
Improved techniques for using Monte Carlo in VaR estimation

4 July 2001

Abstract

This paper is about the class of problems where a large number of VaR estimates,
using Monte Carlo simulation, are required for different portfolios, drawn from a fixed
universe of products with a fixed data generating process. We focus on the matrix–vector
product which dominates the computational cost of this problem. We develop a series of
results based on deriving bounds for different matrix norms, which allow us to eliminate
rows from the matrix–vector product. Using these results, we propose fourteen alternative
new algorithms. We compare them in a numerical experiment, and find that the best of
these algorithms offers between 80% to 90% gains in speed. These algorithms make it
quite feasible to do intra–day, real–time VaR calculations, using full Monte Carlo, on the
derivatives exchanges with the highest trading intensities presently known, while requiring
modest computer hardware.

1



Contents

1 The problem 3

2 Notation and definitions 5

3 Solving the VaR decision problem 6

4 L2 norm bound 8

5 L1 norm bound 9

6 L∞ norm bound 12

7 Miscellaneous techniques 12

8 Reducing computation when VaR is exceeded 15

9 A composite algorithm 17

10 Empirical tests 17

11 Conclusions 20

A Notation 22

B Proofs 23

C The twelve L matrices used in empirical measurement 28

2



Algorithm 1 Simplest algorithm for VaR estimation using Monte Carlo

Input: Portfolio w ∈ IRM .
Output: VaR of portfolio w.
Procedure:

1. Let Vt be the value of the portfolio at the close of the previous day.

2. Simulate N draws rn,t+1, from the joint distribution of returns on the underlyings.

3. At each draw rn,t+1, apply theoretical valuation formulas to obtain Vn,t+1, the value
of the portfolio w if prices changed by rn,t+1. This gives draws from the distribution
of the change in value of the portfolio Ln,t+1 = Vn,t+1 − Vt.

4. Sort the N values for Ln,t+1, and read off the percentile value, which is the desired
VaR.

1 The problem

Value at Risk has become an important strategy for estimating capital requirements and
performing risk management functions (Jorion 2000). We focus on the general case, where
nonlinear products such as options may be present in the portfolio. There is a wide range of
techniques which can be used in estimating VaR for nonlinear portfolios, ranging from crude
“strategy–based rules”, to linear or quadratic approximations, to Monte Carlo (Estrella et al.
1994). When precise estimates of VaR are desired for nonlinear portfolios, Monte Carlo
procedures are favoured.

Consider the problem of estimating VaR on date t, on a one–day horizon at a 99% level
of significance. The simplest Monte Carlo procedure (Algorithm 1) consists of simulating
N draws from the joint distribution of underlying asset prices on date t + 1. At each of
these draws, theoretical models, such as the Black–Scholes formula, are applied to reprice
the products held in the portfolio. This gives N draws from the distribution of the one–day
change in the dollar value of the portfolio. The VaR at a 99% level is estimated by reading
off element N/100 after sorting the N different draws from the one–day change.

The appeal of the Monte Carlo procedure for VaR estimation lies in its generality and accu-
racy. It requires no simplifying assumptions about the joint distribution of the underlyings.
It requires no approximations in calculating the prices of derivatives. It makes no assump-
tions about the probability distribution of the one–day change in price of derivatives, or of
the portfolio. However, it involves considerable computational expenses: (a) in obtaining N
draws from the joint distribution of the underlyings, (b) in repricing all products at each of
these draws, and in then computing the VaR.1 This computational cost has been a barrier
limiting its application into risk containment problems in the real world.

In this paper, we focus on one special case: where a large number of different VaR problems
need be solved for different portfolios, for a fixed universe of assets with a fixed data generating
process. We offer ideas which yield significant improvements upon the computational cost
faced in this special case.

1In this paper, we work with the simple case where the theoretical price of options, under each simulated
scenario, is calculated using the closed–form Black/Scholes formula. However, our results are completely
general, and apply regardless of the method use for pricing derivatives at each of the N draws.

3



Table 1 Statistical precision and computational cost associated with alternative choices of
N in Algorithm 1

This table shows results obtained with Algorithm 1 for one simple portfolio: a long position on one futures
(T = 1), one call option (X = 1100, T = 1) and one put option (X = 1100, T = 1) when S = 1000. The
correct answer is 37.60427. We show the standard deviation of the Monte Carlo estimator of VaR obtained
for different values of N , and the computational cost (in milliseconds) faced in doing this on a Pentium II
processor at 350 Mhz. The fastest CPUs in the world today are no more than ten times faster than this.

N σ Cost (ms)

1000 1.79579 108.6
10000 0.5585 1128.4
100000 0.1766 11296.3

This is an important special case in the real–world. One example of its application lies in
the risk–containment problem of the futures clearing corporation. Consider trades that take
place on date t + 1. For all trades that take place within the trading day, futures clearing
corporations typically require an initial margin reflecting the losses which can take place from
the closing price of date t to the closing price of date t + 1.

The initial margin of the futures clearing corporation is best estimated using VaR. Indeed,
Culp et al. (1998) observe that the initial margin of the futures clearing corporation was the
first use of a notion like VaR. However futures exchanges in the real world today use a variety
of inaccurate approximations to VaR in computing their initial margin requirements. Mar-
gin calculations at the Chicago Mercantile Exchange (CME) are done using the ‘Standard
Portfolio Analysis’ (SPAN) system, and margin calculations at the Chicago Board Options
Exchange (CBOE) use the ‘Theoretical Intermarket Margining System’ (TIMS). These sys-
tems can be visualised as producing approximations of VaR using ideas dating to the late
1970s and early 1980s.

Computational constraints are one important factor in explaining the simplifications which
have gone into systems such as SPAN or TIMS. Every time a trade takes place, the positions
of two economic agents are updated, and two VaR computations are required. The most
active futures exchanges in the world today experience roughly 1,000,000 trades in around
20,000 seconds. This requires 100 VaR computations per second, on average. Given the
unevenness of trading intensity in the day, this easily maps to a peak requirement of 500
VaR computations per second, or a VaR computation in two milliseconds. Simple summary
statistics about the statistical precision and computation cost associated with alternative
choices of N in Algorithm 1, for one plausible portfolio, are shown in Table 1. Most clearing
corporations would be unwilling to accept a standard deviation in this VaR problem of above
0.19, since this turns out to yield an error of below 1% of the VaR with a 95% probability. This
would require N = 105 or so, which costs 11.3 seconds per VaR calculation using Algorithm
1. This is around 5,000 times larger than the goal of making one VaR calculation in two
milliseconds.

Apart from the risk containment problem of the futures clearing corporation, other situations
where this problem arises include a financial institution with a large number of dealers or
an Internet brokerage establishment with a large number of day traders. In each of these

4



cases, the universe of traded products stays fixed in the day, and a large number of VaR
computations are required intra–day in doing risk containment.

2 Notation and definitions

A summary of important symbols used is also given in Appendix A. Suppose there are
T different underlyings. We are concerned with VaR calculations for a portfolio consisting
of M products. These products could be linear or nonlinear products defined off these T
underlyings without any restrictions. The portfolio is a vector w ∈ IRM , where a component
wm denotes the number of securities held of product m. Let V0 be the value of the portfolio
on the previous day; our goal is to measure the VaR at a P level of significance, on a one–day
horizon.

