.

We next describe the implementation of these tests in the SPRNG test suite. The

user selects a lattice size, a seed to the RNG, and the variant of the RNG as com-

mand line arguments. Since the configurations change only slightly at successive

times steps, it is necessary to average the results over a larger block. The size of these

blocks too is specified by the user. The user also specifies the number of such blocks

whose results need to be computed. The initial state is chosen by assigning a random
spin to each lattice site. In order to prevent the results from being influenced by this

particular choice of initial state, the user also needs to specify the number of initial

blocks to be discarded. The tests are carried out with J=KbT ¼ 0:4406868, where J is

the energy per bond and T is the temperature. This parameter can be changed in the

code, to run the tests at different temperatures.

In order to test the quality of the generator, we plot absolute error versus stan-

dard deviation for the specific heat and energy at different points in the simulation.

The points should fall below the 2� r line (the line corresponding to twice the stan-

80 A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94



dard deviation) most of the time. In a bad generator, as the standard deviation de-

creases (with increase in sample size), the error does not decrease as fast and remains

above this line. An example of both cases is demonstrated later in Fig. 8.

2. Random walk test: The random walk test implemented is a simple one, based on

a previously described algorithm [35]. We start a ‘‘random walker’’ from a certain
position on a two-dimensional lattice. The random walker then takes a certain num-

ber of steps to other lattice points. The direction of each step is determined from the

value returned by a RN generated. A series of such tests are performed, and for each

such test, the final position is noted. The user needs to specify the length of a walk,

apart from the common arguments as for the statistical tests. PPRNGs are tested by

interleaving streams.

4. Test results

In this section, we first demonstrate defects in some popular sequential generators,

and in cycle-division strategies for parallelization of PRNGs. We then present de-

tailed results of tests on two SPRNG generators (lcg, which had problems, and

mflg, which did not) and summarize test results for the other generators.

As mentioned earlier, the results of the statistical tests are considered passed if the

KS percentile is between 2.5% and 97.5%. However, this implies that even a good
generator will ‘‘fail’’ around 5% of the tests. Therefore, when we observe a percentile

close to (on either side) of the pass thresholds, we repeated the calculations with dif-

ferent seeds. A good generator is expected to give percentiles in different ranges with

different seeds, while a bad one would consistently fail. In most of the calculations,

we take the (global) seed 3 to be 0. The above calculations are generally the reason

for some of the seeds displayed being different from this. We sometimes mention that

a PRNG passed a test with N numbers. This means that it passed a test, with the

total number of RNs used in the test being around N .

4.1. Tests on sequential generators

The popular 32 bit Unix LCG, rand fails even sequential PRNG tests. 4 For ex-

ample, the collisions test fails for the following parameters: d ¼ 4, k ¼ 5, n ¼
2� 105, when this test was repeated 40 times. The K–S percentile is obtained as

100.00. It keeps failing this test even with different seeds. Thus this generator fails

with about 107–108 random numbers. On a machine capable of generating 107 RNs

3 The term seed is typically used for the starting state of the generator. However, in order to simplify the

interface, SPRNG uses a global seed, which is a 31 bit integer. Based on this global seed, and on the stream

number, the actual state is produced. In the rest of this document, we shall use the term ‘‘seed’’ to refer to

this global seed.
4 Note that the rand implementation on recent Linux systems is different; it is the same generator as the

usual PRNG random.

A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94 81



per second, this would take between 1 and 10 s! Therefore this generator should not

be used any longer.

The popular Unix additive LFG, random, with a lag of 31, fails even the sequen-

tial gap test with the following parameters: ½a; b� ¼ ½0:5; 0:51�, gaps of length > 200

are grouped together in one category, 107 gap lengths were noted, and the test

was repeated 100 times for a total of around 1011 RNs. The Birthday Spacings test

in the DIEHARD package is more effective and detects the defects in additive LFGs
with much fewer RNs. This generator also fails sequential application-based tests.

For example, the Wolff algorithm fails with around 108 random numbers for a

16� 16 lattice, as shown in Fig. 3.

The SPRNG LFG, in contrast, combines two different RN streams to produce a

new stream. This generator passes the gap test even with 1013 random numbers used,

which is one of the largest tests ever of random numbers. 5 It also passes the Ising

model tests, both sequential and parallel, with around 1011 RNs.

