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bstract

Monte Carlo (MC) linear solvers can be considered stochastic realizations of deterministic stationary iterative processes. That
s, they estimate the result of a stationary iterative technique for solving linear systems. There are typically two sources of errors:
i) those from the underlying deterministic iterative process and (ii) those from the MC process that performs the estimation. Much
rogress has been made in reducing the stochastic errors of the MC process. However, MC linear solvers suffer from the drawback
hat, due to efficiency considerations, they are usually stochastic realizations of the Jacobi method (a diagonal splitting), which
as poor convergence properties. This has limited the application of MC linear solvers. The main goal of this paper is to show
hat efficient MC implementations of non-diagonal splittings too are feasible, by constructing efficient implementations for one
uch splitting. As a secondary objective, we also derive conditions under which this scheme can perform better than MC Jacobi,
nd demonstrate this experimentally. The significance of this work lies in proposing an approach that can lead to efficient MC
mplementations of a wider variety of deterministic iterative processes.

2009 IMACS. Published by Elsevier B.V. All rights reserved.

eywords: Monte Carlo; Linear solver

. Introduction

The use of Monte Carlo (MC) in linear algebra dates back to the work of von Neumann and Ulam (described by
orsythe and Leibler [6] in 1950). However, with the development of modern deterministic numerical techniques, MC
tarted losing its appeal in numerical linear algebra. There has been a recent revival of interest in MC linear algebra, partly
ecause of advances in MC techniques, but more importantly, due to the increasing importance of applications where
he use of MC techniques is attractive [14]. For example, the use of MC is promising in applications where approximate
olutions are sufficient, such as in preconditioning, graph partitioning, information retrieval, and feature extraction.
urthermore, parallel MC is very latency tolerant, and so should be effective in a Grid-like environment. MC can also
ield specific components of the solution. In addition, the convergence rate is independent of the size of the matrix.
Please cite this article in press as: A. Srinivasan, Monte Carlo linear solvers with non-diagonal splitting, Math. Comput. Simul.
(2009), doi:10.1016/j.matcom.2009.03.010

A major problem with current MC linear solver techniques, which we summarize in Section 2, is that they are
undamentally based on the Jacobi method (a diagonal splitting). We proposed a different iterative process and evaluated
t empirically with dense matrices in [11,12], and presented a sparse implementation in [13]. Here, we present a more
etailed discussion, including theoretical analysis, a better sparse implementation, and more exhaustive empirical
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testing. We explain the splitting and the dense implementation in Section 3, and discuss the sparse implementation
in further detail in Section 4. We then present experimental results in Section 5, and summarize our conclusions in
Section 6.

2. Current MC techniques

2.1. Matrix vector multiplication

The basis for MC linear algebra techniques is the ability to perform stochastic matrix-vector multiplication. So we
first outline this. Further details can be found in [11].

Consider the matrix C ∈�n×n and vector h∈�n. We construct “transition-probability” and “weight” matrices P
and W satisfying the following constraint

Cij = Pij ×Wij, 1 ≤ i, j ≤ n, with Pij ≥ 0 and
n∑

i=1

Pij = 1, 1 ≤ j ≤ n. (1)

We similarly define “initial-probability” and “initial-weight” vectors p and w satisfying the following constraint

hi = pi × wi, 1 ≤ i ≤ n, with pi ≥ 0 and
n∑

i=1

pi = 1. (2)

MC techniques estimate Cjh, j ≥ 0, where Cj is the jth power of C, by constructing a Markov chain of length j, with
initial probabilities given by the vector p, and transition probabilities by PT . The random walk visits a set of states in
{1, . . . , n}, and we denote the state visited in the ith step by ki, i∈ {1, . . . , j}. The probability of the initial state being
α is given by Prob(k0 = α) = pα and the transition probability by Prob(ki = α|ki−1 = β) = Pαβ.