The Monte Carlo estimation is based on simulating random vectors from the joint distribution
f() of the underlyings (r1, r2, . . . , rT ). This simulation yields random vectors r ∈ IRT . Our
approach is completely general insofar as models of the returns process are concerned. The
returns can be multivariate normal with constant or time-varying covariance matrices; the
returns can be drawn from a distribution with fat tails; returns can be non-parametrically
simulated from historical experience; etc.

For each product m, a valuation function v(m, r) maps the returns outcome r into the value of
a product, while vo(m) is the value of product m the previous day. Computing the valuation
function would involve theoretical valuation using the cost of carry model for futures prices,
Black–Scholes or other option pricing techniques for options, or more complex strategies for
derivatives which are based on multiple underlyings (e.g. index futures expressed in a foreign
currency).

Suppose a Monte Carlo simulation is based on N draws rn ∼ f(). Let the loss matrix L be an
N ×M matrix where Lnm = vo(m)− v(m, rn). The N × 1 vector b = Lw is a set of T draws
from the overnight loss on a portfolio w, with a positive component of b indicating a loss, and
a negative component a profit. Let VR be the order statistic estimated from the values of b:
when we desire a 1% VaR off N = 15000 elements in b, we seek the p = PN = 150th largest
component of b. The desired VaR estimate is VR.

Shah et al. (2000) observe that within one day, the universe of products stays fixed and the
data generating process stays fixed, hence the L matrix does not need to be re–evaluated. It
can be computed once and held fixed. The VaR computation, then, only requires the matrix
multiply b = Lw, and evaluation of the order statistic off b. They also observe that the naive
approach (Algorithm 1) would involving sorting b and then finding the desired value for a
time complexity of O(N log (N)). However, this value can actually be found in O(N) time
using an order statistic finding (selection) algorithm. They obtain major gains by applying
these two ideas. Once these ideas are in hand, their computational cost is dominated by the
matrix–vector product Lw.

The VaR Decision Problem. There are situations where knowing VaR is in itself im-
portant. However, for the risk containment of the futures clearing corporation, it is more

5



Algorithm 2 Conventional technique for determining if the VaR exceeds collateral

Input: L ∈ IRN×M , w ∈ IRM and Vc > 0.
Output: Answer to the decision problem: Yes or No.
Procedure:

1. Compute b = Lw in O(NM) time.

2. Determine VR, the pth largest component of b in O(N) time using the linear time
algorithm for determining the order statistic.

3. If VR > Vc, then the answer is No. Otherwise, the answer is Yes.

important to check whether the magnitude of VaR exceeds collateral. We call this the “VaR
decision problem”:

Given the loss matrix L, the collateral value Vc, and the weight vector w, is
VR > Vc, where VR is the p = PNth largest component of Lw?

This paper focuses on solving the VaR decision problem, while potentially avoiding the cal-
culation of VaR itself.

3 Solving the VaR decision problem

The conventional method for solving the VaR decision problem is to actually evaluate VaR(w)
and then check if it exceeds Vc as shown in Algorithm 2. In this, the major cost of compu-
tation is the evaluation of the matrix–vector product Lw. This takes O(NM) time. For a
typical case, with N = 15, 000 and M = 50, this computation requires roughly 1,500,000
floating point operations. As with Shah et al. (2000), using an O(N) algorithm to lookup the
order statistic from the b vector, we get a total complexity of O(NM). The matrix-vector
multiplication is the dominant factor in this.

This paper is based on two observations:

• The matrix L is constant throughout the day. We can therefore afford to spend a large
amount of computational effort in analysing it initially, if this will result in answering
the decision problem quickly when presented with a weight vector.

• If it becomes possible to answer the VaR decision problem without going through the
evaluation of Lw, it would offer major gains.

Our strategy is based on reducing the amount of computation using the following basic
paradigm.

Upper bound on VR: Norms, or bounds on some norms, of b can often be computed much
faster than the vector b itself. For example, the well-known inequality ‖b‖ = ‖Lw‖ ≤ ‖L‖‖w‖
can be used to bound ‖b‖ under the L1, L2, and L∞ norms easily. These computations
take only O(M) time, since ‖L‖ can be pre-computed, and only ‖w‖ needs to be determined
each time. In fact, we can even find the exact value of the L2 norm, if the bounds do not
prove useful. Let the singular value decomposition of L be given by L = UDV . Then
‖b‖2 = ‖DV w‖2, since U is orthonormal. Since DV has only at most M non-zero rows,

6



Algorithm 3 Computation of
∑

bi in O(M) time.

Input: L ∈ IRN×M and w ∈ IRM .
Output: S =

∑N
i=1 bi, where b = Lw.

Procedure:

1. Note:
∑

bi =
∑

i

∑
j Lijwj =

∑
j wj

∑
i Lij

2. Initialization: We precompute Sj =
∑

i Lij for each 1 ≤ j ≤ M once and store these
values.

3. Computation: Given a vector w, we compute S =
∑M

i=1 wiSi in O(M) time.

‖b‖2 can be computed in O(M2) time, which is much less than O(NM) required for the
computation of b, since M � N .

The norms, in turn, place upper bounds on the magnitude of VR. For example, if P < 0.5, then
we obtain trivial bounds on VR as ‖b‖1/p, ‖b‖2/

√
p, and ‖b‖∞ using each norm independently.

However, we can use combined information on these norms, and other information, to obtain
better bounds. For example, we can determine

∑
bi in O(M) time as shown in Algorithm 3.

This can be combined with the value of the L2 norm to give a tighter bound, as shown later.
All the bounds that we use are better than the trivial ones mentioned above.

At this point, we note that the algorithms we discuss generally have two phases. In the
first phase, initialization, we precompute certain quantities that depend on the loss matrix
L alone. We do not consider the cost of such computation, as long as they are feasible, since
they are done once, at the beginning of the day. In the second phase, we perform calculations
when presented with a portfolio and the collateral. We are primarily concerned with ensuring
the efficiency of these computations.

We answer the decision problem using a three-step procedure. (i) We compute an upper
bound V̂R on the value of VR. If V̂R ≤ Vc, then the answer to the decision problem is No. If
V̂R > Vc, then the answer could be either a Yes or a No. Thus the upper bounds eliminate
calculations only for situations where the VaR is not exceeded. (ii) In section 8, we give a
simple heuristic which enables us to often reduce the computational effort when the VaR is
exceeded. We try this heuristic if the first step fails to give an answer. This second step can
give an answer Yes, or no answer at all. (iii) If this step too fails to give an answer, then we
do the entire VaR computation the conventional way (though Algorithm 12 presents a slight
improvement over this).

This solution strategy always gives the same answer as the conventional technique. If either
of the first two steps succeeds in giving an answer, then we have a large saving in time. If not,
we solve the problem the conventional way, but have “wasted” time in the first two steps.
This strategy will be effective if the number of times we save on the computational effort
by answering the question in the first two steps makes up for the loss in time when those
steps are unsuccessful. In practice, the first two steps are sufficiently fast that the overhead
associated with using them is small.