4.2. Tests with cycle-division

Among cycle division strategies, sequence-splitting is considered the most effective

[4]. However, there are theoretical results suggesting weaknesses in cycle-division

strategies. We demonstrate these defects empirically, using sequence-splitting.

Fig. 3. Plot of the actual error versus the internally estimated standard deviation of the energy error

for Ising model simulations with the Wolff algorithm on a 16� 16 lattice with random, an additive

LFG (solid line). The dotted line is an error equal to the standard deviation.

5 The test was run on the CONDOR facility at the University of Wisconsin at Madison.

82 A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94



The 48-bit Cray LCG, ranf is similar to the sequential version of the 48-bit

LCG in SPRNG (as is the popular Unix generator drand48). We show that using

a sequence splitting scheme with this generator fails the blocking test with around

1010 RNs. The blocking test was performed with 128 streams, with 256 random

numbers from each stream being added together to form a sum, and 106 such
sums being generated. The sequence splitting was performed by splitting the se-

quence into fragments as mentioned earlier. The generator failed this test, giving

a K–S test percentile of 100.00, demonstrating the danger of cycle-division. We

observe that it is popularly believed that the main problem with sequence-splitting

is the possibility of overlap in the sequences, which can be avoided by ensuring

that each subsequence is sufficiently large. However, in our test, no overlap occurs.

The defect is solely due to long range correlations. Periodically, theoretical results

are published exposing previously undetected long range correlation in some gen-
erators [7,8]. Thus one needs to be wary of using cycle-division-based paralleliza-

tion.

4.3. Tests on the SPRNG multiplicative LFG

We give the results of the tests on the SPRNG multiplicative lagged Fibonacci gen-

erator (MLFG). This generator gives good results even with small lags, such as 17,5.

4.3.1. Sequential tests

We first give the results of tests on a sequential version of this generator.

The DIEHARD [21] test suite runs the following tests to verify the randomness

of a block of approximately three million RNs. The tests in DIEHARD are the

Birthday Spacings test, the Overlapping 5-Permutation Test, Binary Rank Test

(for 6� 8, 31� 31 and 32� 32 matrices), Bitstream Test, the Overlapping-Pairs-

Sparse-Occupancy (OPSO) Test, the Overlapping-Quadruples-Sparse-Occupancy

(OQSO) Test, the DNA Test, the Count-The-1�s Test (for a stream of bytes and
for specific bytes), the Parking Lot Test, the Minimum Distance Test, the

3DSpheres Test, the Squeeze Test, the Overlapping Sums Test, Runs Test, and

the Craps Test. All the tests in the DIEHARD suite pass, even with the small

lag of 17.

The first 1024 streams of each of the variants of the MLFG were tested with the

sequential statistical tests from the SPRNG test suite, and with the random walk test.

The parameters were chosen to test around 1011 RNs, except for the collisions test,

which used 1012 RNs. The latter test was larger since that test is particularly effective
in detecting defects. The random walk test used just around 108 RNs, since we have

implemented a rather simple version. The details of the parameters are summarized

in Table 1, indicating that all the tests passed.

The Ising model tests were performed with the Metropolis and Wolff algorithms

on a 16� 16 lattice. The block size was taken to be 1000, and the results of 1 000 000

blocks were considered, after discarding the results of the first 100 blocks. This tests

over 1011 RNs. The generator passed both these tests as shown in Figs. 4 and 5.

These figures show the plot for the specific heat with the Metropolis algorithm,

A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94 83



and with the energy for the Wolff algorithm. We actually tested both energy and spe-

cific heat for both the algorithms.

Table 1

Sequential PRNG tests on mlfg

Test Parameters K–S percentile

Collisions n ¼ 100000, logmd ¼ 10, log d ¼ 3 71.8

Collision n ¼ 200000, logmd ¼ 4, log d ¼ 5 90.8

Coupon n ¼ 5000000, t ¼ 30, d ¼ 10 19.6

Equidist d ¼ 10000, n ¼ 100000000 5.9

Gap t ¼ 200, a ¼ 0:5, b ¼ 0:51, n ¼ 1000000 87.1

Maxt n ¼ 50000, t ¼ 16 59.7

Permutations m ¼ 5, n ¼ 20000000 78.8

Poker n ¼ 10000000, k ¼ 10, d ¼ 10 88.4

Random walk Walk length ¼ 1024 96.4

Runs t ¼ 10, n ¼ 50000000 47.5

Serial d ¼ 100, n ¼ 50000000 45.9

The common test parameters were: nstreams ¼ 1024, ncombine ¼ 1, seed ¼ 0, nblocks ¼ 1,

skip ¼ 0, with the following exceptions: (i) The collisions tests used nblocks ¼ 1000. This test was done

twice, with seed ¼ 9999 in the first instance above and seed ¼ 0 in the second. (ii) The Maxt and

random walk tests used nblocks ¼ 100: (iii) The Maxt test used seed ¼ 9999. The K–S test percentile

given above is for the default lags 17,5, thus with param ¼ 0.