Consider random variables Xi defined as follows: X0 = wk0 , Xi = Xi−1 ×Wkiki−1 . If we let δ denote the Kronecker
delta function (δij = 1 if i = j, and 0 otherwise), then it can be shown [3,5] that E(Xjδikj ) = (Cjh)i, 1 ≤ i ≤ n.
Therefore, for each random walk, Xjδikj can be used to estimate the ith component of Cjh. That is, in any random
walk, the kj th component is estimated as Xj , and all the other components are estimated as 0. We perform many
random walks, maintaining a running sum for estimates of each component, and finally average over the number of
walks. Note that in any single walk, the running sum for only one component needs to be updated.

We will later find it useful to estimate
∑m

j=0C
jh through E(

∑m
j=0Xjδikj ) = (

∑m
j=0C

jh)
i
. Each random walk gives

an estimate for the entire sum, with each step of the random walk updating a particular component of the running sum.

2.1.1. Examples of transition probability choice
Popular choices to satisfy Eqs. (1) and (2) are to either (i) make all probabilities in a given column proportional

to the magnitude of the corresponding element, or (ii) make all probabilities in each column equal. For example,
if we make probabilities proportional to the magnitude of the elements, then the initial probabilities are given by
pi = |hi|/

∑n
j=1|hj|, and the transition probabilities by Pij = |Cij|/

∑n
k=1|Ckj|. The corresponding weights are given

by wi = sign(hi)×
∑n

i=1|hi| and Wij = sign(Cij)×∑n
k=1|Ckj|.

2.1.2. Multiple matrices
We can easily extend the above technique to multiplying by more than one matrix. For example, we will find it

useful to estimate
∑m

j=0(BC)jBh, where B, C ∈�n×n and h∈�n. Transition probabilities and weights for C and h are

chosen with the constraints given earlier by (1) and (2). Transition probabilities P̂ and weights Ŵ are similarly chosen
for B too, and a Markov chain of length 2m+ 1 is used to estimate

∑m
j=0(BC)jBh, in a straight-forward generalization

of the above technique. This is described in further detail in [11,12].
Please cite this article in press as: A. Srinivasan, Monte Carlo linear solvers with non-diagonal splitting, Math. Comput. Simul.
(2009), doi:10.1016/j.matcom.2009.03.010

2.2. Linear solvers

In order to solve Ax = b, A∈�n×n and x, b∈�n, the starting point of MC techniques is to split A as A = N −M,
and write the fixed-point iteration [8]x(m+1) = N−1Mx(m) +N−1b = Cx(m) + h, where C = N−1M and h = N−1b.

dx.doi.org/10.1016/j.matcom.2009.03.010
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hen we get x(m) = Cmx(0) +∑m−1
i=0 Cih. The initial vector x(0) is often taken to be h for convenience, yielding the

eumann series given below, which converges to the solution as m→∞ if ‖C‖ < 1.

x(m) =
m∑

i=0

Cih. (3)

C techniques construct a Markov chain to estimate the sum in (3), with the initial probabilities determined by h, and
ransition probabilities by C, as explained in Section 2.1.1

For effectiveness of the MC technique, efficient determination of C is considered important. Therefore, current
C techniques choose N to be a diagonal matrix, thereby yielding C = N−1M efficiently.2 This yields, for example,

he Jacobi method when N is taken to be the diagonal of A. This perceived need for choosing N to be diagonal
as resulted in the iterative schemes underlying current MC techniques having poor convergence properties. Though
ariance reduction, residual correction, and other techniques have been applied on top of this to get better accuracy,
he fundamental limitation is that the MC techniques estimate a quantity that itself does not converge fast.3

On the other hand, we note that MC techniques do not have to be based on the best possible iterative technique.
stimates can be obtained fast, and this fact may compensate for the underlying iterative scheme having poor conver-
ence properties. Despite this fact, MC techniques have generally not been competitive with deterministic techniques,
xcept for a limited number of applications. Furthermore, the convergence properties of the underlying iterative scheme
estrict the systems to which the current MC techniques can be applied. Therefore, there is a need for MC techniques
ased on better underlying iterations.