In the next few section, we derive bounds using different norms, and then present a few
other heuristics too. We then test each bound or heuristic independently to determine their
effectiveness, and finally combine the best ones to come up with a composite algorithm. In

7



Algorithm 4 Computation of the L2 norm of b, or its square, in O(M2) time.

Input: L ∈ IRN×M and w ∈ IRM .
Output: W = bT b =

∑N
i=1 b2

i , where b = Lw.
Procedure:

• Initialization:
1. Compute the singular value decomposition of L: L = UDV .
2. Precompute DV , and store the (at most) M non-zero rows in the M×M matrix

Dv.

• Computation:
1. Compute the matrix-vector product ẃ = Dvw in O(M2) time.

2. Compute W =
∑N

i=1 ẃ2
i , the square of the L2 norm, in O(M) time.

• The L2 norm is easily computed as
√

W , but we really need only W in our bounds.

• W is also the square of the the L2 norm of b = Lw, since U is orthogonal (Heath
1996).

the rest of the paper, we assume that P ≤ 0.5, which is a reasonable assumption in any VaR
computation.

4 L2 norm bound

We divide this procedure into two steps. First we determine the L2 norm of b = Lw. We
then determine an upper bound on VR, given this norm and the sum of the components of b.

Determining the L2 norm of b is easy, once we precompute the singular value decomposition
of L, and is described in Algorithm 4.

We can also compute the sum S of the components of b as shown in Algorithm 3. We next
use S, and the square of b’s L2 norm, W , to derive an upper bound on VR.

Theorem 1 Given that a vector b is in IRN , p an integer in [1, N/2], the pth largest compo-
nent of b, say VR, is bounded by the following quantity:

VR ≤
1
N

(
S +

√
(N − p)

p
(NW − S2)

)
(1)

where S =
∑N

i=1 bi and W = bT b =
∑N

i=1 b2
i .

Algorithm 5 solves the decision problem through the computation of an upper bound on VR

using this L2 norm.

8



Algorithm 5 Computation of an upper bound on the pth largest component of Lw using
the L2 norm.

Input: L ∈ IRN×M and w ∈ IRM .
Output: An upper bound V̂R on the pth largest component of Lw.
Procedure:

1. Compute S =
∑

i bi in O(M) using Algorithm 3.

2. Compute W = bT b in O(M2) time using Algorithm 4.

3. Compute V̂R = 1
N

(
S +

√
(N−p)

p (NW − S2)
)

in constant time.

Note: If V̂R ≤ Vc, then the answer to the decision problem is No. Otherwise, the answer
is not determined by this bound. This procedure takes O(M2) time. If it fails to give an
answer, then we fall back upon the conventional procedure of Algorithm 2.

5 L1 norm bound

We next determine a bound for the VaR using the L1 norm. It is easy to obtain the following
upper bound on the pth largest component: VR ≤ 1

p(‖b‖1). However, unlike with the L2

norm, there is no linear transform from the N dimensional domain space to the smaller M
dimensional range space that always preserves the L1 norm. Thus determining the L1 norm
accurately and fast enough for our purpose is generally not feasible. The crude bounds such
as ‖Lw‖ ≤ ‖L‖‖w‖ are not very effective. Therefore we derive a more effective bound below.

The intuition behind the proof is as follows. If we are given just the norm of b, then, for the p
th largest component VR to be as large as possible, all the smaller components must be zero
and the other components equal to VR. Such an approach yields the bound: VR ≤ 1

p(‖b‖1).
However, if we are given addition information, such as the sum of the components of b, then
it may turn out that such as extreme case (all the smaller components being equal to zero) is
not feasible, and lemma 2 gives the bound when the norm and the sum are known. Unlike in
the case of the L2 norm, the exact L1 norm cannot be found fast. Therefore we use bounds
on the norm. If we add identical constants to each component of b, then it is possible to get
a better bound on VR. Corollary 1 gives the bound for this case, while lemma 1 gives the
optimal value of the constant to make the bound tight. This result cannot be used directly,
since it requires knowledge of VR, which is the quantity that we desire to bound! Instead,
in theorem 2, we develop a method of adding constants to b indirectly by modifying the loss
matrix. We then derive a bound for VR involving the unknown constant, and then we choose
the constant using the results of the two lemmas mentioned above. This gives a bound on
VR, which may not be optimal. But it proves to be good in practice, and is much better than
simple bounds, such as those from lemma 2.

Lemma 1 Let b ∈ IRN and ~k be the vector in IRN with ~ki = k. Indices i are chosen such
that bi1 ≤ bi2 ≤ . . . ≤ biN . Then X(k) = ‖b + ~k‖1 + (N − 2p)k attains its global minimum
when −biN−p+1 ≤ k ≤ −biN−p and the minimum value is

9



N∑
j=N−p+1

bij −
N−p∑
j=1

bij (2)

This lemma implies that the minimum value of ‖b+~k‖1 +(N −2p)k is the difference between
the sum of the p largest components of b and its (N − p) smallest components.

Lemma 2 Given that b ∈ IRN and the values of S =
∑N

i=1 bi and Ẇ = ‖b‖1, an upper bound
on the pth largest component of b is given by

VR ≤
1
2p

(Ẇ + S)

Using the results above, it is also easy to show that the bound is tight, if we are given just the
values S, Ẇ , N , and p. We should also note that we cannot compute the L1 norm quickly.
But an upper bound on the L1 norm can be used instead of the exact value of that norm. Of
course, the bound will be less tight, though still valid.

Corollary 1 Given that b ∈ IRN , ~k the vector in IRN with ~ki = k for any k, and S =
∑N

i=1 bi.
Then an upper bound on the pth largest component of b is given by

VR ≤
1
2p

(‖b + ~k‖1 + S + (N − 2p)k)

Theorem 2 Let L ∈ IRN×M , Lj
lp the sum of the p largest components of column j of that

matrix, Lj
sp the sum of the N − p smallest components of column j, Lj

ln the sum of the p
smallest components of column j, and Lj

sn the sum of the N−p largest components of column
j. Let w ∈ IRN , S =

∑N
i=1(Lw)i. Then an upper bound on the pth largest component of Lw

is given by

VR ≤
1
2p

[
S +

N∑
i=1

w̃i(Li
lp − Li

sp)−
N∑

i=1

ŵi(Li
ln − Li

sn)

]

where w̃ is given by

w̃i = wi, wi ≥ 0; w̃i = 0, otherwise (3)

and ŵ by ŵ = w̃ − w

Remark
Note that w̃ and ŵ always have non-negative components. Furthermore, it is easy to verify
that

Lw = Lw̃ − Lŵ

10



Algorithm 6 Computation of an upper bound on the pth largest component of Lw using
the L1 norm.

Input: L ∈ IRN×M and w ∈ IRM .
Output: An upper bound V̂R on the pthlargest component of Lw.
Procedure:

• Initialization: These steps are only carried out once.
1. Compute Lj

lp = sum of the p largest components of column j of L, for each j,
1 ≤ j ≤ M .

2. Compute Lj
sp = sum of the N − p smallest components of column j of L, for

each j, 1 ≤ j ≤ M .
3. Compute Lj

lm = sum of the p smallest components of column j of L, for each j,
1 ≤ j ≤ M .