Fig. 4. Plot of the actual error versus the internally estimated standard deviation of the specific heat for

Ising model simulations with the Metropolis algorithm on a 16� 16 lattice with a sequential version of the

SPRNG mlfg with lags (17,5). We expect around 95% of the points to be below the dotted line (represent-

ing an error of two standard deviations) with a good generator.

84 A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94



4.3.2. Parallel tests

In contrast to the SPRNG generator lcg (described later), the SPRNG generator

mlfg passed the tests without requiring any modifications, even for small lags.

For those tests from the test suite that needed interleaved streams, we created four

streams, with each stream being the result of interleaving 256 streams. Each of these

was subjected to the standard tests. The details of the parameters and results are

given in Table 2, indicating that all the tests passed. The number of RNs consumed

in each test was around 1011, unless mentioned otherwise. As with the sequential
tests, we used around 1012 RNs with the collisions test, since it is very effective.

The Equidistribution test is redundant in the parallel version, since interleaving

streams does not make any difference over the sequential test.

The Ising model tests were performed with the Metropolis and Wolff algorithms

on a 16� 16 lattice. The block size was taken to be 1000, and the results of 1 000 000

blocks were considered, after discarding the results of the first 100 blocks. This tests

over 1011 RN. Fig. 6 shows the plot for the specific heat with the Metropolis algo-

rithm.
Note: In contrast to the MLFG, a plain parameterized LFG fails the parallel gap

test with as few as 106 RNs [25], even when a lag as large as 1279 is used. The sequen-

tial gap test is passed with this lag even when the number of random numbers used is

around 1011, demonstrating both, the presence of inter-stream correlations, and the

effectiveness of interleaving in detecting these correlations.

Fig. 5. Plot of the actual error versus the internally estimated standard deviation of the specific heat for

Ising model simulations with the Wolff algorithm on a 16� 16 lattice with a sequential version of the

SPRNG mlfg with lags (17,5). We expect around 95% of the points to be below the dotted line (represent-

ing an error of two standard deviations) with a good generator.

A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94 85



Fig. 6. Plot of the actual error versus the internally estimated standard deviation of the specific heat for

Ising model simulations with the Metropolis algorithm on a 16� 16 lattice with a sequential version of the

SPRNG generator mlfg with lags (17,5). We expect around 95% of the points to be below the dotted line

(representing an error of two standard deviations) with a good generator.

Table 2

Parallel PRNG tests on mlfg

Test Parameters K–S percentile

Blocking n ¼ 1000000, r ¼ 128 10.2

Collision n ¼ 200000, logmd ¼ 10, log d ¼ 3 60.6

Collision n ¼ 200000, logmd ¼ 4, log d ¼ 5 46.8

Coupon n ¼ 5000000, t ¼ 30, d ¼ 10 12.9

Gap t ¼ 200, a ¼ 0:5, b ¼ 0:51, n ¼ 1000000 78.0

Permutations m ¼ 5, n ¼ 20000000 7.2

Poker n ¼ 10000000, k ¼ 10, d ¼ 10 9.7

Random walk Walk length ¼ 1024 6.8

Runs t ¼ 10, n ¼ 50000000 33.2

Serial d ¼ 100, n ¼ 50000000 31.2

The common test parameters were: nstreams ¼ 4, ncombine ¼ 256, seed ¼ 0, nblocks ¼ 250,

skip ¼ 0, with the following exceptions: (i) The blocking test does not do interleaving, and used the 1024

streams directly. (ii) The collisions test was performed twice. In the first one above the values

nstreams ¼ 32, ncombine ¼ 32, and nblock ¼ 160 were used. While in the second one the values

nstreams ¼ 16, ncombine ¼ 64, and nblocks ¼ 50000 were used. (iii) The random walk test used

nblocks ¼ 25000 for around 108 RNs. The K–S test percentile given above is for the default lags 17,5,

thus with param ¼ 0.