. Non-diagonal splitting

Diagonal splittings have the following advantages: (i) Determining C is fast, and (ii) C is sparse when A is sparse.
n this section, we consider a non-diagonal splitting, and show how its deficiencies with respect to the above two
roperties can be overcome. We then prove the convergence of this method for a certain class of matrices.

.1. The splitting

We choose N to be the diagonal and first subdiagonal of A, which we refer to as the SDI scheme. (We assume
i /= 0, 1 ≤ i ≤ n, as with the Jacobi method, to ensure that N−1 exists.) This yields N of the form

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1

s2 d2

s3 d3

. . .

sn dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)
Please cite this article in press as: A. Srinivasan, Monte Carlo linear solvers with non-diagonal splitting, Math. Comput. Simul.
(2009), doi:10.1016/j.matcom.2009.03.010

−1 is a lower triangular matrix, and just computing C = N−1M would make this splitting non-competitive. So we do
ot explicitly compute C, but rather, estimate the result of the recurrence x(m+1) = N−1Mx(m) +N−1b, which yields

1 We wish to note that there are many different estimators available [1,2,6,7,15](with the one we mentioned being a popular one, and similar to
hat introduced by Wasow [15]). Similarly, one may use absorbing or non-absorbing walks (we use the latter), and one may use the direct or adjoint

ethod (we use the latter). However, the fundamental idea behind these alternatives is similar.
2 For a general N, computing each of N−1 and C would be prohibitively expensive.
3 A modified approach in [4] scales the elements of the matrix, so that Monte Carlo can be used for non-diagonally dominant matrices, provided

hat the Neumann series, with the scaled matrix, converges.

dx.doi.org/10.1016/j.matcom.2009.03.010
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the following when we take x(0) = b.

x(m) =
m∑

j=0

(N−1M)
j
N−1b. (5)

x(m) can be estimated as shown in Section 2.1.2. The number of steps in each random walk will be twice the number
in the current techniques. However, if the method converges faster, then we may compensate for this.

3.2. Dense matrix implementation

The matrix N−1 is lower triangular, and in general, the lower triangle is dense. While general matrix inversion takes
O(n3) time, which is prohibitive, we can compute N−1 in just O(n2) time and space as shown below. It is easy to verify
[11,12] that

N−1
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if i < j

1

di

if i = j

(−1)i−j

dj

�i
k=j+1

sk

dk

otherwise

(6)

We note the following two points:

• Any element of N−1 can be computed in constant time, using O(n) storage and O(n) pre-computation time as
follows. Compute and store T (i) 4, 1 ≤ i ≤ n, defined as follows

T (i) =

⎧⎪⎨
⎪⎩

1 i = 1

T (i− 1)
si

di

otherwise
(7)

This takes O(n) space and time. Any element of N−1 can be computed in constant time as follows

N−1
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if i < j

1

di

if i = j

(−1)i−j

dj

T (i)

T (j)
otherwise

(8)

• The entire matrix N−1 can be computed in O(n2) time, for example, using Eqs. (7) and (8). We perform such a
computation, and make the probability choice (i) from Section 2.1.1.

3.3. Convergence

The Neumann series for the Jacobi method converges for diagonally dominant matrices. We can show that it
converges for the SDI method too. In fact, the bounds on its convergence rate, using Gershgorin’s theorem, are at least
as good as that of Jacobi.
Please cite this article in press as: A. Srinivasan, Monte Carlo linear solvers with non-diagonal splitting, Math. Comput. Simul.
(2009), doi:10.1016/j.matcom.2009.03.010

Theorem 1. If A is row-wise diagonally dominant, then xm in Eq. (5) converges to the true solution as m→∞.