4. Compute Lj
sm = sum of the N−p largest components of column j of L, for each

j, 1 ≤ j ≤ M .

• The following steps are carried out for the w that is given.
1. Compute S =

∑
i bi in O(M) using Algorithm 3.

2. Compute w̃ as defined by equation 3 in O(M) time.
3. Compute ŵ = w̃ − w in O(M) time.
4. Compute

V̂R =
1
2p

[
S +

N∑
i=1

w̃i(Li
lp − Li

sp)−
N∑

i=1

ŵi(Li
ln − Li

sn)

]

in O(M) time.

Note: If V̂R ≤ Vc, then the answer to the decision problem is No. Otherwise, the answer
is not determined by this bound. This procedure takes O(M) time. If it fails to give an
answer, then we try the conventional technique.

In order to obtain the bound above, we conceptually store the matrices L and −L distinctly,
and add a certain value k̃j and k̂j to each element of column j of each of the respective
matrices. We use corollary 1 to get a bound after using lemma 1 to choose an appropriate
value of k̃ and k̂.

Theorem 2 can be used to determine a bound on VR as shown in Algorithm 6. Here, there is an
alternative computation we can make. The singular value decomposition of L = UDV can be
precomputed, and we can store the (at most) M non-zero rows of (DV ). Then ẃ = (DV )w
can be computed in O(M2) time. Since Lw = Uẃ, we can apply the algorithm given in
Algorithm 6 to U, ẃ instead of to L,w. The complexity of this alternative will be O(M2)
due to the time taken to compute ẃ, but this can be worthwhile if the bound obtained is
significantly better than with L.

11



6 L∞ norm bound

The L∞ norm of a vector gives the magnitude of that component of the vector with the
largest absolute value. Clearly, no component, including the pth largest one, can exceed this.
As with the L1 norm, there is no linear transform from the N dimensional domain space to
the smaller M dimensional range space that always preserves the L∞ norm, and therefore,
we derive a simple upper bound on this norm instead of using the exact value of the norm.

Theorem 3 Let L be an N ×M matrix, Lj
p the largest component of column j of L, Lj

m the
smallest component of column j, for each j, 1 ≤ j ≤ M , and w ∈ IRN . Then an upper bound
on the pth largest component of Lw is given by

VR ≤
M∑
i=1

Li
pw̃i −

M∑
i=1

Li
mŵi

where w̃ is given by

w̃i = wi, wi ≥ 0; ẇi = 0, otherwise (4)

and ŵ by ŵ = w̃ − w

Remark
This is an upper bound on any of the components of Lw, and not just on the pth largest one.

Theorem 3 can be used to determine a bound on VR as shown in Algorithm 7. Here too,
as with the L1 norm, there is an alternative computation we can make. The singular value
decomposition of L = UDV can be precomputed, and we can store the (at most) M non-zero
rows of (DV ). Then ẃ = (DV )w can be computed in O(M2) time. Since Lw = Uẃ, we
can apply the algorithm given in Algorithm 7 to U, ẃ instead of to L,w, but with a time
complexity of O(M2).

7 Miscellaneous techniques

We describe here certain miscellaneous techniques based on the Cauchy-Schwartz inequal-
ity (Friedberg et al. 1996). All the norms mentioned in this section will be L2 norms.

Bound on the pth “largest” row: If b = Lw and Li denotes the i th row of L, then
bi = Liw. Using the Cauchy-Schwartz inequality, |bi| ≤ ‖Li‖‖w‖ and therefore bi ≤ ‖Li‖‖w‖.
If WL denotes the L2 norm of the row with the pth largest such norm, then WL‖w‖ is clearly
an upper bound on the pth largest component of b. We precompute WL. Given a vector w,
we determine its L2 norm easily in O(M) time by summing the square of each component,
and taking the square-root. The algorithm is defined in Algorithm 8.

12



Algorithm 7 Computation of an upper bound on the pth largest component of Lw using
the L∞ norm.

Input: L ∈ IRN×M and w ∈ IRM .
Output: An upper bound V̂R on the pth largest component of Lw.
Procedure:

• Initialize: The following steps are carried out only once.
1. Compute Lj

p = maxN
i=1 Lij , for each j, 1 ≤ j ≤ M .

2. Compute Lj
m = minN

i=1 Lij , for each j, 1 ≤ j ≤ M .

• Computation: The following steps are carried out for the w that is given.
1. Compute w̃ as defined by equation 4 in O(M) time.
2. Compute ŵ = w̃ − w in O(M) time.
3. Compute

V̂R =
M∑
i=1

Li
pw̃i −

M∑
i=1

Li
mŵi

in O(M) time.

Note: If V̂R ≤ Vc, then the answer to the decision problem is No. Otherwise, the answer
is not determined by this bound. This procedure takes O(M) time. If it fails to give an
answer, then we fall back upon the conventional technique.

If L = UDV is the singular value decomposition of L, then we can similarly use the pth

“largest” row of U and DV w. Here, we will need to compute ‖DV w‖, for which we first need
to compute DV w. This latter computation will require O(M2) time

Eliminate rows: We wish to check if VR > Vc. Equivalently, we wish to check if there are
p components of Lw with magnitude greater than |Vc| and a positive sign. We, therefore, do
not need to compute those components that we know will have a magnitude smaller than Vc.
Using Cauchy-Schwartz inequality, we can ignore rows of L with L2 norm less than |Vc|/‖w‖.
We compute the inner product with w for only those rows of L having a greater magnitude,
and then count the number of components greater than Vc. If the number exceeds p, then the
answer to the decision problem is YES . Otherwise, it is NO . The algorithm is illustrated in
Algorithm 9. If L = UDV is the singular value decomposition of L, then a similar technique
can be applied, using U, (DV w), instead of L,w.

In fact, this technique is best applied after using the bounds derived above. If the bounds
are unsuccessful in determining an answer, then we use the technique of row elimination. For
this purpose, it will be convenient to pre-sort the rows in the order of increasing L2 norm.
Then we can determine the set of rows with norm greater than |Vc|/‖w‖ in log (N) time, and
compute inner products with w for only this set of rows.

13



Algorithm 8 Computation of an upper bound on the pth largest component of Lw using
the pth largest row norm.

Input: L ∈ IRN×M and w ∈ IRM .
Output: An upper bound V̂R on the pth largest component of Lw.
Procedure:

• Initialize: Compute the L2 norm of each row of L, and let WL be the pth largest one.

• Computation:

1. Compute ‖w‖2 in O(M) time.
2. Compute V̂R = WL‖w‖2 in constant time.

Note: If V̂R ≤ Vc, then the answer to the decision problem is No. Otherwise, the answer
is not determined by this bound. This procedure takes O(M) time. If it fails to give an
answer, then we fall back upon the conventional technique.

Algorithm 9 Eliminating rows with “small” norms.

Input: L ∈ IRN×M , w ∈ IRM , and collateral Vc.
Output: An answer to the decision problem: Yes or No.
Procedure:

• Initialize:

1. Compute the L2 norm of each row of L.
2. Sort the rows of L in descending order of their L2 norms and store them in a

matrix L̃. If L̃i denotes the ith row of L̃, then i < j implies ‖L̃i‖ ≥ ‖L̃j‖ since
the rows are sorted.