86 A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94



4.4. Tests on LCG

We give details of the tests on the SPRNG lcg generator, which is a power-of-two

modulus 48-bit LCG. The defects in power-of-two modulus generators are well

known, and so this generator should typically not be used as the default. However,
it can be used to verify the results of computations first performed using another gen-

erator. If the two results agree, then the results from both the generators can be com-

bined to reduce the error estimate. We also wish to note that the 48-bit and 64-bit

generators perform well in most real applications, as long the the application is

not sensitive to correlations between RNs that are a power-of-two apart in the se-

quence. In contrast, the 32-bit version should probably never be used.

4.4.1. Sequential tests

We first give the results of tests on a sequential version of this generator.

All the DIEHARD tests passed, except that the lower order bits (generally the 8–

10 lowest bits) failed the DNA, OQSO, and OPSO tests. The poorer quality of the

lower bits is expected from theoretical results. SPRNG include a 64-bit LCG too,

to ameliorate this defect. In addition, SPRNG includes a combined multiple recursive

generator (CMRG) that combines a 64-bit LCG stream with a stream from a MRG

to produce a better stream. Even the lower order bits of these generators pass all the

DIEHARD tests. 6

The first 1024 streams of each of the variants of the 48-bit LCG were tested with

the sequential statistical tests from SPRNG test suite, and with the random walk test.

The parameters were chosen to test around 1011 RNs, except that the collisions test

used 1012 RNs and the random walk test used just around 108 RNs, for the same

reason as with the MLFG tests. The details of the parameters are summarized in

Table 3, indicating that all the tests passed.

The Ising model tests were performed with the Metropolis and Wolff algorithms

on a 16� 16 lattice. The block size was taken to be 1000, and the results of 1 000 000
blocks were considered, after discarding the results of the first 100 blocks. This tests

over 1011 RN. The generator passed both these tests.

4.4.2. Parallel tests

We now give the results of tests on the parallel version of this generator. The par-

allelization is through parameterization, as mentioned in Section 2.1.

In the original version of this generator, all the streams were started from the

same initial state. The streams differed due to differences in the additive constants.

6 Note that the least-significant bits of the states of the 64-bit LCG use in the CMRG will have the same

defects as that of the 48-bit LCG. However, when we generate a RN from the state of the LCG, we use

only the most-significant bits. For example, a random integer will use the 32 most-significant bits of the

state. Thus the least-significant bit of a RN from the 64-bit LCG is the 33rd least-significant bit of the

corresponding state, whereas in the 48-bit LCG, it is the 17th least-significant bit. Thus even the lower

order bits of a RN from a 64-bit LCG can be expected to be much better than the corresponding ones from

a 48-bit LCG, as proved by the tests.

A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94 87



It can be seen from the blocking test results in Fig. 7 and the dashed line of Fig. 8

that this generator has inter-stream correlation. (Since the sequential tests passed,

this failure could not be due to intra-stream correlations.)

Table 3

Sequential PRNG tests on the SPRNG generator lcg

Test Parameters K–S percentile

Collisions n ¼ 100000, logmd ¼ 10, log d ¼ 3 63.7

Collision n ¼ 200000, logmd ¼ 4, log d ¼ 5 73.8

Coupon n ¼ 5000000, t ¼ 30, d ¼ 10 67.2

Equidist d ¼ 10000, n ¼ 100000000 3.1

Gap t ¼ 200, a ¼ 0:5, b ¼ 0:51, n ¼ 1000000 6.5

Maxt n ¼ 50000, t ¼ 16 62.6

Permutations m ¼ 5, n ¼ 20000000 85.8

Poker n ¼ 10000000, k ¼ 10, d ¼ 10 17.8

Random walk Walk length ¼ 1024 21.2

Runs t ¼ 10, n ¼ 50000000 80.7

Serial d ¼ 100, n ¼ 50000000 73.9

The common test parameters were: nstreams ¼ 1024, ncombine ¼ 1, seed ¼ 0, nblocks ¼ 1,

skip ¼ 0, with the following exceptions: (i) The collisions tests used nblocks ¼ 1000. This test was done

twice, with seed ¼ 9999 in the first instance above and seed ¼ 0 in the second. (ii) The Maxt and

random walk tests used nblocks ¼ 100. (iii) The poker test seed was 9999. The K–S test percentile given

above is for the default multiplier 2875a2e7b175 (base 16), thus with param ¼ 0.