Proof. In Appendix B. �

4 If some si = 0, then we need to make some modifications, as shown in Appendix A.

dx.doi.org/10.1016/j.matcom.2009.03.010
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If we use absorbing random walks, then we need to show convergence of the stochastic error as the walk length
pproaches infinity. Though we use non-absorbing walks, it is still useful to shown conditions for such convergence.
he condition given below indicates that it converges, provided the subdiagonal entries are not too large. The condition
iven below appears too restrictive, and empirical tests suggest that the stochastic error converges for much larger
ubdiagonal entries too, as shown in Section 5.

heorem 2. If A is scaled to have diagonal elements of magnitude 1, and the scaled matrix is column-wise and
ow-wise diagonally dominant with maxj

∑
r|mrj| +maxk|ak,k−1| < 1, then the variance of the estimate for each

omponent converges as m→∞, when we use probability choice (i) of Section 2.1.1 for each of N−1 and M.

roof. In Appendix B. �

. Sparse matrix implementation

We now consider the case where A is sparse. The solution is still estimated using the procedure outlined in Section
, in particular, using Eq. (5). Since A is sparse, so is M, and the space required for the weight matrix and the transition
robability (implicitly stored as data for the alias method [9], which we use for sampling) is proportional to the number
f non-zero elements in M. Weight and probability computation for the b vector is as for the dense case, since b is,
n general, dense. However, N−1 is dense, and we can neither afford O(n2) computation time to determine it, nor the

(n2) space to store it.
We first choose a suitable transition probability matrix for N−1, such that it can be sampled fast, and can be

epresented using O(n) data. On a transition from state j to state i, we can then determine weight Ŵij in constant time
sing N−1

ij = P̂ijŴij , provided that N−1
ij is known. The latter can be computed in constant time, as shown in Eqs. (7)

nd (8), using O(n) precomputation time and storage. So we just need a suitable transition probability. We show two
chemes for that below, assuming that the sub-diagonal entries of A are non-zero. The generalization to zero elements
ollows from the discussion in Appendix A.

.1. Equal probabilities

We can assign transition probabilities P̂ such that the non-zero elements in each column of N−1 have equal
robability of occurring. Thus P̂ is defined by

P̂ij =

⎧⎪⎨
⎪⎩

0 if i < j

1

n− j + 1
otherwise

(9)

e can obtain samples easily in a small constant time by suitably sampling from the uniform distribution. Simulations
re performed as with the dense matrix, except that the probabilities for N−1 are chosen according to (9), using the
orresponding weights.

.2. Geometric probabilities

In order for the probabilities to be closer to the dense version, we sample from an approximation to the geometric
istribution with parameter r, as follows. Define

P̂ij =
⎧⎨
⎩

0 if i < j

≈ proportional to(1− r)i−j otherwise
(10)

sample from the geometric distribution can be obtained in constant time by first sampling x from the uniform
Please cite this article in press as: A. Srinivasan, Monte Carlo linear solvers with non-diagonal splitting, Math. Comput. Simul.
(2009), doi:10.1016/j.matcom.2009.03.010

istribution in (0, 1), and then taking �log(1− x)/log(1− r)�. We choose r = 1−maxk|sk|. The actual distribution
ay be an approximation for the following reason. We need only a finite number of states, and so need some procedure

o handle the states obtained from the above process. We can handle this in a variety of ways, for example, omitting
tates outside the range (at the cost of wasting some computational effort, with the fraction of effort wasted being at

dx.doi.org/10.1016/j.matcom.2009.03.010
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Fig. 1. Plot of relative error vs. number of simulations. The dashed lines are MC Jacobi, and the solid lines are SDI (probability proportional to
magnitude of element). (Left) Walk length is 5 in all cases. Circles, SA (α = 0.3), squares, A (α = 0.3), triangles, G2 (α = 0.6). (Right) A (α = 0.3)
in all cases. Squares, Walk length m = 2, circles, m = 5, triangles, m = 10.

most r) or performing a modulo operation as follows. If k is the state obtained from the geometric distribution, then we
can set the actual state to (k − 1) mod (n− j + 1)+ 1 when sampling in column j. The experiments reported here
are equivalent to taking the former alternative. We have also performed and reported the latter (an approximation) in
earlier work.