3. Store the corresponding norms of the rows in a sorted array l̃.

• Computation:
1. Compute ‖w‖2 in O(M) time.
2. Determine the largest index s such that l̃s > |Vc|/‖w‖. If there is no such

component, then set s = 0. This index can be determined in O(log N) time
using binary search.

3. If s < p, then there fewer than p rows with a potential for their inner product
exceeding Vc, and therefore the answer to the decision problem is No. Otherwise
compute inner product L̃iw for each i ≤ s and call the set of inner products
computed b̂. This takes O(sM) time.

4. If the number of elements in b̂ greater than Vc is fewer than p, then the answer
to the decision problem is No. Otherwise, it is Yes. This can be done in O(s)
time.

Therefore the total time taken is O(sM + log N). In the worst case, it can be O(NM).
However, if s is small, then there is a potential for a significant reduction in time.

14



Algorithm 10 Heuristic for potential reduction in time when VaR is exceeded, by first
computing the inner product for rows with large norms.

Input: L ∈ IRN×M , w ∈ IRM , and collateral Vc.
Output: An answer: Yes. to the decision problem, or Undecided.
Procedure:

• Initialize: Compute the L2 norm of each row of L, and let L̂ be the matrix consisting
of the h rows with the largest L2 norms, where h is a fixed constant greater than p.

• Computation:
1. Compute L̂w in O(hM) time.
2. Count the number q of components of L̂w that are greater than Vc in O(h) time.
3. If q ≥ p, then the answer is Yes. Otherwise, the answer could not be determined

by this procedure, and so return Undecided.

Note: This procedure takes O(sM) time, where we can choose the constant h such that
p < h � N . If it fails to give an answer, then we compute the inner product with the rest
of the rows, and proceed as usual. This procedure can use U,DV w instead of L,w too, but
there will be an additional O(M2) time, due to the cost of computing DV w.

8 Reducing computation when VaR is exceeded

All the bounds derived above give an answer No, or no answer at all. They have the potential
to reduce the amount of computation only if the VaR is not exceeded. The technique of
row elimination is the only one described so far that is capable of reducing the amount
of computation when the VaR is exceeded. We give here a heuristic which is capable of
eliminating much of the computation when the VaR is exceeded.

Heuristic using rows with large L2 norms: All other factors being equal, we may expect
that rows of L with large norms will result in corresponding components of Lw with larger
magnitudes than for those rows with smaller norms. In this heuristic, we compute the inner
product with b for h rows of L with the largest L2 norms, where we choose some h > p. We
can then try either of the following two procedures: (i) Let q be the number of components
with value greater than Vc. If q ≥ p, then the VaR is exceeded, and the answer to the decision
problem is Yes. Otherwise, we compute the inner product with the remaining rows and find
the p − q th smallest component of that, and check if it exceeds Vc. (ii) We determine the
pth smallest component of the inner product of w with the h selected rows. This can be
accomplished in O(h) time using the linear time order statistic selection algorithm. This
gives a lower bound on the pth largest component. We have outlined the algorithm using the
variant (i) in Algorithm 10.

Yet another variant that combines the algorithms of Algorithm 9 and 10 is given in Algo-
rithm 11.

15



Algorithm 11 Combining Algorithm 9 and 10.

Input: L ∈ IRN×M , w ∈ IRM , and collateral Vc.
Output: An answer to the decision problem: Yes or No.
Procedure:

• Initialize:

1. Compute the L2 norm of each row of L.
2. Sort the rows of L in descending order of their L2 norms and store them in a

matrix L̃. If L̃i denotes the i th row of L̃, then i < j implies ‖L̃i‖ ≥ ‖L̃j‖.
3. Store the corresponding norms of the rows in a sorted array l̃.

• Computation:
1. Compute ‖w‖2 in O(M) time.
2. Determine the largest index s such that l̃s > |Vc|/‖w‖. If there is no such

component, then set s = 0. This index can be determined in O(log N) time
using binary search.

3. If s < p, then there fewer than p rows with a potential for their inner product
exceeding Vc, and therefore the algorithm can terminate with the answer to the
decision problem as: No.

4. Initialize variable count to 0.
5. Loop for i = 1 . . . s

(a) Compute ḃi = L̃iw

(b) If ḃi > Vc, then increment count by 1. If count ≥ p, then terminate the
computation with the answer Yes.

6. If the computation has not terminated with an answer so far, then the output
is No.

The computation complexity will be not more than the lower of the ones in Algorithms 9
and 10. This procedure can use U,DV w instead of L,w too, but there will be an additional
O(M2) time required for the computation of DV w.

16



Algorithm 12 A composite algorithm for the VaR decision problem.

Input: L ∈ IRN×M , w ∈ IRM , and collateral Vc.
Output: An answer to the decision problem: Yes or No.
Procedure:

• Step 1: Determine an upper bound V̂R on the pth largest component of Lw, using
bounds given in Algorithm 5, 6, 7, or 8.

• Step 2: If V̂R ≤ Vc, then terminate this algorithm with answer No.

• Step 3: Otherwise, apply Algorithm 10.

• Step 4: If the answer from the above step is Yes. then terminate this algorithm with
answer Yes.

• Step 5: Apply Algorithm 9 and return the answer from this algorithm.

In any of the steps 1, 3, or 5, we can use U,DV w instead of L,w. Also, we can replace steps
3 to 5 with the algorithm in Algorithm 11.

9 A composite algorithm

The algorithms based on the bounds are effective in reducing computational cost only when
the VaR is not exceeded, whereas the algorithm outlines in section 8 is effective only when
the VaR is exceeded. Since we do not know ahead of time whether the VaR will be exceeded
or not, we give below in Algorithm 12 a composite algorithm that combines both strategies,
so that it will be effective under both cases.

10 Empirical tests

Now that we have several bounds and heuristics, we need to verify, empirically, how they
perform in a realistic situation. We first describe the testing procedure and explain why we
consider it realistic. We then then present the results on the effectiveness of the different
procedures that we have tried.

The tests are performed on twelve sample L matrices on 1000 random portfolios each. Ap-
pendix C documents how the twelve L matrices were created. All the code is in Matlab, and
run on an Intel Celeron 300MHz processor with 64MB RAM. The Matlab function cputime
is used to give the CPU time consumed in seconds. We have determined the times consumed
over (i) all the portfolios, (ii) the subset for which the VaR was exceeded, and (iii) the subset
for which the VaR is not exceeded. The collateral value was selected by using the heuristic
that Vc was 10% of the absolute value of the portfolio at the beginning of the day.

Algorithms tested: The specific algorithms tested are as given below:

1. The conventional technique; i.e. Algorithm 2.

2. The algorithm using the L2 bound in Algorithm 5.

3. The algorithm using the L1 bound in Algorithm 6.

17



4. The algorithm using the L1 bound in Algorithm 6, with U,DV w replacing L,w.

5. The algorithm using the L∞ bound in Algorithm 7.

6. The algorithm using the L∞ bound in Algorithm 7, with U,DV w replacing L,w.

7. Algorithm 8.

8. Algorithm 8, with U,DV w replacing L,w.

9. Algorithm 9.

10. Algorithm 9, with U,DV w replacing L,w.

11. Algorithm 10, with h = 0.05N .

12. Algorithm 10, with U,DV w replacing L,w and h = 0.05N .

13. Algorithm 12, where the L1 of Algorithm 6 is used in step 1 (with U,DV w replacing
L,w), and the algorithm in Algorithm 2 is used instead in step 5.