Fig. 7. Plot of the percentile from the K–S test versus the number of sums added together in the blocking

test. The parameter ngroups was taken to be 128, and we used 1024 streams in this test. The PPRNG

used was an older version of the SPRNG generator lcg, where each stream was started from the same ini-

tial state.

88 A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94



Even if we discard the first million numbers from each sequence, these correla-

tions persist and the streams still fail these tests. In the final version of this generator,

the initial states are staggered so that each stream starts at a sufficiently different po-

sition in the sequence. Then, the tests are passed, as shown by the solid line of Fig. 8

and from the results in Table 4. Thus one needs to be careful with the seeding, even

with parallelization through the iteration function.
For those tests from the test suite that needed interleaved streams, we created four

streams, with each stream being the result of interleaving 256 streams. Each of these

was subjected to the standard tests. The details of the parameters and results are

given in Table 4, indicating that all the tests passed. The number of RNs consumed

in each test was around 1011 except for the Gap, Runs, and Collisions tests, which

used 1012, and for the random walk test which used just 108.

The Ising model tests were performed with the Metropolis and Wolff algorithms

on a 16� 16 lattice. The block size was taken to be 1000, and the results of 1 000 000
blocks were considered, after discarding the results of the first 100 blocks. This tests

over 1011 RN. Fig. 8 shows the plot for the energy with the Metropolis algorithm.

4.4.3. Miscellaneous results

De�Matteis and Pagnutti [6] showed that power-of-two modulus LCGs parallel-

ized through additive constants differ only by a constant (modulo the modulus), if

Fig. 8. Plot of the actual error versus the internally estimated standard deviation of the energy error for

Ising model simulations with the Metropolis algorithm on a 16� 16 lattice with a different LCG sequence

from the SPRNG lcg generator used at each lattice site. The dashed line shows the results when all the

LCG sequences were started with the same seeds but with different additive constants. The solid line shows

the results when the sequences were started with different seeds. We expect around 95% of the points to be

below the dotted line (which represents an error of two standard deviations) with a good generator.

A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94 89



the streams are shifted by a certain ‘‘shift-factor.’’ More formally, given two se-

quences y and z such that

ynþ1 ¼ ayn þ c1 ðmod 2tÞ and znþ1 ¼ azn þ c2 ðmod 2tÞ

where a is the same maximal period multiplier in both cases, c1 and c2 are odd in-

tegers, and 2t is the modulus, there exists an s and c such that

znþs ¼ yn þ c ðmod 2tÞ ð1Þ

We performed tests to determine the shift factor s required for the first 1000

streams produced by the LCG. If the shifts were much smaller than the size of the
sequence used from each stream, then this could result in inter-stream correlations.

Let us define the distance between two streams as the smallest shift required to sat-

isfy Eq. (1). For each of the 1000 streams, we determined the distance to the nearest

stream out of this set of streams. We give the results for the multiplier 2875a2e7b175
in base 16. The mean distance between streams was 7� 1010, the median was

4� 1010, the maximum distance was 5� 1011 and the minimum 1� 108. Note that

in our larger parallel tests, we checked for a total of around 1012 RNs across 1024

streams, for around 109 RNs per stream. Since this is smaller than the typical shift,
the tests could not detect this correlation, as expected. This also demonstrates that

the shifts with these particular streams are sufficiently large that they do not pose

a problem in practice. We note, however, that if the number of streams is increased,

then we can expect the nearest neighbors to come closer, and thus the mean shifts

will decrease. Conversely, if the number of streams used is lower, or if the modulus

is higher (as with the 64-bit generator), then the shifts will be higher.

Table 4

Parallel PRNG tests on the SPRNG generator lcg

Test Parameters K–S percentile

Blocking n ¼ 1000000, r ¼ 128 73.4

Collision n ¼ 200000, logmd ¼ 4, log d ¼ 5 9.9

Coupon n ¼ 5000000, t ¼ 30, d ¼ 10 55.4

Gap t ¼ 200, a ¼ 0:5, b ¼ 0:51, n ¼ 10000000 25.3

Permutations m ¼ 5, n ¼ 20000000 62.3

Poker n ¼ 10000000, k ¼ 10, d ¼ 10 87.7

Random walk Walk length ¼ 1024 5.6

Runs t ¼ 10, n ¼ 500000000 64.4

Serial d ¼ 100, n ¼ 50000000 60.3

The common test parameters were: nstreams ¼ 4, ncombine ¼ 256, seed ¼ 0, nblocks ¼ 250,

skip ¼ 0, with the following exceptions: (i) The blocking test does not do interleaving, and used the 1024

streams directly. (ii) The collisions test used nstreams ¼ 16, ncombine ¼ 64, and nblocks ¼ 50000.