5. Experimental results

We first wish to compare the effectiveness of MC linear solvers based on the new technique and the conventional
Jacobi technique for different numbers of simulations, walk lengths, and extents of diagonal dominance of the matrix A.
We also wish to compare the stochastic errors from different probability choices for the new technique. We performed
studies with the families of matrices given below. We assume that all the matrices have been scaled to make the diagonal
elements 1. The name of each matrix family is enclosed in parentheses below, and followed by a short description.

(A), All elements of the first subdiagonal are set to a parameter α, which controls the extent of diagonal dominance.
All other elements are set to 0.5/n, where n = 50 is the number of rows in the matrix. (SA), It is similar to (A), but the
superdiagonal elements too are set to α, making the matrix symmetric, and n = 50. (RA), It is similar to (A), but the
subdiagonal elements are randomly and uniformly distributed in the interval (α− r, α+ r), where r is an additional
parameter that controls the extent of variation of the subdiagonal elements, and n = 50. (G2), Here, aij is first set to
a random value in (0, 1), and then aij ← aij/

∑
iaij × α, and n = 100. In this matrix, the subdiagonal entries are not

specially large.
The vector solved for is always set to one with all components equal to 1. The plots compare the relative errors of

the different methods, where the relative error is defined as ‖Exact− Computedsolution‖2/‖Exactsolution‖2. When
computing the stochastic error, the exact solution is taken to be the vector that results from the deterministic iterative
process with the number of iterations set to the walk length. That is, this error determines how close the MC estimate is to
the vector it is trying to estimate. When we mention an error in general, the exact solution is taken to be the true solution
to the linear system. We computed errors and stochastic errors for each of the above matrices with various walk lengths5

and number of simulations Nsim ∈ {102, 103, 104, 105, 106}. The parameters for matrices were chosen as follows: (A)
and (SA) α∈ {0.1, 0.2, 0.3, 0.4}, (RA) α = 0.2, r ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and (G2) α∈ {0.5, 0.6, 0.7, 0.8}. We show
Please cite this article in press as: A. Srinivasan, Monte Carlo linear solvers with non-diagonal splitting, Math. Comput. Simul.
(2009), doi:10.1016/j.matcom.2009.03.010

some samples of these results, which are typical of the trends exhibited.
From Fig. 1 (left), we can see that SDI is better than MC Jacobi for (A) and (SA), and that both are equally good

for (G2). The reason for this is that the subdiagonal entries play a significant role in the former two matrices. In the
latter, the subdiagonal entries are not large, and so both splitting are essentially identical. We also see the the relative

5 When we refer to walk length in the following discussion, we are referring to the number of terms m in the Neumann series, excluding the first
one.

dx.doi.org/10.1016/j.matcom.2009.03.010
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ig. 2. Plot of relative error vs. number of simulations. The dashed lines are MC Jacobi, and the solid lines are SDI (probability proportional to
agnitude of element). (Left) Matrix (A), walk length is 5 in all cases. Circles, α = 0.1, squares, α = 0.2, triangles, α = 0.3, and diamond, α = 0.4.

Right) SA (α = 0.3) in all cases. Squares, Walk length m = 2, circles, m = 5, triangles, m = 10.

rrors are largest for (SA) and lowest for (GA). This is due to the smallest degree of diagonal dominance in (SA), and
he largest in (GA).

Fig. 1 (right) compares the two methods with varying walk lengths. All the curves for SDI are almost identical
and visually indistinguishable), suggesting that the error from the iterative process is small, and the error is mainly
tochastic. For MC Jacobi, the error decreases as the walk length increases, as expected, until it reaches the same point
s SDI, with walk length 10. At this point, the error from the iterative process is small, and since that is the main
ifference between the two methods, they yield similar results.