14. Algorithm 12, where the L1 of Algorithm 6 is used in step 1 (with U,DV w replacing
L,w), and the algorithm in Algorithm 2 is used instead in step 5. Step 3 uses U,DV w
instead of L,w and h = 0.05N .

We note that we have replaced row elimination with the conventional technique of Algorithm 2
in the composite algorithms. The reason for this is that our Matlab implementation of the
former technique gave worse results than the latter. We believe the cause to be the creation
of unnecessary temporary arrays in Matlab. This issue, however, requires deeper study. Even
without taking advantage of the row elimination technique, there is a substantial improvement
in performance. We further note that the results clearly show that Alg 4 gives the most
effective bounds, and therefore we use this one alone in step 1 of the composite algorithm.

In order to also verify correctness of our implementation, we first compute the VaR estimate
with a crude technique, where we replace step 2 of Algorithm 2 with first sorting Lw and then
selecting the pth largest component. The results of the decision problem solved using this
crude technique is then compared with the results obtained from each algorithm, to verify
correctness of the implementation.

The test results are presented in Fig 1. Let Ti be the time taken for the i th test matrix
1 ≤ i ≤ 12 with the conventional algorithm Alg 1, and ti the time taken for the algorithm
we are comparing with. Then ti/Ti is the time taken as a fraction of the time taken for
the conventional technique. (By definition, this ratio is 1 for the conventional technique).
(1/12)

∑12
i=1 ti/Ti is the average fraction of time taken by the algorithm relative to the con-

ventional technique. Consequently, subtracting this quantity from 1 gives the relative saving,
when this ratio is less than 1. Similarly, min12

i=1 ti/Ti gives the relative time for the matrix
for which this algorithm was most effective, and max12

i=1 ti/Ti gives the relative timing for the
most ineffective case. We plot each of these along the same abscissa for each algorithm. We
make similar plots for the subset of portfolios where the VaR was not exceeded are presented
in Fig 2, and for the subset where the VaR was exceeded in Fig 3.

The composite algorithms give a saving of, on the average, around 87%, with around 85%
when the VaR is not exceeded, and around 90% when the VaR is exceeded. Thus our technique

18



Figure 1 Overall performance of algorithms, relative to conventional

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Algorithm

R
el

at
iv

e 
tim

e Min

Mean

Max

Figure 2 Performance on portfolios for which VaR was not exceeded

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Algorithm

R
el

at
iv

e 
tim

e

VaR not exceeded

Min

Mean

Max

19



Figure 3 Performance on portfolios for which VaR was exceeded

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.5

1

1.5

2

2.5

3

Algorithm

R
el

at
iv

e 
tim

e

VaR exceeded

Min
Mean

Max

is about seven times faster than the conventional technique. We can further observe that the
L1 bound appears to be the most effective. It is also apparent that using U,DV w is generally
more effective than using L,w, despite the additional cost of computing DV w. We make a
couple of further observations: (i) The composite algorithm performs well even in the worst
case, that is, with the loss matrix where its performance is the worst (rather than for its
worst portfolio). (ii) We can see from Fig 3, where the upper bounds are of no use, that
computation of the bounds does not cost much compared with the total time taken. Thus
the time taken for the algorithms that use only the upper bounds is not much more than that
for the conventional technique.

11 Conclusions

In this paper, we set out to obtain faster methods for solving VaR problems in one restricted
case: where VaR is done by Monte Carlo, where many VaR calculations are required for
different portfolios in an environment with a fixed universe of portfolios and a fixed data
generating process.

We shifted our goal away from the evaluation of VaR itself to solving the VaR decision
problem. We find that our new proposals for solving the VaR decision problem yield important
gains.

These techniques do not violate the innate parallelism in the VaR problem, which has been
exploited by Shah et al. (2000). These innovations would easily blend with the parallel
architecture proposed by them.

The ideas of Shah et al. (2000) make intra–day real–time VaR calculation possible in the

20



risk–containment of the futures clearing corporation; the authors show real–world evidence
of the feasibility of these methods for a simple case (with 33 derivative products being traded
off one underlying). However, the large derivatives exchanges of the world would face an L
matrix with around 105 rows and 102 columns. In this case, the matrix–vector product would
be a formidable problem. The results of this paper are important insofar as they make it
possible to attempt intra–day real–time VaR calculations on the largest futures exchanges of
the world.

21



A Notation

D: The singular value decomposition of L is L = UDV .
L: Loss matrix, ∈ IRN×M .
Li: Column i of L.
Li: Row i of L.
Lj

m: Smallest component of column Lj .
Lj

p: Largest component of column Lj .
Lj

lm: Sum of the p smallest components of column Lj .
Lj

lp: Sum of the p largest components of column Lj .
Lj

sm: Sum of the N − p largest components of column Lj .
Lj

sp: Sum of the N − p smallest components of column Lj .
M : Number of products.
N : Number of draws in the Monte Carlo simulation.
P : Level of significance for VaR.
S:
∑N

i=1 bi.
S1, S2: A decomposition of S as S = S1 + S2.
Sj :

∑M
i=1 Lij .

T : Number of underlyings.
U : The singular value decomposition of L is L = UDV .
V : The singular value decomposition of L is L = UDV .
V0: Value of a portfolio based on the prices at the beginning of the day.
VR: VaR estimate.
Vc: Value of the collateral.
W :

∑N
i=1 b2

i .
W1,W2: A decomposition of W as W = W1 + W2.
X(k): A function defined as ‖b + ~k‖1 + (N − 2p)k.
Ẇ : ‖b‖1.
V̂R: A bound on VR.
X̂: Optimal value of X(k) over all possible k.
L̃, L̂: Matrices obtained from L through certain simple transformations.
w̃, ŵ: Decomposition of w as w = w̃ − ŵ.
~k: A vector in IRN which each component equal to k.
b: Lw.
f : Joint distribution of the underlyings.
h: Number of rows p < h � N used in the heuristic defined in Algorithm 10.
l: A sorted array of the L2 norms of the rows of L.
p: P ×N .
r: Vector of values of the underlying.
v: Valuation function for products as a function of the underlyings.
vo: Value of a product at the beginning of the day.
w: A portfolio, a vector in IRN .

22



B Proofs

Theorem 1

Proof In order to simplify the notation, we can assume without loss of generality2 that b1 ≥ b2... ≥ bN

and therefore the p largest value is the component bp. We wish to determine an upper bound on bp, given
S and W . (i) We first show that when bp has its largest possible value, it must necessarily be the case that
b1 = b2 = ... = bp and bp+1 = ... = bN . (ii) We then use this to determine the largest possible value, which
gives the bound in the theorem statement.

(i) Show that b1 = b2 = ... = bp and bp+1 = ... = bN when bp attains it maximum
possible value: We prove this by contradiction. Assume that this is not true.

The sum of the components of b is given by

S = S1 + S2 (5)

where S1 =
∑p

i=1
bi and S2 =

∑N

i=p+1
bi.