(iii) The random walk test used blocks ¼ 10000, and seed ¼ 9111999. The K–S test percentile given

above is for the default multiplier 2875a2e7b175 (base 16), thus with param ¼ 0.

90 A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94



4.5. Summary of tests results

We give below a summary of the results of tests on the SPRNG generators.

All the SPRNG generators were tested with the DIEHARD suite, and they all

passed these tests, 7 except that the lower order bits of the 48-bit LCG are bad.
The following tests from Knuth [17] were performed, including their parallel ver-

sions: collisions, coupon collector, equidistribution, gap, maximum of t, permuta-

tions, poker, runs-up, serial. At least 1011 RNs were tested for each generator in

each case. The collisions test used 1012 RNs. The sequential gap test for the additive

LFG used 1013 RNs––one of the largest empirical RN tests ever accomplished. The

parallel gap test for this generator used 1012 RNs. We also performed the blocking

test for parallel generators, and the Metropolis and Wolff algorithm for the Ising

model with at least 1011 RNs. All SPRNG generators passed these tests. More details
and the latest results can be found at the SPRNG web site.

5. Conclusions

In this section we shall describe the weaknesses of different generators and give

general guidelines on their use. We also mention those tests that we also found to

be particularly effective in detecting defects.
LCGs with power-of-two moduli are known to have extremely non-random lower

order bits––the ith least-significant bits have a period of 2i. Thus, if an application is

sensitive to lower order bits, then erroneous results can be obtained. The larger the

modulus, the farther are the least-significant bits from the most-significant bits, and

thus we can expect these correlations to influence a floating point random number to

a lesser extent. The 32-bit generator rand is extremely bad by today�s standards, and
should not be used, either in parallel or in sequential calculations. The 48-bit gener-

ator, lcg, is much better, and of course, the 64-bit generator, lcg64, is better yet.
Despite this problem, lcg has proven to be good in most applications. However,

one should take care to ensure that the application is not sensitive to this power-

of-two correlation.

The combined multiple-recursive generator, cmrg attempts to remedy this prob-

lem by combining the 64-bit LCG with a multiple-recursive generator. We use a

32-bit version of cmrg, which improves the quality of the 32 most-significant bits.

However, the lower order bits are still identical to those of the corresponding LCG.

The SPRNG prime modulus LCG pmlcg does not have these power-of-two cor-
relations. However, some caution is required regarding the parallel generator. We

use different multipliers to ensure that different streams are obtained. However, if

7 All the final versions of the SPRNG generators passed. Original versions sometimes had defects which

had to be corrected with, for example, lfg, lcg, and pmlcg. The cases of lfg and lcg have been

mentioned above. In the case of pmlcg, we use different multipliers for parameterization. As one might

expect, some of these multipliers are not as good as others. We therefore eliminated the defective ones, and

tests using the first 1024 multipliers in the current implementation suggest that they are quite good.

A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94 91



we consider a large number of streams, there may be a few with bad multipliers. Fur-

thermore, the initialization of this generator is a bit slow compared with the others.

The additive LFG implemented in the SPRNG package, lcg, actually combines

two different RN streams to produce a new one. Otherwise, a plain additive LFG

sequence fails certain tests such as the Birthday Spacings test implemented in DIE-
HARD, and the gap test described in Section 3. To be on the safe side, we suggest

using a large lag. The multiplicative LFG, mlfg, is the only generator considered

here that has a fundamentally non-linear recurrence relation. We expect it to be safe

to use it even with a small lag.

Among the tests, the Birthday Spacings test (from DIEHARD), the Collision,

Gap, and Runs tests (from Knuth, and their parallel versions as implemented in

the SPRNG test suite), and the Blocking and Ising model tests were particularly effec-

tive in exposing defects in PRNGs and PPRNGs. One problem is that DIEHARD is
‘‘hardwired’’ to perform its suite of tests on a fixed number of RNs. This is somewhat

restrictive. However, a general version of the DIEHARD suite, which allow the user

to vary the number of RNs tested, has now been implemented, and should be avail-

able in future releases of SPRNG.