Fig. 2 (left) compares the two schemes with different extents of diagonal dominance. As expected, when the extent
f diagonal dominance increases, both schemes perform better. SDI performs better than MC Jacobi in all cases.
owever, the difference is larger when the diagonal dominance is smaller. The reason for this is that the iterative errors

re larger with a smaller diagonal dominance, and since SDI improves the iterative error, it performs much better then.
Please cite this article in press as: A. Srinivasan, Monte Carlo linear solvers with non-diagonal splitting, Math. Comput. Simul.
(2009), doi:10.1016/j.matcom.2009.03.010

Fig. 2 (right) shows a situation where the Neumann series for Jacobi does not converge, since A is not diagonally
ominant. However, the SDI solution converges, suggesting that the convergence conditions in Theorems 1 and 2 can
e made less restrictive.

ig. 3. (Left) Plot of error vs. optimal computational effort for that error. The dashed line is MC Jacobi, and the solid lines is SDI (probability
roportional to magnitude of element). Matrix (A) α = 0.25. (Right) Comparison of stochastic error for different probability choices for N−1 with
DI. RA (α = 0.2) and walk length 5 in all cases. Dash-dotted lines (toward the top)—equal probability, dashed lines, geometric distribution, and
olid lines, probability proportional to magnitude of element. Circles, r = 0.1, triangles, r = 0.2, squares, r = 0.3.

dx.doi.org/10.1016/j.matcom.2009.03.010


+Model
 ARTICLE IN PRESSMATCOM-3202; No. of Pages 11

8 A. Srinivasan / Mathematics and Computers in Simulation xxx (2009) xxx–xxx

Fig. 3 (left) determines the optimal computational effort ((m+ 1) ∗Nsim for MC Jacobi and 2(m+ 1) ∗Nsim for
SDI) required to obtain a specified error for each method, and then compares the two. The computational effort accounts
for the fact that SDI requires twice the number of steps that MC Jacobi does, to estimate the same number of terms of
the Neumann series. We can see that SDI performs much better than Jacobi, except at very small computational efforts.
At such small efforts, the stochastic error dominates. Consequently, when variance reduction techniques are used, SDI
becomes better at an even earlier point [12].

In Fig. 3 (right), we compare the stochastic errors from three different probability choices. While we expect to
use geometric or equal probabilities only with sparse matrices, we compared them with the probability choice used
in the dense implementation, on a dense matrix, in order to see if they perform similar to the dense one. In all cases,
this error appears to depend primarily on the probability choice, rather than on the extent to which subdiagonal
entries vary. The geometric and dense probability perform equally well, while equal probabilities performs relatively
poorly.

6. Conclusions

We have proposed efficient MC implementations, dense and sparse, for a non-diagonal splitting, even though it
superficially suffers from the disadvantages that have prevented the use of non-diagonal splittings in MC linear solvers.
This suggests an approach for MC implementations of a wider variety of stationary iterative techniques. We have also
shown, theoretically, that the Neumann series of the new splitting has better bounds on its convergence rate than does
Jacobi. We have also empirically demonstrated its effectiveness, in comparison with the conventional Jacobi-based
MC linear solver.

Appendix A. Modifications when some si = 0

As mentioned earlier, we need to make some modifications in case si can be zero, 2 ≤ i ≤ n. If sk = 0, then N−1
ij will

be zero if i ≥ k and j < k, as can be seen from Eq. (6). In the sparse implementation, we wish to assign probabilities
and weights of 0 to such elements. The definition of T in Eq. (7), however, will cause a division of the form 0/0 in
Eq. (8) for certain elements. Therefore we need to modify these definitions. The definition of P̂ in Eq. (9) too needs to
be modified to assign elements with N−1

ij = 0 a probability of 0, and to increase the probability of non-zero elements
suitably.