Similarly, ‖b‖2 is given by

W = W1 + W2 (6)

where W1 =
∑p

i=1
b2
i and W2 =

∑N

i=p+1
b2
i .

Since bp is the lowest among b1, ..., bp, it cannot be greater than the mean of these quantities and therefore we
have the following inequality

bp ≤ S1/p

Since we seek to prove the result by contradiction, we assume that at least one of the following relations is
false:

b1 = b2 = ... = bp or bp+1 = ... = bN (7)

We use the property that for any b ∈ IRN

N∑
i=1

bi ≤
√

N‖b‖2 (8)

with equality if and only if all the components of b are equal. (We use the properties that
∑N

i=1
bi ≤ ‖b‖1 ≤√

N‖b‖2 (Heath 1996).) Applying this to (b1, ..., bp) and (bp+1, ..., bN ), and with our assumption about equa-
tion 7, at least one of the following inequalities must be true

pW1 > S2
1 or (N − p)W2 > S2

2 (9)

In order to show the contradiction, we find a vector b̂ such that
∑N

i=1
b̂i = S,

∑N

i=1
b̂2
i = W , and b̂p > bp.

(Again, we assume without loss of generality that the components of b̂ are in descending order.) This will

2To be precise, we need to state that there are indices i1, i2, · · · , iN such that bi1 ≥ bi2 ... ≥ biN . In order to
simplify the notation, we remove the subscript i and simply refer to them as b1, b2, ..., bN .

23



contradict the assumption that the the pth largest component attains its maximum possible value as bp, given
S and W .

Consider the vector b̂ given by

b̂1 = b̂2 = ... = b̂p =
S1 + δ

p

and

b̂p+1 = ... = b̂N =
S2 − δ

N − p

This clearly satisfies Equation 5. We next choose δ > 0 such that it will satisfy Equation 6.

We wish to have

1

p
(S1 + δ)2 +

1

N − p
(S2 − δ)2 = W

Straightforward algebraic manipulations give us the following quadratic equation:

Nδ2 + 2δ[S1(N − p)− S2p] + (N − p)S2
1 + pS2

2 −Wp(N − p) = 0

Solving this equation, we obtain the larger of the two solutions as:

δ = (1/N)
(
−β +

√
β2 + N [Wp(N − p)− pS2

2 − (N − p)S2
1 ]
)

where β = (S1(N − p)−S2p). In order to show that δ is positive, we need only show that [Wp(N − p)− pS2
2 −

(N − p)S2
1 ] > 0. That is, we wish to show that

(W1 + W2)p(N − p)− pS2
2 − (N − p)S2

1 > 0

That is,

(N − p)[W1p− S2
1 ] + p[W2(N − p)− S2

2 ] > 0

But at least one of the terms within the square brackets is greater than zero, by equation 9, and neither of the
terms is less than zero by equation 8. Of course, p and N − p too are positive since p ∈ [1, N/2]. Therefore
the desired inequality is satisfied and δ is indeed greater than zero. Thus b̂ satisfies both the equations 5 and
6, and b̂p = S1/p + δ/p > bp, contradicting our assumption that bp is the largest possible value. Thus the
assumption is false and we must have b1 = ... = bp and bp+1 = ... = bN when bp attains its maximum.

(ii) Determine maximum value of bp: We need to solve the following equations, in light of the
above result:

pbp + (N − p)bN = S

pb2
p + (N − p)b2

N = W

Solving these through straightforward algebraic manipulations, and solving the resulting quadratic equation
and choosing the larger of the two possible values for bp, we get

24



bp = (1/N)

(
S +

√
(N − p)

p
(N ∗W − S2)

)

The term within the radical sign is non-negative from Equation 8, and thus this value of bp can indeed be
attained and is the largest possible value.

Remark
The above proof also provides a vector that has the same sum and L2 norm as the vector b, with the p largest
component being equal to the upper bound. Thus this bound is tight if the only information available is
S, W, N, and p.

qed.

Lemma 1

Proof Without loss of generality, in order to simplify the notation, let us take b1 ≤ b2 ≤ . . . ≤ bN . This is
equivalent to just renaming the components of b. We thus wish to show that X(k) attains its global minimum
value for all k such that −bN−p+1 ≤ k ≤ −bN−p.

X(k) =

N∑
i=1

‖bi + k‖1 + (N − 2p)k

Let us first consider the case when −bN ≤ k ≤ −b1. We will later show that minimum value(s) will, indeed,
occur in this interval.

Let q be such that such that −bq+1 ≤ k ≤ −bq. Then

X(k) =

q∑
i=1

|bi + k|+
N∑

i=q+1

|bi + k|+ (N − 2p)k

=

N∑
i=q+1

(bi + k)−
q∑

i=1

(bi + k) + (N − 2p)k

=

N∑
i=q+1

bi −
q∑

i=1

bi + 2(N − q − p)k

If q = N − p, then X(k) is constant in the corresponding interval k ∈ [−bN−p+1,−bN−p] and its value is given

by X̂ =
∑N

i=N−p+1
bi −

∑N−p

i=1
bi.

We show that X̂ is the minimum value of X(k) for k ∈ [−bN ,−b1]. Consider k in any other interval [−bs+1,−bs].
So k = −bs − δ, for some δ such that bs+1 − bs ≥ δ ≥ 0. Then the value of X(k) is given by:

X =

N∑
i=s+1

bi −
s∑

i=1

bi + 2(N − s− p)(−bs − δ)

X − X̂ =

N∑
i=s+1

bi −
s∑

i=1

bi −
N∑

i=N−p+1

bi +

N−p∑
i=1

bi + 2(N − s− p)(−bs − δ)

25



Case 1: s < N − p

X − X̂ =

N−p∑
i=s+1

bi +

N−p∑
i=s+1

bi − 2(N − s− p)(bs + δ)

= 2

[
N−p∑

i=s+1

bi − (N − s− p)(bs + δ)

]
= 2

[
N−p∑

i=s+1

(bi − [bs + δ])

]

But bs + δ ≤ bi for i ∈ [s + 1, N − p] from the condition: bs+1 − bs ≥ δ ≥ 0. Therefore X − X̂ ≥ 0.

Case 2: s > N − p

X − X̂ = −2

[
s∑

i=N−p+1

bi + (N − s− p)(bs + δ)

]
= 2

[
s∑

i=N−p+1

(bs + δ − bi)

]

since s > N − p. Since bs ≥ bi for i ≤ s, we have X − X̂ ≥ 0 for this case too.

Therefore X̂ is the minimum value of X(k) when −bN ≤ k ≤ −b1.

If k < −bN , then

X(k) = −
N∑

i=1

(bi + k) + (N − 2p)k = −
N∑

i=1

bi − 2pk

But,

X(−bN ) = −
N∑

i=1

bi + 2pbN

Since k < −bN here, −k > −bN and thus X(k) > X(−bn) Similarly it is easy to show that X(k) > X(−b1)
when k > −b1. Therefore the minimum value lies in −bN ≤ k ≤ −b1 and is attained throughout the interval
−bN−p+1 ≤ k ≤ −bN−p, with the minimum value being

∑N

i=N−p+1
bi −

∑N−p

i=1
bi. qed.