We conclude this paper by recommending the technique of independent streams

for parallelizing RN generators. Using the technique of cycle division can turn long

range correlations in the original sequence into short range inter- or intra-stream

correlation. 8 The SPRNG software provides several generators using parameteriza-
tion, and suite of ‘‘standard’’ parallel tests to test even non-SPRNG generators. In

the future, we expect to provide a web-based testing facility as well.

Acknowledgements

The SPRNG software was developed with funding from DARPA Contract Num-

ber DABT63-95-C-0123 for ITO: Scalable Systems and Software, entitled A Scalable

Pseudorandom Number Generation Library for Parallel Monte Carlo Computations.
We also wish to acknowledge the computational resources provided by NCSA, Uni-

versity of Illinois at Urbana-Champaign. SPRNG is now funded through a Depart-

ment of Energy Accelerated Strategic Computing Initiative (ASCI) Level 3

contract sponsored by Lawrence Livermore, Los Alamos, and Sandia National Lab-

oratories.

References

[1] P.D. Beale, Exact distribution of energies in the two-dimensional Ising model, Phys. Rev. Lett. 76

(1996) 78.

8 There have been some warnings about the dangers of using independent streams [4] since it may so

happen that different parameters just take you to different points on the same sequence. However, this is

really only a warning against a naive parallelization strategy. One can design (as we have done in the

SPRNG package) a parallelization strategy that avoids this pitfall.

92 A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94



[2] P. Coddington, Analysis of random number generators using Monte Carlo simulation, Int. J. Mod.

Phys. C 5 (3) (1994) 547–560.

[3] P. Coddington, Tests of random number generators using Ising model simulations, Int. J. Mod. Phys.

C 7 (3) (1996) 295–303.

[4] P. Coddington, Random number generators for parallel computers, 28 April 1997. Available at:

www.npac.syr.edu/users/paulc/papers/NHSEreview1.1/PRNGreview.ps.

[5] S.A. Cuccaro, M. Mascagni, D.V. Pryor, Techniques for testing the quality of parallel pseudorandom

number generators, In: Proceedings of the Seventh SIAM Conference on Parallel Processing for

Scientific Computing, Philadelphia, Pennsylvania, 1995, SIAM, pp. 279–284.

[6] A. De�Matteis, S. Pagnutti, A class of parallel random number generators, Parallel Comput. 13 (1990)

193–198.

[7] A. De�Matteis, S. Pagnutti, Long-range correlations in linear and non-linear random number

generators, Parallel Comput. 14 (1990) 207–210.

[8] A. De�Matteis, S. Pagnutti, Parallelization of random number generators and long-range correlations,

Parallel Comput. 15 (1990) 155–164.

[9] A. De�Matteis, S. Pagnutti, Controlling correlations in parallel Monte Carlo, Parallel Comput. 21

(1995) 73–84.

[10] M.J. Durst, Testing parallel random number generators, In: Computing Science and Statistics:

Proceedings of the XXth Symposium on the Interface, 1988, pp. 228–231.

[11] K. Entacher, Bad subsequences of well-known linear congruential pseudorandom number generators,

ACM Trans. Model. Comput. Simul. 8 (1998) 61–70.

[12] A.M. Ferrenberg, D.P. Landau, Y.J. Wong, Monte Carlo simulations: hidden errors from ‘‘good’’

random number generators, Phys. Rev. Let. 69 (1992) 3382–3384.

[13] P. Frederickson, R. Hiromoto, T.L. Jordan, B. Smith, T. Warnock, Pseudo-random trees in Monte

Carlo, Parallel Comput. 1 (1984) 175–180.

[14] P. Grassberger, On correlations in �good� randomnumber generators, Phys. Lett. A 181 (1) (1993) 43–46.

[15] J.H. Halton, Pseudo-random trees: multiple independent sequence generators for parallel and

branching computations, J. Comput. Phys. 84 (1989) 1–56.

[16] D.E. Knuth, The Art of Computer Programming, vol. 2: Seminumerical Algorithms, second ed.,

Addison-Wesley, Reading, MA, 1981.

[17] D.E. Knuth, The Art of Computer Programming, vol. 2: Seminumerical Algorithms, third ed.,

Addison-Wesley, Reading, MA, 1998.

[18] S.S. Lavenberg, Computer Performance Modeling Handbook, Academic Press, New York,

1983.

[19] P. L�Ecuyer, J.-F. Cordeau, R. Simard, Close-point spatial tests for random number generators,

Operations Research 48 (2) (2000). Available at: http://www.iro.umontreal.ca/lecuyer/

papers.html (npair.ps), 1999.