For each j, 1 ≤ j ≤ n, if there exists a k, j + 1 ≤ k ≤ n, such sk = 0, then define L(j) to be the smallest such k.
Otherwise, define L(j) to be n+ 1. We note that the non-zero elements of column j are those in rows j to L(j)− 1.
L(j), 1 ≤ j ≤ n, can be computed in O(n) time and space using the following recurrence

L(j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n+ 1 j = n

L(j + 1) sj+1 /= 0 and j /= n

j + 1 sj+1 = 0 and j < n

(A.1)

Here we start by computing L(n), and proceed in descending order, until we compute L(1).
We are now in a position to modify the computational definition of N−1 given by Eq. (8), to set the appropriate

elements to 0. However, we also need to modify the definition of T, to avoid division by 0. Note that if we define
T (l) = 1 when sl = 0, then, the rest of the definition of T in Eq. (7) would be acceptable for the non-zero elements in
Eq. (8), since that would involve computing αl+r· · ·αl+s as (1 · αl+1· · ·αl+s)/(1 · αl+1· · ·αl+r−1) for non-zero elements
in the appropriate range. We formalize these with the following definitions
Please cite this article in press as: A. Srinivasan, Monte Carlo linear solvers with non-diagonal splitting, Math. Comput. Simul.
(2009), doi:10.1016/j.matcom.2009.03.010

T (i) =

⎧⎪⎨
⎪⎩

1 i = 1 or si = 0

T (i− 1)
si

di

otherwise
(A.2)

dx.doi.org/10.1016/j.matcom.2009.03.010
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urthermore,

N−1
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if i < j or i ≥ L(j)

1

di

if i = j

(−1)i−j

dj

T (i)

T (j)
otherwise

(A.3)

he definitions of P̂ and Ŵ are also suitably changed, as follows

P̂ij =

⎧⎪⎨
⎪⎩

0 if i < j or i ≥ L(j)

1

L(j)− j
otherwise

(A.4)

lso

Ŵij =
⎧⎨
⎩

0 if i < j or i ≥ L(j)

N−1
ij (L(j)− j) otherwise

(A.5)

hese modifications do not change either the time or space complexities of this technique.

ppendix B. Convergence proofs

heorem 3. If A is row-wise diagonally dominant, then xm in Eq. (5) converges to the true solution as m→∞.

roof. We can pre-multiply A and b by D−1, where D is a diagonal matrix consisting of the diagonal entries of A,
o get a linear system with diagonal entries all 1, which too is row-wise diagonally dominant. We therefore assume,
ithout loss of generality, that A is a row-wise diagonally dominant matrix with all diagonal entries equal to 1. �

In order to prove the result, it is sufficient to show that the iteration matrix C = N−1M has norm less than 1. We
rove this by using Gershgorin’s theorem to bound ‖C‖2. That is, we show that

∑
j|cij| < 1, 1 ≤ i ≤ n. Note that

j|cij| =
∑

j|
∑

kn̂ikmkj| ≤
∑

j

∑
k|n̂ik||mkj|, where n̂kj = (N−1)kj . From Eq. (8), we get

∑
k

|n̂ik||mkj| = |mij| +
∑
k<i

|mkj|
i∏

l=k+1

|al,l−1|.

et us define |a10| = 0, for notational convenience. From the above equation, we get the following

∑
j

∑
k

|n̂ik||mkj| =
∑

j

∑
k<i

|mkj|
i∏

l=k+1

|al,l−1| +
∑

j

|mij| =
∑
k<i

⎛
⎝∑

j

|mkj|
⎞
⎠ i∏

l=k+1

|al,l−1| +
∑

j

|mij|

=
∑
k<i

(γk − |ak,k−1|)
i∏

l=k+1

|al,l−1| + γi − |ai,i−1|,

here we define γk =
∑

j /= k|akj| < 1 (due to row-wise diagonal dominance). Using the fact that the sum above is
Please cite this article in press as: A. Srinivasan, Monte Carlo linear solvers with non-diagonal splitting, Math. Comput. Simul.
(2009), doi:10.1016/j.matcom.2009.03.010

on-negative, it is straight-forward to prove the following by induction, as shown below.