Lemma 2

Proof Once again, without loss of generality, we assume that b1 ≥ b2 ≥ . . . ≥ bN . We wish to show that
bp ≤ 1

2p
(Ẇ + S).

Assume this is not true. Then there exists a vector b with the desired
∑N

i=1
bi = S and ‖b‖1 = Ẇ such that

bp = 1
2p

(Ẇ + S + δ), for some δ > 0. Therefore

p∑
i=1

bi ≥
1

2
(Ẇ + S + δ) (10)

Note that
∑p

i=1
bi > 0 since Ẇ ≥ |S|. From equation 10, we get

N∑
i=p+1

bi ≤
1

2
(S − Ẇ − δ)

Note that
∑N

i=p+1
bi < 0 since Ẇ ≥ |S| ≥ S and δ > 0. Since both terms above are negative, the inequality

implies that the magnitude of the left hand side is at least great as that of the right hand side. Therefore:

26



|
N∑

i=p+1

bi| = −
N∑

i=p+1

bi ≥ |1
2
(S − Ẇ − δ)| = 1

2
(Ẇ + δ − S)

N∑
i=p+1

|bi| ≥ |
N∑

i=p+1

bi| ≥=
1

2
(Ẇ + δ − S)

Similarly,

p∑
i=1

|bi| ≥
1

2
(Ẇ + S + δ)

Adding the above two equations, we get

Ẇ ≥ 1

2
(Ẇ + S + δ) +

1

2
(Ẇ + δ − S) = Ẇ + δ

This is impossible since δ > 0.

Therefore bp ≤ 1
2p

(Ẇ + S) qed.

Corollary 1

Proof Again, we take b1 ≥ b2 ≥ . . . ≥ bN , without loss of generality. Applying Lemma 2 to the vector (b+~k)
we get

|bp + k| ≤ 1

2p
(‖b + ~k‖1 + S + Nk)

Since the absolute value is an upper bound on the number, bp + k is less than or equal to the right hand side,
and the result follows immediately. qed.

Theorem 2

Proof Let ~k denote the vector in IRN with ~ki = k. Define the following two matrices

L̃ = L + [
~̃
k1

~̃
k2 . . .

~̃
kM ]

and

L̂ = −L + [
~̂
k1

~̂
k2 . . .

~̂
kM ]

where the k̃i and k̂i will be suitably define later to optimize the bound.

Now,

L̃w̃ + L̂ŵ = Lw + ~k

where k =
∑M

i=1
(w̃ik̃i + ŵik̂i).

From corollary 1, a bound on the pth largest component of Lw is given by

27



VR ≤ 1

2p

(
‖Lw + ~k‖1 + S + (N − 2p)k

)
If Lj denotes column j of matrix L, then we get

2pVR ≤ S + ‖
M∑

i=1

(Li +
~̃
ki)w̃i +

M∑
i=1

(−Li +
~̂
ki)ŵi‖1 + (N − 2p)

M∑
i=1

(
~̃
kiw̃i +

~̂
kiŵi

)
Using the triangle inequality and w̃i, ŵi ≥ 0 we get

2pVR ≤ S +

M∑
i=1

w̃i

(
‖Li +

~̃
ki‖1 + (N − 2p)k̃i)

)
+

M∑
i=1

ŵi

(
‖ − Li +

~̂
ki‖1 + (N − 2p)k̂i)

)

Using lemma 1, we can minimize each ‖Li +
~̃
ki‖1 +(N − 2p)k̃i and similarly for the ŵ’s. With the k’s as given

in that lemma, the bound ‖Li +
~̃
ki‖1 +(N − 2p)k̃i is given by the difference of the p largest components of the

column and the N − p smallest components of that column: (Li
lp −Li

sp). Similarly, for ŵs, the bound is given
by: −(Li

ln − Li
sn) (since the p largest values of −Li are −1× (the p smallest values of Li). qed.

Theorem 3

Proof The proof is rather simple. We observe that

Lw = Lw̃ − Lŵ = Lw̃ + (−L)ŵ

=

M∑
i=1

Liw̃i +

M∑
i=1

(−L)iŵi

where Li denotes column i of L. Since Lji ≤ Li
p, −Lji ≤ −Li

m, and w̃i, ŵi ≥ 0, each component of Lw must
be at most

M∑
i=1

Li
pw̃i +

M∑
i=1

(−L)i
mŵi

and the result follows trivially. qed.

C The twelve L matrices used in empirical measurement

Our test environment is an index futures and index options market with one underlying index,
India’s NSE-50 index (Shah & Thomas 1998). We assume there are three futures products.
The spot index is set to S = 1000, and a range of five option strikes are available, from
X = 800 to X = 1200 in steps of 100. Three option expiration dates, five option strikes and
call/put gives thirty options. Hence there are 33 products in all.

The underlying stock index process is assumed to follow a GARCH(1,1) process (Bollerslev
et al. 1992):

28



rt = µ + εt

εt ∼ N(0, ht)
ht = α0 + α1ε

2
t−1 + γ1ht−1

h0 = H0

The parameter values are estimated using India’s NSE–50 index (Thomas 1998) and prove to
be: µ = 0,H0 = 1.96, α0 = 0.13, α1 = 0.1, γ1 = 0.85.

In this, we obtain twelve test cases by varying three tuning parameters:

1. The expiration dates can be set to 1,2,3 months, or to 1,2,3 quarters.

2. The previous day’s return can be set to rt−1 = 0 or rt−1 = −3. This works through the
GARCH model and yields lower or higher volatility today.

3. The GARCH H0 parameter can be set to 1, 2 or 3.

This gives us 2× 2× 3 or 12 cases.

29



References

Bollerslev, T., Chou, R. Y. & Kroner, K. F. (1992), ‘ARCH modeling in finance: A review of
the theory and empirical evidence’, Journal of Econometrics 52(1–2), 5–60.

Culp, C. L., Miller, M. H. & Neves, A. M. P. (1998), ‘Value at risk: Uses and abuses’, Journal
of Applied Corporate Finance 10(4), 26–38.

Estrella, A., Hendricks, D., JohnKambhu, Chin, S. & Walter, S. (1994), ‘The price risk
of options positions: Measurement and capital requirements’, FRBNY Quarterly Review
pp. 27–43.

Friedberg, S. H., Insel, A. J. & Spence, L. E. (1996), Linear Algebra, 3rd edn, Prentice Hall.

Heath, M. T. (1996), Scientific Computing : An Introductory Survey, McGraw-Hill Series in
Computer Science, McGraw Hill.

Jorion, P. (2000), Value at Risk : The Benchmark for Controlling Market Risk, 2nd edn,
McGraw Hill.

Shah, A. & Thomas, S. (1998), Market microstructure considerations in index construction,
in ‘CBOT Research Symposium Proceedings’, Chicago Board of Trade, pp. 173–193.

Shah, A., Thomas, S., Darbha, G. & Misra, S. (2000), Risk measurement in parallel, Technical
report, IGIDR.

Thomas, S. (1998), Volatility forecasting in Indian financial markets, in S. Thomas, ed.,
‘Derivatives markets in India’, Invest India – Tata McGraw–Hill Series, Tata McGraw–Hill,
chapter 24, pp. 225–233.

30