[20] J. Makino, Lagged-Fibonacci random number generator on parallel computers, Parallel Comput. 20

(1994) 1357–1367.

[21] G. Marsaglia, Diehard software package, Available at: ftp://stat.fsu.edu/pub/diehard.

[22] M. Mascagni, Parallel linear congruential generators with prime moduli, Parallel Comput. 24 (1998)

923–936 (and 1997 IMA Preprint #1470).

[23] M. Mascagni, S.A. Cuccaro, D.V. Pryor, M.L. Robinson, A fast, high-quality, and reproducible

lagged-Fibonacci pseudorandom number generator, J. Comput. Phys. 15 (1995) 211–219.

[24] M. Mascagni, M.L. Robinson, D.V. Pryor, S.A. Cuccaro, Parallel pseudorandom number generation

using additive lagged-Fibonacci recursions, Springer Verlag Lecture Notes in Statistics 106 (1995)

263–277.

[25] M. Mascagni, A. Srinivasan, Parameterizing parallel multiplicative lagged-Fibonacci generators,

Parallel Comput., submitted for publication.

[26] M. Mascagni, A. Srinivasan, SPRNG: A scalable library for pseudorandom number generation, ACM

Trans. Math. Software 26 (2000) 436–461.

[27] O.E. Percus, M.H. Kalos, Random number generators for MIMD parallel processors, J. Par. Distr.

Comput. 6 (1989) 477–497.

A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94 93

www.npac.syr.edu/users/paulc/papers/NHSEreview1.1/PRNGreview.ps
http://www.iro.umontreal.ca/lecuyer/papers.html
http://www.iro.umontreal.ca/lecuyer/papers.html
ftp://stat.fsu.edu/pub/diehard


[28] D.V. Pryor, S.A. Cuccaro, M. Mascagni, M.L. Robinson, Implementation and usage of a portable

and reproducible parallel pseudorandom number generator, In: Proceedings of Supercomputing �94,
IEEE, New York, 1994, pp. 311–319.

[29] J. Saarinen, K. Kankaala, T. Ala-Nissila, I. Vattulainen, On random numbers––test methods and

results, Preprint series in theoretical physics HU-TFT-93-42, Research Institute for Theoretical

Physics, University of Helsinki, 1993.

[30] F. Schmid, N.B. Wilding, Errors in Monte Carlo simulations using shift register random number

generators, Int. J. Mod. Phys. C 6 (6) (1995) 781–787.

[31] W. Selke, A.L. Talapov, L.N. Schur, Cluster-flipping Monte Carlo algorithm and correlations in

‘‘good’’ random number generators, JETP Lett. 58 (8) (1993) 665–668.

[32] SPRNG––scalable parallel random number generators. Available at: SPRNG 1.0––http://

www.ncsa.uiuc.edu/Apps/SPRNG; SPRNG 2.0––http://sprng.cs.fsu.edu.

[33] A. Srinivasan, D.M. Ceperley, M. Mascagni, Random number generators for parallel applications,

In: D.M. Ferguson, J.I. Siepmann, D.G. Truhlar (Eds.), Monte Carlo Methods in Chemical Physics,

in: Advances in Chemical Physics, vol. 105, John Wiley and Sons, New York, 1999, pp. 13–36.

[34] I. Vattulainen, Framework for testing random numbers in parallel calculations, Phys. Rev. E 59

(1999) 7200–7204.

[35] I. Vattulainen, T. Ala-Nissila, K. Kankaala, Physical tests for random numbers in simulations, Phys.

Rev. Lett. 73 (1994) 2513–2516.

94 A. Srinivasan et al. / Parallel Computing 29 (2003) 69–94

http://www.ncsa.uiuc.edu/Apps/SPRNG
http://www.ncsa.uiuc.edu/Apps/SPRNG
http://sprng.cs.fsu.edu

	Testing parallel random number generators
	Introduction
	Monte Carlo parallelization
	Parallelizing PRNGs
	Parallel PRNGs tested

	Description of tests
	Statistical tests
	Application-based tests

	Test results
	Tests on sequential generators
	Tests with cycle-division
	Tests on the SPRNG multiplicative LFG
	Sequential tests
	Parallel tests

	Tests on LCG
	Sequential tests
	Parallel tests
	Miscellaneous results

	Summary of tests results

	Conclusions
	Acknowledgements
	References