∑
k<i

(γk − |ak,k−1|)
i∏

l=k+1

|al,l−1| + γi − |ai,i−1| ≤ γi. (B.1)

dx.doi.org/10.1016/j.matcom.2009.03.010
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The base case is satisfied with equality for i = 1. We show that it is true for i+ 1, assuming that it is true for i.

∑
k<i+1

(γk − |ak,k−1|)
i+1∏

l=k+1

|al,l−1| + γi+1 − |ai+1,i| =

∑
k<i

(γk − |ak,k−1|)
i+1∏

l=k+1

|al,l−1| + (γi − |ai,i−1|)|ai+1,i| + γi+1 − |ai+1,i| =

∑
k<i

(γk − |ak,k−1|)
i+1∏

l=k+1

|al,l−1| − |ai,i−1||ai+1,i| + γi+1 − (1− γi)|ai+1,i| =

|ai+1,i|
∑
k<i

(γk − |ak,k−1|)
i∏

l=k+1

|al,l−1| − |ai,i−1||ai+1,i| + γi+1 − (1− γi)|ai+1,i| ≤

γi+1 − (1− γi)|ai+1,i| (using the induction hypothesis) ≤
γi+1 (proving the induction hypothesis).

Since γi < 1, this proves the theorem. Note that the bound on the norm of the iteration matrix of the Jacobi iteration,
using Gershgorin’s theorem, is maxiγi. Thus the bound for the SDI scheme is at least as good as that for Jacobi (which
does not necessarily imply that the norm too is at least as small).

Theorem 4. If A is scaled to have diagonal elements of magnitude 1, and the scaled matrix is column-wise and row-
wise diagonally dominant with maxj

∑
i|mij| +maxk|ak,k−1| < 1, then the variance of the estimate for each component

converges as m→∞, when we use probability choice (i) of Section 2.1.1 for each of N−1 and M.

Proof. Every two steps of the random walk updates one component of the solution, with one step corresponding
to multiplication by M, and the next step corresponding to multiplication by N−1. Let P̃ij =

∑
kP̂ikPkj denote the

probability of transition from state j to state i over the two steps, where P̂T is the transition probability matrix for N−1

and PT is the transition probability matrix for M. Then, a sufficient condition for convergence of the variance is for
the norm of the matrix with elements c2

ij/P̃ij to be less than 1 [10], where we define an entry with cij = P̃ij = 0 as 0.
In the following discussions, we will assume that we omit such elements, to make the notation clear. �

We prove the convergence by bounding the norm using Gershgorin’s theorem. Note that in Theorem B.1, we showed
that Gershgorin’s theorem bounds the norm of C at less than one under less restrictive conditions than this theorem.
Therefore, if we show that |cij|/P̃ij < 1, then this will imply that the Gershgorin bounds are less than 1 for c2

ij/P̃ij too.
Let T = maxj

∑
i|mij| and s = maxk|ak,k−1|. If we define N = maxj

∑
i|n̂ij|, then U ≤ 1/(1− s) from the expres-

sion for N−1. Note that the condition in the theorem statement: maxj

∑
i|mij| +maxk|ak,k−1| < 1, is equivalent to

T + s < 1⇒ T/(1− s) < 1 (observing that s∈ [0, 1)).

|cij|
P̃ij

=
|
∑

k

n̂ikmkj|
∑

k

P̂ikPkj

≤

∑
k

|n̂ik||mkj|
∑

k

P̂ikPkj

=

∑
k

|n̂ik||mkj|

∑
k

(
|n̂ik|/

∑
l

|n̂lk|
)(
|mkj|/

∑
r

|mrj|
)
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=
(
∑

r

|mrj|)(
∑

k

|n̂ik||mkj|)
∑

k

(|n̂ik||mkj|)/(
∑

l

|n̂lk|)
≤

∑
r

|mrj|
∑

k

|n̂ik||mkj|
∑

k

(|n̂ik||mkj|/U)
≤ TU

∑
k

|n̂ik||mkj|
∑

k

|n̂ik||mkj|

= TU ≤ T

(1− s)
< 1.
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